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SEM Scanning electron microscope 

SMR L Standard Malaysian Rubber 

TEM Transmission electron microscopy 

TG Thermogravimetric 

TPA Thermoplastic Polyamide Elastomer 

TPE Thermoplastic elastomer 

TPO  Thermoplastic polyolefin 

TPU Thermoplastic Polyurethanes Elastomers 

WRP Waste rubber powder 
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WTD Waste tire dust 

VA Vinyl Acetate 

XRD X-Ray Diffraction 
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LIST OF SYMBOLS 

 

d Interparticle spacing 

ΔHf Enthalpy of fusion of the composite 

ΔH
o
f Enthalpy of fusion 

I1  Intensity peak number 1 

I2  Intensity for peak number 2 

Phr Parts per hundred resin 

Tm Melting temperature 

T-50% wt Temperature at 50 % weight loss 

W1  Weight of dry sample 

W2  Weight of wet sample  
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Sifat-sifat dan Pencirian Komposit Etilena Vinil Asetat / Getah Asli / Potash 

Felspar  

 

ABSTRAK 

 

Komposit etilena vinil asetat / getah asli / potash feldspar (EVA / NR / PF) telah dikaji. 

Komposit ini disediakan menggunakan Brabender Plasticoder pada suhu 160 °C dengan 

kelajuan rotor 50rpm. Kesan pembebanan PF, pelbagai jenis pengserasi, dan agen 

gandingan pada sifat mekanikal, sifat pembengkakan, sifat morfologi, sifat terma, 

pencirian spektroskopi inframerah, dan pencirian XRD terhadap komposit EVA / NR / 

PF telah dikaji. Dalam kajian ini, 70 phr etilena vinil asetat dan 30 phr getah asli telah 

digunakan sebagai polimer matrik. Sementara itu, potash feldspar dengan 5, 10, 15, 20 

dan 25 phr telah digunakan sebagai bahan pengisi. Polietilena-dicantumkan-maleik 

anhidrida (PE-g-MAH), gabungan asid isofatalik dan anhidrida maleik (IAMA), etilena 

vinil asetat- dicantumkan-  petalik anhidrida (EVA-g-PAH) and etilena vinil asetat- 

dicantumkan-  benzil urea (EVA-g-BU) telah digunakan sebagai bahan pengserasi 

manakala agen gandingan silana dan asid gikolik- maleik anhidrida (GA-MA) 

digunakan untuk mengubahsuaikan permukaan PF.  Penambahan PF untuk komposit 

EVA/NR telah mengurangkan kekuatan tegangan, pemanjangan pada takat putus, 

peratusan pembengkakan, dan jarak antara zarah tetapi telah meningkatkan modulus 

pada 100% pemanjangan (M100) dan peratusan penghabluran. Morfologi permukaan 

tegangan-patah telah menunjukkan penumpuan PF apabila peningkatan jumlah PF. 

Apabila jumlah PF meningkat,  kestabilan terma untuk komposit didapati meningkat 

sebab suhu penguraian dan sisa jisim adalah tinggi pada jumlah PF yang tinggi. 

Komposit dengan pengserasi PE-g-MAH, IAMA, EVA-g-PAH, and EVA-g-BU 

masing-masing menunjukkan purata kenaikan sebanyak 3.19%, 4.72%, 11.24%, dan 

21.39% di dalam kekuatan tegangan; 5.52%,23.69%, 38.49%, dan 21.25% di dalam 

M100 berbanding dengan komposit EVA/NR/PF. Walau bagaimanapun, penyusutan 

sebanyak 3.97%, 5.51%, 6.24%, and 3.02% dalam pemanjangan pada waktu putus, dan 

pengurangan sebanyak 8.10%, 3.18%, 3.37%, dan 3.66% dalam peratusan 

pembengkakan telah dilaporkan untuk komposit dengan pengserasi PE-g-MAH, IAMA, 

EVA-g-PAH, dan EVA-g-BU berbanding dengan EVA / NR / PF komposit. Komposit 

dengan pengserasi PE-g-MAH, IAMA, EVA-g-PAH, dan EVA-g-BU mempamerkan 

peningkatan dalam kestabilan terma tetapi penyusutan untuk peratusan penghabluran, 

dan jarak antara zarah berbanding dengan komposit EVA / NR / PF. PF telah diubahsuai 

dengan agen gandingan silana dan GA-MA di dalam etanol. Peningkatan 10.78% dan 

13.66% untuk kekuatan tegangan manakala 77.79% dan 14.68% untuk M100 telah 

dilaporkan di komposit EVA/NR/PFSilane dan EVA/NR/PFGA-MA manakala pemanjangan 

pada waktu putus dan peraturasan pembengkakan telah menurun. Komposit 

EVA/NR/PFSilane dan EVA/NR/PFGA-MA telah dipamerkan peratusan penghabluran dan 

jarak antara zarah yang lebih rendah tetapi kestabilan terma yang lebih tinggi 

berbanding dengan komposit EVA / NR / PF. SEM morfologi bagi semua komposit 

telah dipamerkan permukaan yang kasar dan telah menunjukkan penambahan untuk 

lekatan antara muka.  
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Properties and Characterization of Ethylene Vinyl Acetate/ Natural Rubber/ 

Potash Feldspar Composites 

 

ABSTRACT 

 

The composites of ethylene vinyl acetate/ natural rubber/ potash feldspar (EVA/NR/PF) 

were studied. The composites were prepared by using Brabender Plasticoder at 160°C 

with 50rpm of the rotor speed. The effect of PF loading, various types of 

compatibilizers, and coupling agents on mechanical properties, swelling behaviour, 

morphology properties, thermal properties, spectroscopy infrared, and XRD 

characterization of the composites were investigated. In this study, 70 phr of ethylene 

vinyl acetate and 30 phr of natural rubber were used as the polymer matrix. Meanwhile, 

potash feldspar with 5, 10, 15, 20, and 25 phr was used as filler. Polyethylene-grafted-

maleic anhydride (PE-g-MAH), the combinations of isophthalic acid and maleic 

anhydride (IAMA), ethylene vinyl acetate- grafted- phthalic anhydride (EVA-g-PAH), 

and ethylene vinyl acetate- grafted- benzyl urea (EVA-g-BU) were used as 

compatibilizer while silane coupling agent and glycolic acid- maleic anhydride (GA-

MA) were used to modify the surface of PF. The addition of PF into EVA/NR 

composites has reduced the tensile strength, elongation at break, percentage mass swell, 

and interparticle spacing but improved modulus at 100% elongation (M100) and 

percentage of crytallinity. The tensile fractured surface morphology had illustrated 

agglomerations of PF at higher PF loading. At higher PF loading, the thermal stability 

of the composites was found higher as temperature of decomposition and residual were 

higher at higher PF loading. The compatibilized composites with PE-g-MAH, IAMA, 

EVA-g-PAH, and EVA-g-BU showed an average of 3.19%, 4.72%, 11.24%, and 21.39% 

respectively higher in tensile strength; 5.52%,23.69%, 38.49%, 21.25% respectively 

higher in M100 than EVA/NR/PF composites. However, 3.97%, 5.51%, 6.24%, and 

3.02% lower in elongation at break and 8.10%, 3.18%, 3.37%, and 3.66% lower in mass 

swell percentage had been reported in PE-g-MAH, IAMA, EVA-g-PAH, and EVA-g-

BU compatibilized composites respectively compared to EVA/NR/PF composites. 

Besides, the compatibilized composites presented higher thermal stability but lower 

percentage of crystallinity, and interparticle spacing compared to EVA/NR/PF 

composites. PF was treated with silane coupling agents and GA-MA in ethanol. The 

increment of an average of 10.78% and 13.66% in tensile strength and 77.79% and 

14.68%, in M100 were reported in EVA/NR/PFSilane and EVA/NR/PFGA-MA composites 

respectively while the elongation at break and mass swell were decreased for the 

composites. EVA/NR/PFSilane and EVA/NR/PFGA-MA composites exhibited lower 

percentage of crystallinity and interparticle spacing but higher thermal stability in 

comparison to EVA/NR/PF composites. The SEM morphology for all the 

compatibilized and treated composites exhibited rough surface and indicated that the 

interfacial adhesion had been improved.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Research Background 

Polymer composites are defined as materials consisting two or more distinct 

phases that their separate identities were retained. In polymer composites, matrix phase 

is primary phases having continuous character whereas dispersed phases is secondary 

phase and usually stronger than matrix (Thomas, 2012). Polymer composite materials 

had replaced many conventional materials in many applications. This is due to they are 

more design flexibility and corrosion resistance compare with other conventional 

composites (Leng et al., 2010).Polymer composites received attention in structural 

engineering due to their unique properties such as reduced product cost and good 

mechanical properties.. These materials were applied in high- performance, light weight 

applications such as motor sport and aerospace (Greenhalgh, 2009).  

 Thermoplastic elastomers (TPEs) are elastomeric materials that can be processed 

as a thermoplastic and can be recycled. Besides, TPO do not need a complex system of 

chemicals for crosslinking. TPEs have the combinations processing properties of 

thermoplastic materials at elevated temperature and characteristics of vulcanized 

elastomers at service and room temperatures. TPE can be reprocessed and have 

economic advantages (Pechurai et al., 2008). The plastic matrix which is continuous 

provides the melt processing and the dispersed rubber phase provides the elasticity to 

the blend after deformation (Chang et al., 2006).  

 Many researches had been done on the properties of TPEs. Dynamic mechanical 

and thermal properties of a chemically modified polypropylene/natural rubber blend had 
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been observed by Benmesli et al. (2014). In the study, they found out that NR-g-

MAH/PP-g-MAH blend had lower loss modulus than unmodified NR/PP blend, 

reflected the interfacial interaction that resulted form the chemical modification. Others, 

the increment of 5 ˚C in glass transition temperature in NR-g-MAH/PP-g-MAH blend 

was observed. They claimed that the improvement in the interactions was due to the loss 

of the β transition of PP phase in the NR-g-MAH/PP-g-MAH blend. 

  Thermal and crystallization behaviour of isotactic polypropylene/nitrile rubber 

blends had been reported by George et al. (2000). They reported that the dipolar 

interaction between polar group of NBR and maleic anhydride groups of PP enhanced 

the decomposition temperature in the PP/NBR blend with the incorporation of MA-PP 

or Ph-PP as compatibilizers in the blend.   

 The morphology and mechanical properties of polystyrene (PS) and natural 

rubber (NR) blend had been studied by Asaletha et al. (1999). Two phase structure had 

been shown in morphology. The dispersed phase in 30/70 NR/PS blend is NR and PS is 

the continuous phase whereas polystyrene formed the dispersed phase and NR formed 

the continuous phase in 70/30 NR/PS blend. With the increase in rubber content, tensile 

strength and tear strength decreased whereas impact strength increased.   

 Ethylene vinyl acetate (EVA) consists of random copolymer of vinyl acetate and 

ethylene, which had been used in many applications (Moly et al., 2007; Thaworn et al., 

2012). EVA can be used as elastomer, thermoplastic and thermoplastic elastomer 

depending on the vinyl acetate (VA) content in EVA copolymer (Ma et al., 2014; 

Stelescu et al., 2012). Besides, the vinyl acetate content varied the properties of EVA. 

The polar VA group can compatible with polar polymer and fillers (Hosier et al., 2010). 

EVA has excellent impact resilience, optical properties and flexibility. EVA is largely 

applied in corrosion protection, electrical insulation, electrical cable sheathing, 
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packaging of components and shoe industry due to its easy acceptance of additives, low 

density, resistance in colour change, low cost and physic-chemical properties (Bidsorkhi 

et al., 2015; Jin et al., 2007; Park et al., 2005).  

 Natural rubber (NR) is one of the common elastomer used as polymer matrix in 

thermoplastic elastomer due to its mechanical properties and unique strain 

crystallization (Liu et al., 2014). NR performs high tensile strength, good resilience, low 

compression set, tear and wear resistance, and good electrical properties. NR is 

chemically resistant to alkalis, acids and alcohol (Visakh et al., 2013). NR is widely 

used in automotive tires, tire tread, and mechanical goods (Harper et al., 2003). Natural 

rubber is applied in over 40 000 products such as medical devices, surgical gloves, and 

automobile tires (Nanthini et al., 2016). 

EVA and NR blend had gain attention either in vulcanized or unvulcanised. 

Many attractive properties of NR had made it suitable to blend with EVA. Intharapat et 

al. (2013) had studied the compatibilization of NR/EVA blends in the existennce of  

NR-g-PDMMMP (natural rubber grafted poly (dimethyl (methacryloyloxymethyl) 

phosphonate)) as compatibilizer. They reported that compatibilization effect was the 

best at 7 wt. % of compatibilizer. Besides that, finest morphology of NR/EVA blend 

with NR-g-PDMMMP can be observed.  

Sujith et al. (2005) had studied the barrier properties of natural rubber/ ethylene 

vinyl acetate/ carbon black composites.  They reported that the blending of EVA and 

NR had reduced the solvent sensitivity of NR due to the introduction of rigid EVA 

regions into NR. Besides that, molecular sorption by heterogeneous natural rubber/ poly 

(ethylene-co-vinyl acetate) blend systems was studied by Sujith et al. (2006). They 

claimed that the solvent uptake for higher EVA content was lower. The vulcanization of 

NR/EVA using sulphur exhibited the highest solvent uptake followed by the mixed 
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