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ABSTRACT

A fully fuzzy matrix equation of ÃX̃B̃ = C̃ has its own important in the application of control system
engineering particularly in the situation of uncertainty. In this study, the equation is solved where
the triangular fuzzy numbers be the variables of the equation. The algorithm that is used in the
solution is consists of the conversion for the fully fuzzy matrix equation to a fully fuzzy linear system
by utilizing the Kronecker and Vec-operator. Subsequently, the final solution is obtained by using
the pseudoinverse method. A numerical example and the verification of the solution obtained are
presented to demonstrate the contribution of this study.

Keywords: Control system engineering, Fully fuzzy matrix equation, Fully fuzzy linear system,
Pseudoinverse method.

1 INTRODUCTION

There are variety of matrix equations that are generally used in many applications related with control
system engineering [1–3]. According to [4], matrix equations play their function of equation solver for
control system model. However, there is certain condition that could be uncertainty during the system
process. Therefore, the investigation of the solution for the matrix equations with the parameters are in
fuzzy numbers are become necessary [5].

The matrix equation with all the parameters are either in a triangular, trapezoidal or parametric form of
fuzzy numbers is known as a fully fuzzy matrix equation (FFME). The study on the FFME of ÃX̃B̃ = C̃ has
been carried out since 2013 by [6], but the method proposed is quite tedious to be applied for the matrices
with the size more than three. The number of studies keep increasing in a past few years for various forms
of FFME, such as ÃX̃ − X̃B̃ = C̃ [7] and X̃Ã = C̃ [8]. Both studies have considering that the parameters and
solutions of the FFME are in positive triangular fuzzy numbers (TFN). While, there are also studies have
been carried out for solving FFME ÃX̃ + X̃B̃ = C̃ by [9] and [10], where the parameters of the FFME are
in parametric form and arbitrary form of trapezoidal fuzzy numbers, respectively. Recently, [11] proposed
a modified fuzzy multiplication arithmetic operators in order to solve FFME of ÃX̃B̃ − X̃ = C̃, where the
parameters are considering to be in a near-zero TFN.
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Since, up to now, there is only one study conducted for solving ÃX̃B̃ = C̃, hence, this study proposed a new
algorithm for solving the FFME of

ÃX̃B̃ = C̃ (1)

by considering that the parameters Ã = (ãij)m×n, B̃ = (b̃ij)m×n and C̃ = ( ̃cij)m×n are in a form of arbitrary
TFN, while X̃ = ( ̃xij)n×m is an approximate fuzzy solution. This study provides a simple and direct algorithm,
which applicable for arbitrary TFN regardless to any size of matrices.

In solving the FFME, the Kronecker product and Vec-operator are used to transform the FFME to a fully
fuzzy linear system (FFLS). In addition, an associated linear system (ALS) is used to formed the FFLS in a
crisp form of linear system. Finally, the approximate fuzzy solution is obtained by using the pseudoinverse
method.

This paper is organized as follows. In Section 2, some preliminaries that are used in this study is given. In
Section 3, the algorithm that are developed for solving the FFME of Equation (1) is presented. A numerical
example is illustrated in Section 4 and followed by the conclusion in Section 5.

2 PRELIMINARIES

In this section, some definitions and theories are reviewed which are used in this study.

2.1 Theory of Fuzzy Numbers

The definitions that describe on the theory of fuzzy numbers are given as follows which are based on [12–
14].

Definition 1 Let X be a nonempty set. A fuzzy set Ã in X is characterized by its membership function

𝜇Ã ∶ X→ [0, 1] (2)

and 𝜇Ã(x) represents the degree of membership of element x in fuzzy set Ã for each x ∈ X.

Definition 2 A fuzzy number M̃ = (m, 𝛼, 𝛽) is said to be a triangular fuzzy number (TFN), if its membership
function is given by:

𝜇M̃(x) =
⎧⎪
⎨⎪
⎩

1 − m−x
𝛼
, m − 𝛼 ≤ x ≤ m, 𝛼 > 0,

1 − x−m
𝛽
, m ≤ x ≤ m + 𝛽, 𝛽 > 0,

0, otherwise.
(3)

In this case, m is the mean value of M̃, whereas 𝛼 and 𝛽 are the right and left spreads, respectively.

Definition 3 A fuzzy number M̃ = (m, 𝛼, 𝛽) is called as an arbitrary TFN where it may be positive, negative
or near zero which can be classified as follows:

• M̃ is a positive (negative) fuzzy number iff m − 𝛼 ≥ 0 (𝛽 +m ≤ 0).
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• M̃ is a near zero fuzzy number iff m − 𝛼 ≤ 0 ≤ 𝛽 +m.

Usually, the multiplication operation for the TFN is executed based on the fuzzy arithmetic operator introduced
by [13]. However, since the Dubois’s multiplication operator is limited for the arbitrary fuzzy numbers, then
in this study, the multiplication operation is executed based on the following operators.

Definition 4 [15] The product of two triangular fuzzy numbers M̃ = (m, 𝛼, 𝛽) and Ñ = (n, 𝛾, 𝛿), is defined
as

M̃⊗ Ñ =
⎧
⎨
⎩

(mn, f1, f2) (m, 𝛼, 𝛽) ≥ 0

(mn, f3, f4) (m, 𝛼, 𝛽) ≤ 0

(mn, f5, f6) otherwise.
(4)

where
f1 = mn − Min((m − 𝛼)(n − 𝛾), (m + 𝛽)(n − 𝛾)),
f2 = Max((m − 𝛼)(n + 𝛿), (m + 𝛽)(n + 𝛿)) −mn,
f3 = mn − Min((m − 𝛼)(n + 𝛿), (m + 𝛽)(n + 𝛿)),
f4 = Max((m − 𝛼)(n − 𝛾), (m + 𝛽)(n − 𝛾)) −mn,
f5 = mn − Min((m − 𝛼)(n + 𝛿), (m + 𝛽)(n − 𝛾)),
f6 = Max((m − 𝛼)(n − 𝛾), (m + 𝛽)(n + 𝛿)) −mn.

2.2 Classical Linear Systems

A classical linear system of equations which generally denoted as AX = B, is a set or collection of equations
which consists of similar set variables [16]. Normally, the classical linear system can be solved using direct
inverse method, such that

X = A−1B (5)

where A is an invertible coefficient matrix and X is a unique solution. On the other hand, if A is non-invertible,
then the system can be solved by pseudoinverse method.

Definition 5 [17] If A ∈ 𝕄m×n, then there exists a unique A† ∈ 𝕄m×n, such that

A† = (ATA)−1AT. (6)

where A† is the pseudoinverse of matrix A.

Thus, the solution for AX = B can be obtained by

X = A†B, (7)

where X is a best approximate solution of the linear system.

2.3 Fundamental Concepts of Fuzzy Kronecker Product and Fuzzy Vec-operator

The function of the Kronecker product and Vec-operator are also important in this study in converting the
FFME to a simpler form of equations.The definitions and theorems of the Kronecker product and Vec-
operator in the fuzzy numbers environment are provided as follows:
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Definition 6 [18] Let Ã = (ãij)m×n and B̃ = (b̃ij)p×q be fuzzy matrices. Fuzzy Kronecker product is
represented as Ã⊗k B̃, where

Ã⊗k B̃ =
⎛
⎜
⎜
⎝

ã11B̃ ã12B̃ … ã1nB̃
ã21B̃ ã22B̃ … ã2nB̃
⋮ ⋮ ⋱ ⋮

ãm1B̃ ãm2B̃ … ãmnB̃

⎞
⎟
⎟
⎠

= [ãijB̃](mp)×(nq) (8)

Definition 7 [18] Vec-operator of a fuzzy matrix is a linear transformation that converts the fuzzy matrix
of C̃ = ( ̃c1, ̃c2, ..., ̃cn) into a column vector as

Vec(C̃) =
⎛
⎜
⎜
⎝

̃c1

̃c2

⋮
̃cn

⎞
⎟
⎟
⎠

. (9)

Theorem 1 [18] If Ã = (ãij)m×m is a fuzzy matrix, and Ũ = (ũij)p×p is a unitary fuzzy matrix defined as

Ũ =
⎛
⎜
⎜
⎝

(1, 0, 0) (0, 0, 0) … (0, 0, 0)
(0, 0, 0) (1, 0, 0) … (0, 0, 0)

⋮ ⋮ ⋱ ⋮
(0, 0, 0) (0, 0, 0) … (1, 0, 0)

⎞
⎟
⎟
⎠

, (10)

then

i. ÃŨ = ŨÃ = Ã

ii. ŨT = Ũ.

Definition 8 [18] Let A = (aij)m×m, B = (bij)n×n and X = (xij)m×n, then

i. Vec[ÃX̃] = [Ũn ⊗k Ã]Vec(X̃)
ii. Vec[X̃B̃] = [B̃T ⊗k Ũm]Vec(X̃)

3 ALGORITHM FOR SOLVING ÃX̃B̃ = C̃

In this section, the developed algorithm is presented. First, the FFME of ÃX̃B̃ = C̃ is converted to a form of
FFLS, denoted as S̃X̃ = C̃, where S̃ = [B̃T ⊗k Ã], X̃ = Vec(X̃) and C̃ = Vec(C̃). The conversion is based on
the following Lemma 1 and Theorem 2.

Lemma 1 Let Ã = (ãij)m×n and B̃ = (b̃ij)m×n, then

Ãm×n ⊗k B̃m×n = [(Ãm×n ⊗k Ũn×n)(Ũm×m ⊗k B̃m×n)] (11)

Proof According to Definition 6 and the standard matrix multiplication,

Ãm×n ⊗k B̃m×n =
⎛
⎜
⎜
⎝

ã11B̃ ã12B̃ … ã1nB̃
ã21B̃ ã22B̃ … ã2nB̃
⋮ ⋮ ⋱ ⋮

ãm1B̃ ãm2B̃ … ãmnB̃

⎞
⎟
⎟
⎠

.
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On the other hand, since

(Ãm×n ⊗k Ũn×n) =
⎛
⎜
⎜
⎝

ã11Ũ ã12Ũ … ã1nŨ
ã21Ũ ã22Ũ … ã2nŨ
⋮ ⋮ ⋱ ⋮

ãm1Ũ ãm2Ũ … ãmnŨ

⎞
⎟
⎟
⎠

and

(Ũm×m ⊗k B̃m×n) =
⎛
⎜
⎜
⎝

B̃ 0 … 0
0 B̃ … 0
⋮ ⋮ ⋱ ⋮
0 0 … B̃

⎞
⎟
⎟
⎠

.

Then,

(Ãm×n ⊗k Ũn×n)(Ũm×m ⊗k B̃m×n) =
⎛
⎜
⎜
⎝

ã11Ũ ã12Ũ … ã1nŨ
ã21Ũ ã22Ũ … ã2nŨ
⋮ ⋮ ⋱ ⋮

ãm1Ũ ãm2Ũ … ãmnŨ

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

B̃ 0 … 0
0 B̃ … 0
⋮ ⋮ ⋱ ⋮
0 0 … B̃

⎞
⎟
⎟
⎠

=
⎛
⎜
⎜
⎝

ã11B̃ ã12B̃ … ã1nB̃
ã21B̃ ã22B̃ … ã2nB̃
⋮ ⋮ ⋱ ⋮

ãm1B̃ ãm2B̃ … ãmnB̃

⎞
⎟
⎟
⎠

.

It is shown that the expressions on the left-hand side and the right-hand side are equal. Hence, the lemma is
proof. □

Theorem 2 Let Ã and B̃ be any size of fuzzy matrices, then the FFME of ÃX̃B̃ = C̃ is equivalent to FFLS of

S̃X̃ = C̃,

where S̃ = [B̃T ⊗k Ã], X̃ = Vec(X̃) and C̃ = Vec(C̃).

Proof By considering the Vec-operator to ÃX̃B̃ = C̃,

Vec(ÃX̃B̃) = Vec(C̃), (12)

then

Vec(ÃX̃B̃) = Vec(ÃX̃ŨTB̃) by Theorem 1(i) and (ii)

= Vec([ÃX̃][B̃ŨT]) by Theorem 1(i)

= Vec([ÃX̃][B̃TŨ]T) by properties of matrix transpose

= (B̃TŨ⊗k Ũ)Vec(ÃX̃) by Definition 8(ii)

= (B̃T ⊗k Ũ)Vec(ÃX̃) by Theorem 1(i)

= (B̃T ⊗k Ũ)[(Ũ⊗k Ã)Vec(X̃)] by Definition 8(i)

= [(B̃T ⊗k Ũ)(Ũ⊗k Ã)]Vec(X̃) by associative matrix

= [B̃T ⊗k Ã]Vec(X̃) by Lemma 1
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Hence

[B̃T ⊗k Ã]Vec(X̃) = Vec(C̃)
which is equivalent to

S̃X̃ = C̃, (13)

where S̃ = [B̃T ⊗k Ã], X̃ = Vec(X̃) and C̃ = Vec(C̃). □

Next, the FFLS of Equation (13) is solved by using an associated linear system (ALS), which has been built
based on fuzzy arithmetic operator. The definition of the ALS is given as follows.

Definition 9 Let the FFLS of S̃X̃ = C̃ such that S̃ = (mS̃, 𝛼S̃, 𝛽S̃), C̃ = (mC̃, 𝛼C̃, 𝛽C̃) and
X̃ = (mX̃, 𝛼X̃, 𝛽X̃) are arbitrary fuzzy matrices. Then, the ALS SX = C is formed as:

(
mS̃ 0 0
−𝛽S̃ (mS̃ + 𝛽S̃)+ −(mS̃ + 𝛽S̃)−
−𝛼S̃ −(mS̃ − 𝛼S̃)− (mS̃ − 𝛼S̃)+

)(
mX̃

𝛼X̃
𝛽X̃
) =(

mC̃

𝛼C̃
𝛽C̃
) (14)

where (mS̃ − 𝛼S̃)+ and (mS̃ + 𝛽S̃)+ contain the positive elements of (mS̃ − 𝛼S̃) and (mS̃ + 𝛽S̃) respectively,
while the negative elements are replaced by zero value. Similar to (mS̃−𝛼S̃)− and (mS̃+𝛽S̃)− which contain
the negative elements of (mS̃ − 𝛼S̃) and (mS̃ + 𝛽S̃) respectively, while the positive elements are replaced by
zero value.

In obtaining the final solution, the coefficient S of the ALS in Equation (14) can be inverse directly, so that
the fuzzy solution X̃ can be obtained. However, in this study, the coefficient S is considering as non-invertible
matrix, thus the pseudoinverse method as in Definition 5 is used in obtaining the fuzzy approximation
solution, such that

X = S†C. (15)

where S† is the pseudoinverse of matrix S.

4 NUMERICAL EXAMPLE

Example 1 Consider the following FFME of ÃX̃B̃ = C̃

( (−3, 1, 7)
(−2, 4, 10)) ⊗ ( ̃x11 ̃x12 ̃x13) ⊗ (

(9, 2, 12) (2, 1, 3)
(6, 3, 13) (12, 2, 7)
(11, 4, 8) (9, 4, 9)

) = ((420, 2376, 1536) (327, 1787, 1133)
(280, 4192, 2654) (218, 3138, 1972))

where the coefficients Ã and B̃ are near-zero and positive TFN respectively, while X̃ is a fuzzy solution.

Solution:

The solution begins by converting the FFME to FFLS.

B̃T ⊗k Ã = ((9, 2, 12) (6, 3, 13) (11, 4, 8)
(2, 1, 3) (12, 2, 7) (9, 4, 9) ) ⊗k ( (−3, 1, 7)

(−2, 4, 10))

= (
(−27, 57, 111) (−18, 58, 94) (−33, 43, 109)
(−18, 108, 186) (−12, 102, 164) (−22, 92, 174)
(−6, 14, 26) (−36, 40, 112) (−27, 45, 99)
(−4, 26, 44) (−24, 90, 176) (−18, 90, 162)

)
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From that, the FFLS of S̃X̃ = C̃ is

(
(−27, 57, 111) (−18, 58, 94) (−33, 43, 109)
(−18, 108, 186) (−12, 102, 164) (−22, 92, 174)
(−6, 14, 26) (−36, 40, 112) (−27, 45, 99)
(−4, 26, 44) (−24, 90, 176) (−18, 90, 162)

)(
(mX̃

11, 𝛼X̃11, 𝛽X̃11)
(mX̃

12, 𝛼X̃12, 𝛽X̃12)
(mX̃

13, 𝛼X̃13, 𝛽X̃13)
) = (

(420, 2376, 1536)
(280, 4192, 2654)
(327, 1787, 1133)
(218, 3138, 1972)

) .

In order to transform the FFLS to the ALS, the coefficient of the FFLS are converted to the crisp form of
matrices, as follows:

mS̃ = (
−27 −18 −33
−18 −12 −22
−6 −36 −27
−4 −24 −18

) , 𝛼S̃ = (
57 58 43

108 102 92
14 40 45
26 90 90

) , 𝛽S̃ = (
111 94 109
186 164 174
26 112 99
44 176 162

)

and the left-hand side C̃ is extracted to be as follows:

mC̃ = (
420
280
327
218

) , 𝛼C̃ = (
2376
4192
1787
3138

) , 𝛽C̃ = (
1536
2654
1133
1972

) .

Additionally,

(mS̃ − 𝛼S̃) = (
−84 −76 −76
−126 −114 −114
−20 −76 −72
−30 −114 −108

) ,

(mS̃ − 𝛼S)+ = (
0 0 0
0 0 0
0 0 0
0 0 0

) ; (mS̃ − 𝛼S̃)− = (
−84 −76 −76
−126 −114 −114
−20 −76 −72
−30 −114 −108

) .

On the other hand,

(mS̃ + 𝛽S̃) = (
84 76 76

168 152 152
20 76 72
40 152 144

) ,

(mS̃ + 𝛽S̃)+ = (
84 76 76

168 152 152
20 76 72
40 152 1446

) ; (mS̃ + 𝛽S̃)− = (
0 0 0
0 0 0
0 0 0
0 0 0

) .

Then, the ALS which is in the form of SX = C as shown in Definition 14 is performed as

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−27 −18 −33 0 0 0 0 0 0
−18 −12 −22 0 0 0 0 0 0
−6 −36 −27 0 0 0 0 0 0
−4 −24 −18 0 0 0 0 0 0
−111 −94 −109 84 76 76 0 0 0
−186 −164 −174 168 152 152 0 0 0
−26 −112 −99 20 76 72 0 0 0
−44 −176 −162 40 152 144 0 0 0
−57 −58 −43 84 76 76 0 0 0
−108 −102 −92 126 114 114 0 0 0
−14 −40 −45 20 76 72 0 0 0
−26 −90 −90 30 114 108 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

mX̃
1,1

mX̃
1,2

mX̃
1,3

𝛼X̃1,1
𝛼X̃1,2
𝛼X̃1,3
𝛽X̃1,1
𝛽X̃1,2
𝛽X̃1,3

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

420
280
327
218

2376
4192
1787
3138
1536
2654
1133
1972

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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In this case, since the coefficient of the ALS is non-invertible matrix, thus, the pseudoinverse method as
stated in (15) is applied, hence

X =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

−5.41699
−3.31542
−6.48678
1.68041
4.13539
3.95475

0
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

or X =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎛
⎜⎜
⎝

mX̃
1,1

mX̃
1,2

mX̃
1,3

⎞
⎟⎟
⎠

(
𝛼X̃1,1
𝛼X̃1,2
𝛼X̃1,3

)

(
𝛽X̃1,1
𝛽X̃1,2
𝛽X̃1,3

)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

(
−5.41699
−3.31542
−6.48678

)

(
1.68041
4.13539
3.95475

)

(
0
0
0
)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

. (16)

Hence, the solution obtained is an approximate negative fuzzy solution X̃, which is

X̃ = ((mX̃
1,1, 𝛼X̃1,1, 𝛽X̃1,1) (mX̃

1,2, 𝛼X̃1,2, 𝛽X̃1,2) (mX̃
1,3, 𝛼X̃1,3, 𝛽X̃1,3))

= ((−5.41699, 1.68041, 0) (−3.31542, 4.13539, 0) (−6.48678, 3.95475, 0)) .

Furthermore, a verification of the obtained solution is implemented by substituting the solution X̃ to the to
the left-hand side of FFME as stated in Example 1.

ÃX̃ = ( (−3, 1, 7)
(−2, 4, 10)) ⊗ ((−5.41699, 1.68041, 0) (−3.31542, 4.13539, 0) (−6.48678, 3.95475, 0))

= ((16.251, 44.6406, 12.1386) (9.94626, 39.7495, 19.857) (19.4603, 61.2265, 22.3058)
(10.834, 67.6132, 31.7504) (6.63084, 66.2373, 38.074) (12.9736, 96.5058, 49.6756)) .

Subsequently,

ÃX̃B̃ =((16.251, 44.6406, 12.1386) (9.94626, 39.7495, 19.857) (19.4603, 61.2265, 22.3058)
(10.834, 67.6132, 31.7504) (6.63084, 66.2373, 38.074) (12.9736, 96.5058, 49.6756))

⊗ (
(9, 2, 12) (2, 1, 3)
(6, 3, 13) (12, 2, 7)
(11, 4, 8) (9, 4, 9)

)

= ((420, 2376, 1536) (327, 1787, 1133)
(280, 4192, 2654) (218, 3138, 1972))

= C̃

which is equal to C̃, the matrix at the right hand side of the FFME. Therefore, the solution is verified.

5 CONCLUSION

This study presents an algorithm for solving the FFME of ÃX̃B̃ = C̃, where the parameters are arbitrary
TFN. The algorithm utilizes the Kronecker product and Vec-operator in transforming the FFME to FFLS
and forming the crisp form of linear system based on ALS. By considering that the FFME involves with
a non-invertible coefficient matrix, then the pseudoinverse method is applied. Therefore, an approximate
solution is obtained. For the future research, the other type of linear and non-linear matrix equations will be
considered, such as AX + XAT = C, AXAT − X = C and AXB + CXD = E, since the equations are also crucial
in the real control system applications.
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