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ABSTRACT 

In this work, a block of diagonally implicit backward differentiation method with two off-step 
points for solving first order stiff initial value problem of ordinary differential equation was 
derived. In the proposed block method two approximate solution values of 𝑦𝑛+1 and 𝑦𝑛+2 with 
two off-step points  𝑦

𝑛+
1

2

 and 𝑦
𝑛+

3

2

 are computed concurrently for each iteration. The properties 

of the newly proposed method were found to be an A-stable, Zero stable and capable for solving 
first order Stiff IVPs. To validate the performance of the proposed method, some first order stiff 
IVPs are solved and the result obtained was compared with other existing numerical schemes. 
From the tabulated results and the graphs plotted, the proposed method has shown advantages 
of accuracy in the scale error over the three methods and an advantage of executional time over 
two of the existing methods considered.  
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1 INTRODUCTION 

In physical, social and life sciences so many real life problems can be modelled into equation, most 
often differential equation. Problems in electrical circuits, chemical reactions, mechanics, vibrations, 
and kinetics and population growth all can be modelled as differential equations and categorized into 
stiff and non-stiff. A stiff equation is a differential equation for which certain numerical methods for 
solving the equation are numerically unstable, unless the step size is taken to be extremely small. So, 
with regard to modern scientific and engineering cases most of the modelled equations derived turns 
to be stiff problems. Researchers are formulating various methods to obtain analytic and/or 
numerical solutions of the modelled stiff IVPs. But, stiff problem usually deviates from been solved 
analytically due its complexities and other phenomena which is found within its solution, the 
transient and steady state components found in its solution make explicit method difficult to handle 
with appreciated results. While, numerical solution is much more easier and obtainable in any form 
stiff IVP of ODEs. Most of the stiff cases have no analytical solutions at all. Hence, preferences are 
always channels to numerical methods that would solve any sort of stiff IVP of ODEs. The ultimate 
goal is to get a method with a solution that has absolutely minimum scale error and computational 
time.  
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The early work integration of stiff equations [1], the extended backward differential formula and 
modified extended BDF [2, 3]. Block method was given more recognition through the work of [4, 8, 
9, 10, 11, 12]. New fifth order implicit block method for solving first order stiff ordinary differential 
equations, a new super class of block backward differentiation formula for stiff ordinary differential 
equations, an accurate block solver for stiff initial value problems [5, 6, 7]. More numerical solutions 
and Hybrid multistep block methods were developed [19, 20, 21, 22, 23, 28]. Numerical treatment of 
block method for the solution of ODEs, on the approximate solution of continuous coefficients for 
solving third order ordinary differential equations, an accurate computation of block hybrid method 
for solving stiff ordinary differential equations [13, 14, 15]. An A-stable block integrator scheme for 
the solution of first order system of IVPs of ordinary differential equations, order and convergence 
of the enhanced 3-point fully implicit super class of block backward differentiation formula for 
solving first order stiff initial value problems [16, 17]; extended 3-Point super class of block 
backward differentiation formula for solving first order stiff initial value problems [18]. Other works 
include the following [24], [25], [26], [27], [29], [30], [31], [32], [33], [34] and [35] all the methods 
highlighted above demonstrates very good stability properties, at one point or the other, with 
appreciated results in terms of accuracy and computational time. 

This paper considers derivation and implementation of a robust diagonally implicit block method 
with two off-step points for solving a system of first order initial value problem of ordinary 
differential equations. The proposed method will generate newly equally spaced solution values 
concurrently. In addition, the method uses of a lower triangular matrix with identical diagonal 
entries, as such the coefficients of the upper triangular matrix entries are zero. The method is of the 
form 

𝑦′ = 𝑓(𝑥, �̂�),    �̂�(𝑎) = 𝜑ղ,  𝑎 ≤ 𝑥 ≤ 𝑏              (1) 

where �̂� = (𝑦1, 𝑦2, 𝑦3, ………𝑦𝑛),      ղ�̅� = (𝜑ղ1, 𝜑ղ2, 𝜑ղ3, … , 𝜑ղ𝑛).      

2 DERIVATION OF A ROBUST 2-POINT BBDF WITH OFF-STEP POINTS 

In this section, two approximate solution values 𝑦𝑛+1 and 𝑦𝑛+2  with step size ℎ, and two off-step 
points  𝑦

𝑛+
1

2

 and 𝑦
𝑛+

3

2

 which are chosen at the points where the step size is halved are formulated in 

a block simultaneously. The formulae are computed using two back values 𝑦𝑛 and 𝑦𝑛−1 with step size 
h. The formulae are derived with the aid of a diagram as shown in Figure 1. 

 



Applied Mathematics and Computational Intelligence 
Volume 11, No. 1, Dec 2022 [252 – 273] 

254 

 

Figure 1: Diagram for RDIBM derivation. 

The proposed method (RDIBM) is of the form 

∑ 𝛼𝑗,𝑖𝑦𝑛+𝑗−1
1+𝑘
𝑗=𝑜 = ℎ𝛽𝑘,𝑖[𝑓𝑛+𝑘 + 𝑓𝑛+𝑘−1]𝑘 = 𝑖 =

1

2
, 1,

3

2
, 2              (2) 

where 𝑘 and 𝑖 have the same value. The formula (2) is derived using Taylor’s series expansion about 
𝑥𝑛 

Definition 2.1.  According to [26], the linear operator 𝐿𝑖 associated with first, second, third and 
fourth point of the RDIBM with off-step points method is defined as follows: 

 

𝐿 [𝑦(𝑥𝑛), ℎ]: 𝛼0, 𝑦𝑛−1 + 𝛼1, 𝑦𝑛 + 𝛼3
2
, 𝑦𝑛+1

2

− ℎ𝛽 , [𝑓𝑛+ + 𝑓𝑛+ −1] = 0     

𝐿 [𝑦(𝑥𝑛), ℎ]: 𝛼0, 𝑦𝑛−1 + 𝛼1, 𝑦𝑛 + 𝛼3
2
, 𝑦𝑛+1

2

+ 𝛼2, 𝑦𝑛+1 − ℎ𝛽 , [
𝑓𝑛+

+𝑓𝑛+ −1
] = 0 

𝐿 [𝑦(𝑥𝑛), ℎ]: 𝛼0, 𝑦𝑛−1 + 𝛼1, 𝑦𝑛 + 𝛼3
2
, 𝑦𝑛+1

2

+ 𝛼2, 𝑦𝑛+1 + 𝛼5
2
, 𝑦𝑛+3

2

− ℎ𝛽 , [
𝑓𝑛+

+𝑓𝑛+ −1
] = 0

𝐿 [𝑦(𝑥𝑛), ℎ]: 𝛼0, 𝑦𝑛−1 + 𝛼1, 𝑦𝑛 + 𝛼3
2
, 𝑦𝑛+1

2

+ 𝛼2, 𝑦𝑛+1 + 𝛼5
2
, 𝑦𝑛+3

2

+ 𝛼3, 𝑦𝑛+2  

−ℎ𝛽 , [𝑓𝑛+ + 𝑓𝑛+ −1] = 0 }
 
 
 
 
 

 
 
 
 
 

     (3) 

 
Consider the following value of  & 's  value in (3) for the cases below: 

For cases 1, 2, 3 and 4 as in  =  =
1

2
, =  = 1, =  =

3

2
 &  =  = 2 for the first, second, 

third and fourth point respectively, with the associated operator (𝐿1
2

 , 𝐿1 , 𝐿3
2

 & 𝐿2) related to (3) is 

written as 
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𝛼
0,
1

2

𝑦(𝑥𝑛 − ℎ) + 𝛼1,1
2

𝑦(𝑥𝑛) + 𝛼3
2
,
1

2

𝑦(𝑥𝑛 +
1

2
ℎ) − ℎ𝛽1

2
,
1

2

[𝑓 (𝑥𝑛 +
1

2
ℎ) + 𝑓 (𝑥𝑛 −

1

2
ℎ)] = 0

𝛼0,1𝑦(𝑥𝑛 − ℎ) + 𝛼1,1𝑦(𝑥𝑛) + 𝛼3
2
,1
𝑦 (𝑥𝑛 +

1

2
ℎ) + 𝛼2,1𝑦(𝑥𝑛 + ℎ)

−ℎ𝛽1,1[𝑓(𝑥𝑛 + ℎ) + 𝑓(𝑥𝑛)] = 0

𝛼
0,
3

2

𝑦(𝑥𝑛 − ℎ) + 𝛼13
2
,
𝑦(𝑥𝑛) + 𝛼3

2
,
3

2

𝑦 (𝑥𝑛 +
1

2
ℎ) + 𝛼

2,
3

2

𝑦(𝑥𝑛 + ℎ) + 𝛼5
2
,
3

2

𝑦 (𝑥𝑛 +
3

2
ℎ)

−ℎ𝛽3
2
,
3

2

[𝑓 (𝑥𝑛 +
3

2
ℎ) + 𝑓 (𝑥𝑛 +

1

2
ℎ)] = 0

𝛼0,2𝑦(𝑥𝑛 − ℎ) + 𝛼1,2𝑦(𝑥𝑛) + 𝛼3
2
,2
𝑦 (𝑥𝑛 +

1

2
ℎ) + 𝛼2,2𝑦(𝑥𝑛 + ℎ) + 𝛼5

2
,2
𝑦 (𝑥𝑛 +

3

2
ℎ)

+𝛼3,2𝑦(𝑥𝑛 + 2ℎ) − ℎ𝛽2,2[𝑓(𝑥𝑛 + 2ℎ) + 𝑓(𝑥𝑛 + ℎ)] = 0 }
 
 
 
 
 

 
 
 
 
 

         (4) 

Expanding (𝑥𝑛 − ℎ) , 𝑦(𝑥𝑛) , 𝑦(𝑥𝑛 +
1

2
ℎ),𝑦(𝑥𝑛 + ℎ), 𝑦(𝑥𝑛 +

3

2
ℎ), 𝑦(𝑥𝑛 + 2ℎ),𝑓 (𝑥𝑛 +

1

2
ℎ) , 𝑓 (𝑥𝑛 −

1

2
ℎ), 𝑓 (𝑥𝑛 +

3

2
ℎ) , 𝑓(𝑥𝑛 + ℎ), 𝑓(𝑥𝑛 + 2ℎ) in (4) with a Taylor’s series expansion about 𝑥𝑛 and collect 

the like terms gives  

𝐶
0,
1

2

𝑦(𝑥𝑛) + 𝐶1,1
2

ℎ𝑦′(𝑥𝑛) + 𝐶3
2
,
1

2

ℎ2𝑦′′(𝑥𝑛) + ⋯ = 0

𝐶0,1𝑦(𝑥𝑛) + 𝐶1,1ℎ𝑦
′(𝑥𝑛) + 𝐶3

2
,1
ℎ2𝑦′′(𝑥𝑛) + 𝐶2,1ℎ

3𝑦′′′(𝑥𝑛) + ⋯ = 0

𝐶
0,
3

2

𝑦(𝑥𝑛) + 𝐶13
2
,
ℎ𝑦′(𝑥𝑛) + 𝐶3

2
,
3

2

ℎ2𝑦′′(𝑥𝑛) + 𝐶2,3
2

ℎ3𝑦′′′(𝑥𝑛) + 𝐶5
2
,
3

2

ℎ4𝑦′
𝑣(𝑥𝑛) + ⋯ = 0

𝐶
0,
3

2

𝑦(𝑥𝑛) + 𝐶13
2
,
ℎ𝑦′(𝑥𝑛) + 𝐶3

2
,
3

2

ℎ2𝑦′′(𝑥𝑛) + 𝐶2,3
2

ℎ3𝑦′′′(𝑥𝑛) + 𝐶5
2
,
3

2

ℎ4𝑦′
𝑣(𝑥𝑛) + ⋯ = 0

}
  
 

  
 

          (5) 

where (5) is evaluated respectively as follows  

𝐶
0,
1

2

= 𝛼
0,
1

2

+ 𝛼
1,
1

2

+ 𝛼3
2
,
1

2

= 0

𝐶
1,
1

2

= −𝛼
0,
1

2

+
1

2
𝛼3
2
,
1

2

− 2𝛽1
2
,
1

2

= 0 

𝐶3
2
,
1

2

=  −
1

6
𝛼
0,
1

2

+
1

48
𝛼3
2
,
1

2

−
1

16
𝛽1
2
,
1

2

= 0
}
 
 

 
 

                (6) 

 

𝐶0,1 = 𝛼0,1 + 𝛼1,1 + 𝛼3
2
,1
+ 𝛼2,1 = 0

𝐶1,1 = −𝛼0,1 +
1

2
𝛼3
2
,1
+ 𝛼2,1 − 2𝛽1,1 = 0

𝐶3
2
,1
=
1

2
𝛼0,1 +

1

8
𝛼3
2
,1
+
1

2
𝛼2,1 − 𝛽1,1 = 0

𝐶2,1 = −
1

6
𝛼0,1 +

1

48
𝛼3
2
,1
+
1

6
𝛼2,1 −

1

2
𝛽1,1 = 0}

  
 

  
 

               (7) 
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𝐶
0,
3

2

= 𝛼
0,
3

2

+ 𝛼
1,
3

2

+ 𝛼3
2
,
3

2

+ 𝛼
2,
3

2

+ 𝛼5
2
,
3

2

= 0

𝐶
1,
3

2

= −𝛼
0.
3

2

+
1

2
𝛼3
2
,
3

2

+ 𝛼
2,
3

2

+
3

2
𝛼5
2
,
3

2

−   2𝛽3
2
,
3

2

 = 0 

𝐶3
2
,
3

2

=
1

2
𝛼
0,
3

2

+
1

8
𝛼3
2
,
3

2

+
1

2
𝛼
2,
3

2

+
9

8
𝛼5
2
,
3

2

− 2𝛽3
2
,
3

2

= 0

𝐶
2,
3

2

= −
1

6
𝛼
0,
3

2

+
1

48
𝛼3
2
,
3

2

+
1

6
𝛼
2,
3

2

+
9

16
𝛼5
2
,
3

2

−
10

8
𝛽3
2
,
3

2

= 0

𝐶5
2
,
3

2

=
1

24
𝛼
0,
3

2

+
1

384
𝛼3
2
,
3

2

+
1

24
𝛼
2,
3

2

+
27

128
𝛼5
2
,
3

2

−
7

12
𝛽3
2
,
3

2

= 0
}
 
 
 
 

 
 
 
 

             (8) 

 
and 

𝐶0,2 = 𝛼0,2 + 𝛼1,2 + 𝛼3
2
,2
+ 𝛼2,2 + 𝛼5

2
,2
+ 𝛼3,2 = 0

𝐶1,2 = −𝛼0,2 +
1

2
𝛼3
2
,2
+ 𝛼2,2 +

3

2
𝛼5
2
,2
+ 2𝛼3,2 − 2𝛽2,2 = 0

𝐶3
2
,2
=
1

2
𝛼0,2 +

1

8
𝛼3
2
,2
+
1

2
𝛼2,2 +

9

8
𝛼5
2
,2
+ 2𝛼3,2 − 3𝛽2,2 = 0

𝐶2,2 = −
1

6
𝛼0,2 +

1

48
𝛼3
2
,2
+
1

6
𝛼2,2 +

9

16
𝛼5
2
,2
+
4

3
𝛼3,2 −

5

2
𝛽2,2 = 0

𝐶5
2
,2
=

1

24
𝛼0,2 +

1

384
𝛼3
2
,2
+

1

24
𝛼2,2 +

27

128
𝛼5
2
,2
+
2

3
𝛼3,2 −

3

2
𝛽2,2 = 0

𝐶3,2 = −
1

120
𝛼0,2 +

1

3840
𝛼3
2
,2
+

1

120
𝛼2,2 +

81

1280
𝛼5
2
,2
+

4

15
𝛼3,2 −

45

72
𝛽2,2 = 0}

 
 
 
 
 

 
 
 
 
 

           (9) 

Normalizing the coefficients 𝛼3
2
,
1

2

 , 𝛼2,1, 𝛼5
2
,
3

2

 & 𝛼3,2 of 𝑦
𝑛+

1

2

 , 𝑦𝑛+1 , 𝑦
𝑛+

3

2

 and 𝑦𝑛+2 respectively to 1, 

solving equation (6), (7), (8) and (9) with the aids of Maple Software for the coefficients of 𝛼𝑗,𝑖  and 

𝛽𝑗,𝑖 and substituting them in (4) gives the first, second, third and fourth point as  

𝑦
𝑛+

1

2

= −
1

4
𝑦𝑛−1 +

5

4
𝑦𝑛 +

1

8
ℎ𝑓

𝑛+
1

2

+
1

8
ℎ𝑓

𝑛−
1

2

𝑦𝑛+1 =
1

9
𝑦𝑛−1 − 0𝑦𝑛 +

8

9
𝑦
𝑛+

1

2

+
1

3
ℎ𝑓𝑛+1 +

1

3
ℎ𝑓𝑛

𝑦
𝑛+

3

2

= −
163

257
𝑦𝑛−1 +

1472

257
𝑦𝑛 −

3023

257
𝑦
𝑛+

1

2

+
1971

257
𝑦𝑛+1 +

273

514
ℎ𝑓

𝑛+
3

2

+
273

514
ℎ𝑓

𝑛+
1

2

𝑦𝑛+2 = −
11

65
𝑦𝑛−1 +

29

13
𝑦𝑛 −

64

13
𝑦
𝑛+

1

2

+
63

13
𝑦𝑛+1 −

64

65
𝑦
𝑛+

3

2

+
6

13
ℎ𝑓𝑛+2 +

6

13
ℎ𝑓𝑛+1}

 
 
 

 
 
 

         (10) 

3 ANALYSIS OF THE METHOD 

In this section, order and stability properties of the proposed method (10) will be analyzed. 

3.1 Order of the Method 

In this section, the order of the proposed method (10) will be derived. The method could be 
transformed to a general matrix form as  
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∑ 𝐶𝑗
∗𝑌𝑚+𝑗−1 = ℎ∑ 𝐷𝑗

∗𝑌𝑚+𝑗−1,
1
𝑗=0

1
𝑗=0                             (11) 

where C and D are constant coefficient matrices of the method (11) is equivalent to the following 
form 

−
1

4
𝑦𝑛−1 + 

5

4
𝑦𝑛  + 𝑦𝑛+1

2

= −
1

8
ℎ𝑓

𝑛+
1

2

−
1

8
ℎ𝑓

𝑛−
1

2

 

1

9
𝑦𝑛−1 −  0𝑦𝑛 +

8

9
𝑦
𝑛+
1
2
+ 𝑦𝑛+1 = −

1

3
ℎ𝑓𝑛+1 −

1

3
ℎ𝑓𝑛 

−
163

257
𝑦𝑛−1 +

1472

257
𝑦𝑛 −

3023

257
𝑦
𝑛+

1

2

+
1971

257
𝑦𝑛+1 + 𝑦𝑛+3

2

= −
273

514
ℎ𝑓

𝑛+
3

2

−
273

514
ℎ𝑓

𝑛+
1

2

                                  (12) 

−
11

65
𝑦𝑛−1 +

29

13
𝑦𝑛 −

64

13
𝑦
𝑛+
1
2
+
63

13
𝑦𝑛+1 −

64

65
𝑦
𝑛+
3
2
+ 𝑦𝑛+2 = −

6

13
ℎ𝑓𝑛+2 −

6

13
ℎ𝑓𝑛+1 

 

also (12) can be written as  

 



























−

−

−

13

29
0

65

11
0

257

1472
0

257

163
0

00
9

1
0

4

5
0

4

1
0

[
 
 
 
 
𝑦
𝑛−

3

2

𝑦𝑛−1
𝑦
𝑛−

1

2

𝑦𝑛 ]
 
 
 
 

+

























−−

−

1
65

64

13

63

13

64

01
257

1971

257

3023

001
9

8
0001

[
 
 
 
 
𝑦
𝑛+

1

2

𝑦𝑛+1
𝑦
𝑛+

3

2

𝑦𝑛+2]
 
 
 
 

 

3
2

1
2

1

1
0 0 0

8

1
0 0 0

3

0 0 0 0

0 0 0 0

n

n

n

n

f

f
h

f

f

−

−

−

 
−   

  
  −=   
  
    

  

+h



























−−

−−

−

−

13

6
0

13

6
0

0
514

273
0

514

273

00
3

1
0

000
8

1

[
 
 
 
 
𝑓
𝑛+

1

2

𝑓𝑛+1
𝑓
𝑛+

3

2

𝑓𝑛+2]
 
 
 
 

                       (13)  

where 
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𝐶0 =



















0

0

0

0

𝐶1 =



























−

−

−

65

11
257

163
9

1
4

1

𝐶2 =



















0

0

0

0

𝐶3 =

























13

29
257

1472
0
4

5

𝐶4 =

























−

13

64
257

3023
9

8
1

𝐶5 =























13

63
257

1971
1

0

𝐶6 =





















−
13

64
1

0

0

𝐶7 =



















1

0

0

0

 

𝐷0 =



















0

0

0

0

𝐷1 =



















0

0

0

0

𝐷2 =




















−

0

0

0
8

1

𝐷3 =





















−

0

0
3

1
0

𝐷4 =























−

−

0
514

273
0
8

1

𝐷5 =





















−

−

13

6
0
3

1
0

𝐷6 =





















−

0
514

273
0

0

𝐷7 =





















−
13

6
0

0

0

 

 

Definition 3.1.1 According to [26], the order of the block method (10) and its associated linear 
operator are given by 

7 7

0 0

[ ( ); ] [ ( )] '( )]j j

j j

L y x h c y x jh h D y x jh
= =

= + − +             (14) 

 

where p is unique integer such that Eq = 0, q = 0,1, …  p  and Ep+1 ≠ 0,where the  Eq are constant 

matrix with  

𝐸0 =∑ 𝐶𝐽
7

𝐽=0
= 0 

𝐸1 =∑[𝑗𝐶𝑗 − 2𝐷𝑗]

7

𝐽=0

= 0

 

 𝐸2 =∑[
1

2!
𝑗2𝐶𝑗 − 2𝑗𝐷𝑗]

7

𝐽=0

= 0 

𝐸3 =∑[
1

3!
𝑗3𝐶𝑗 − 2

1

2!
𝑗2𝐷𝑗]

7

𝐽=0

= 0 

𝐸4 =∑[
1

4!
𝑗4𝐶𝑗 − 2

1

3!
𝑗3𝐷𝑗]

7

𝐽=0

= 0 
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𝐸5 =∑[
1

5!
𝑗5𝐶𝑗 − 2

1

4!
𝑗4𝐷𝑗]

7

𝐽=0

= 0 

𝐸6 =∑[
1

6!
𝑗6𝐶𝑗 − 2

1

5!
𝑗5𝐷𝑗]

7

𝐽=0

= 0 

𝐸7 = ∑ [
1

7!
𝑗7𝐶𝑗 − 2

1

6!
𝑗6𝐷𝑗]

7
𝐽=0 = 



























−

−

−

−

5123

192
7385

274
5065

221
9353

121





















0

0

0

0

 

Therefore, the developed method is of order 6, with error constant  

E7 =



























−

−

−

−

5123

192
7385

274
5065

221
9353

121

                (15) 

3.2 Stability Analysis of the Method 

In this section, we investigate the Zero and A- stability property of the proposed method (10).   

Definition 3.2.1 A linear multistep method is said to be zero stable if no root of the first 
characteristics polynomial has modulus higher than 1 and that any root with modulus 1 is simple 
[31]. 

Definition 3.2.2 A linear multistep method is said to be an A-stable method if its region of stability 
encloses the entire negative half-plane [31].  

The stability of the scheme (10-11) can be obtained by applying the standard test equation of the 
form 

𝑦′ = ʎ𝑦,                      𝑅𝑒(ʎ) < 0                      (16) 

where  ʎ  is a complex number. 

To get the following solutions 
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𝑦
𝑛+

1

2

= −
1

4
𝑦𝑛−1 +

5

4
𝑦𝑛 +

1

8
ℎʎ𝑦

𝑛+
1

2

+
1

8
ℎʎ𝑦

𝑛−
1

2

𝑦𝑛+1 =
1

9
𝑦𝑛−1 − 0𝑦𝑛 +

8

9
𝑦
𝑛+

1

2

+
1

3
ℎʎ𝑦𝑛+1 +

1

3
ℎʎ𝑦𝑛

𝑦
𝑛+

3

2

= −
163

257
𝑦𝑛−1 +

1472

257
𝑦𝑛 −

3023

257
𝑦
𝑛+

1

2

+
1971

257
𝑦𝑛+1 +

273

514
ℎʎ𝑦

𝑛+
3

2

+
273

514
ℎʎ𝑦

𝑛+
1

2

𝑦𝑛+2 = −
11

65
𝑦𝑛−1 +

29

13
𝑦𝑛 −

64

13
𝑦
𝑛+

1

2

+
63

13
𝑦𝑛+1 −

64

65
𝑦
𝑛+

3

2

+
6

13
ℎʎ𝑦𝑛+2 +

6

13
ℎʎ𝑦𝑛+1}

 
 
 

 
 
 

                             (17) 

(17) can also be written as  

 

1
1 0 0 0

8

8 1
1 0 0

9 3

3023 273 1971 273
1 0

257 514 257 514

64 63 6 64 6
1

13 13 13 65 13

h

h

h h

h h





 

 

 
− 

 
 − −
 
 
 − − −
 
 
 − − −
 

[
 
 
 
 
𝑦
𝑛+

1

2

𝑦𝑛+1
𝑦
𝑛+

3

2

𝑦𝑛+2]
 
 
 
 

=

1 1 5
0

4 8 4

1 1
0 0

9 3

163 1472
0 0

257 257

11 29
0 0

65 13

h

h





 
− 

 
 
 
 
 −
 
 
 −
 

[
 
 
 
 
𝑦
𝑛−

3

2

𝑦𝑛−1
𝑦
𝑛−

1

2

𝑦𝑛 ]
 
 
 
 

    (18) 

 

From (18) it is given that  

𝐴𝑌𝑚 = 𝐵𝑌𝑚−1                 (19) 

If m is the number of block and r is the number of points in the block, then n = mr 

Here, r = 2 and n = 2m. It follows that 

 𝑌𝑚 =

[
 
 
 
 
𝑦
2𝑚+

1
2

𝑦2𝑚+1
𝑦
2𝑚++

3
2

𝑦3𝑚+2 ]
 
 
 
 

=

[
 
 
 
 
𝑦
𝑛+
1
2

𝑦𝑛+1
𝑦
𝑛+
3
2

𝑦𝑛+22]
 
 
 
 

,  𝑌𝑚−1 =

[
 
 
 
 
𝑦
2(𝑚−1)−

3
2

𝑦2(𝑚−1)−1
𝑦
2(𝑚−1)−

1
2

𝑦2(𝑚−1) ]
 
 
 
 

=

[
 
 
 
 
𝑦
𝑛−
3
2

𝑦𝑛−1
𝑦
𝑛−
1
2

𝑦𝑛 ]
 
 
 
 

 

 
and the coefficient matrices are given as 

𝐴 =



























−−−

−−−

−−

−









hh

hh

h

h

13

6
1

65

64

13

6

13

63

13

64

0
514

273
1

257

1971

514

273

257

3023

00
3

1
1

9

8

000
8

1
1
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𝐵 =



























−

−

−

13

29
0

65

11
0

257

1472
0

257

163
0

3

1
0

9

1
0

4

5

8

1

4

1
0





h

h

 

 
The stability polynomial of the proposed method was computed with the aid of Maple Software and 
the result is found to be 

 𝑑𝑒𝑡(𝐴𝑡 − 𝐵) = 

                       (20) 

 

𝑅(𝑡, 0) =                                           (21) 

 
𝑡 = 0 , 0 , 1, −0.2629880097 

 

3.3 A- stability of the Proposed Method 

In this section, the region for the absolute stability of the proposed methods is plotted, by considering 
the stability polynomials (20). The set of point defined by 𝑡 = 𝑒𝑖𝛳, 0 ≤ 𝜃 ≤ 2𝜋 describes the boundary 
of the stability region. The following stability region was the complex plot of the proposed method 
with the aid of Maple Software.  
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Figure 2: A-stability region of the Proposed Method (RDIBM) 

4 IMPLEMENTATION OF THE METHOD 

Consider the system of first order initial value problem of ordinary differential equation of the form  

𝑦′ = 𝑓(𝑥, �̂�),    �̂�(𝑎) = ղ,  𝑎 ≤ 𝑥 ≤ 𝑏            (22) 

�̂� = (𝑦1, 𝑦2, 𝑦3, ………𝑦𝑛),               (23) 

using Newton’s iteration to implement the methods (10).  

Let 𝑦𝑖  and  𝑦(𝑥𝑖) be the approximate and exact solutions of system (22-23) respectively. 

Define the absolute error as 

(𝑒𝑟𝑟𝑜𝑟𝑖)𝑡 = |(𝑦𝑖)𝑡 − (𝑦(𝑥𝑖))𝑡|               (24) 

and the maximum error as 

MAXE = 𝑚𝑎𝑥⏟
  1≤𝑖≤𝜏

(𝑚𝑎𝑥 (𝑒𝑟𝑟𝑜𝑟𝑖)𝑡⏟        
    1≤𝑖≤ℵ

)              (25) 

𝜏 and ℵ are the total number of step and equations respectively. 

From the method (10) 

 

Im 

Re 

stable 

stable 

stable 

stable 

unstable 

unstable 
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1 1 1 1 1

2 2 2

2 1 1 1 2

2

3 3 1 1 3 1 3

2 2 2 2

4 2 1 1 3 2 1 4

2 2

1 1

8 8

8 1 1

9 3 3

3023 1971 273 273

257 257 514 514

64 63 64 6 6

13 13 65 13 13

n n n

n n n
n

n
n n n n

n n n n
n n

F y hf hf

F y y hf hf

F y y y hf hf

F y y y y hf hf









+ + −

+ +
+

+
+ + + +

+ + + +
+ +

= − − −

= − − − −

= + − − − −

= + − + − − −

          (26) 

 
The ℰ1, ℰ2, ℰ2 and ℰ4 are the back values of (10) as     
 

1 1

2 1

3 1

4 1

1 5

4 4

1
0

9

163 1472

257 257

11 29

65 13

n n

n n

n n

n n

y y

y y

y y

y y









−

−

−

−

= − +

= −

= − +

= − +

               (27) 

 

Let 𝑦𝑛+𝑗
(𝑖+1)

, 𝑗 =
1

2
, 1,

3

2
, 2, denote the (𝑖 + 1)𝑡ℎ iterative values of 𝑦𝑛+𝑗 and consider 

𝑒𝑛+𝑗
(𝑖+1)

= 𝑦𝑛+𝑗
(𝑖+1)

− 𝑦𝑛+𝑗
(𝑖)
, 𝑗 =

1

2
, 1,

3

2
, 2              (28) 

Now, the Newton’s iteration for the proposed method will have the form 

𝑦𝑛+𝑗
(𝑖+1)

= 𝑦𝑛+𝑗
(𝑖)

−
(𝐹𝑗(𝑦𝑛+𝑗

(𝑖)
))

(𝐹′𝑗(𝑦𝑛+𝑗
(𝑖)

))
, 𝑗 =

1

2
, 1,

3

2
, 2             (29) 

𝑦𝑛+𝑗
(𝑖+1)

= 𝑦𝑛+𝑗
(𝑖)

− (𝐹′𝑗 (𝑦𝑛+𝑗
(𝑖)
))
−1

(𝐹𝑗 (𝑦𝑛+𝑗
(𝑖)
)) , 𝑗 =

1

2
, 1,

3

2
, 2           (30) 

𝑦𝑛+𝑗
(𝑖+1)

− 𝑦𝑛+𝑗
(𝑖)

= −(𝐹′𝑗 (𝑦𝑛+𝑗
(𝑖)
))
−1

(𝐹𝑗 (𝑦𝑛+𝑗
(𝑖)
)) , 𝑗 =

1

2
, 1,

3

2
, 2           (31) 

𝑒𝑛+𝑗
(𝑖+1) = −(𝐹′𝑗 (𝑦𝑛+𝑗

(𝑖)
))
−1

(𝐹𝑗 (𝑦𝑛+𝑗
(𝑖)
)) , 𝑗 =

1

2
, 1,

3

2
, 2            (32) 

It can be written as  
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(𝐹′𝑗 (𝑦𝑛+𝑗
(𝑖)
)) 𝑒𝑛+𝑗

(𝑖+1) = −(𝐹𝑗 (𝑦𝑛+𝑗
(𝑖)
)) , 𝑗 =

1

2
, 1,

3

2
, 2            (33) 

Equation (33) will also be written in its matrix form as: 

  
trixjacobianma

i

n

i

n

i

n

i

n

i

n

i

n

i

n

i

n

i
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i

n

i

n

i

n

y

F
h

y

F

y

F

y

F

y

F

y

F










































−




−−





−−




−




−−





−

+

+

+

+

+

+

+

+

+

+

+

+

)(

2

)(

2

)(

1

)(

1

)(

2

3

)(

2

3

)(

2

1

)(

2

1

)(

1

)(

1

)(

2

1

)(

2

1

13

6
1

65

64

13

6

13

63

13

64

0
514

273
1

257

1971

514

273

257

3023

00
3

1
1

9

8

000
8

1
1

=























+

+

+

+

+

+

+

+

)1(

2

)1(

2

3

)1(

1

)1(

2

1

i

n

i

n

i

n

i

n

e

e

e

e

























−−−

−−

−

−

1
65

64

13

63

13

64

01
257

1971

257

3023

001
9

8
0001

+























0000

0000
3

1
000

0
8

1
00
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13

6
0

13

6
0

0
514

273
0

514

273

00
3

1
0

000
8

1

h























+

+

+

+

2

2

3

1

2

1

n

n

n

n

f

f

f

f
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2

2

3

1

2

1









                                                                                                         

(34) 

 

4.1 Test Problems 

To validate the method developed, (RDIBM), a code in ‘C’ (programming Language) with Equation 
(34) would be used to solve the following stiff IVPs.  
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+

+

+
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1
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Table 1: Sample of First Order Initial Value Problem of Stiff ODEs 

S/
n 

Problems Initial 
Condition
s 

Interval Exact Solutions Eigen 
Values 

Sou
rce 

1  𝑦1
′ = 198y1 + 199y1 
𝑦2
′

= −398𝑦1 − 399𝑦2 

y1(0) = 1 
y2(0)
= −1 

0 ≤ 𝑥 ≤ 
10 
 

𝑦1(𝑥) = 𝑒
−𝑥 

𝑦2(𝑥) = −𝑒
−𝑥 

 
 

−1,−20
0 
 

[4] 

2     𝑦1
′ = y2 

 𝑦2
′ = −2𝑦1 

 𝑦3
′ = y2 + 2𝑦3 

y1(0) = 0 
y2(0) = 0 
y3(0) = 1 

0 ≤ 𝑥 ≤ 
 4𝜋 

𝑦1(𝑥) = 2𝑐𝑜𝑠𝑥 + 6𝑠𝑖𝑛𝑥
− 6𝑥 − 2 

𝑦2(𝑥) = −2𝑠𝑖𝑛𝑥 + 6𝑐𝑜𝑠𝑥
− 6 

𝑦3(𝑥) = 2𝑠𝑖𝑛𝑥 − 2𝑐𝑜𝑠𝑥
+ 3 

 

 [25] 

3 𝑦′ = 5𝑒5𝑥(𝑦 − 𝑥)2

+  1 
y(0) = 0 

 
0 ≤ 𝑥 ≤ 1 𝑦1(𝑥) = 𝑥 − 𝑒

−5𝑥 
 

 [4] 

4 𝑦1
′ = −20𝑦1 −19y2 
 y2
′ = −19y1 −20y2 

y1(0) = 2 
y2(0) = 0 

0 ≤ 𝑥 ≤ 
20 
 

𝑦1(𝑥) = 𝑒
−𝑥 

𝑦2(𝑥) = −𝑒
−𝑥 

 
 

−1,−20
0 
 

[5] 

5 RESULT AND DISCUSSIONS 

The sample problems presented in this paper are solved using the proposed methods. The result of 
the tested problems are tabulated and compared with the existing ones. The graphs highlighting the 
performance of these methods are plotted. The acronyms below are used in the tables. 

h= step-size;  

MHTD =Method 

MAX-ERR = Maximum Error; 

EXEC-TIME= Executional Time in second; 

ABISBDF = An A-stable Block Integrator Scheme for the Solution of First Order System of IVP of 

Ordinary Differential Equations 

3ESBBDF = Extended 3-Point Super class of Block Backward Differentiation formula for Solving 

Stiff Initial Value Problems. 

RDIBM = A Robust Diagonally Implicit Block Method with Two Off-Step Points for Solving First 

Order Stiff IVP of ODEs 

3NBBDF = A New Fifth Order implicit block method for Solving First Order Stiff Ordinary 

Differential Equations 

3BDF = Implicit r-point block backward differentiation formula for solving first-order stiff ODEs 



Applied Mathematics and Computational Intelligence 
Volume 11, No. 1, Dec 2022 [252 – 273] 

266 

Table 2: Comparison of Errors for Problem 1  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Graph of Log10(𝑀𝐴𝑋𝐸) against the step size h for Problem 1 
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3BBDF

ABISBDF

RDOBBDF

3NBBDF

Numerical Result for Problem 1 
𝒉 MTHD NS MAX-ERR EXEC-TIME 
10−2 3NBBDF 

ABISBDF 
RDIBM 
3BDF 

333 
555 
100 
333 

1.94447e-004 
5.83217e-003  
1.52564e-004 
1.07308e-02 

1.20394e-002  
5.68676e-002 
3.93719e-003 
31,867μs 

10−3 3NBBDF 
ABISBDF 
RDIBM 
3BDF 

3,333 
5,555 
1,000 
3,333 

2.07993e-006 
6.05338e-005 
1.76763e-006 
1.10060e-03 

1.19193e-001 
5.64515e-001 
1.87573e-002 
258,361μs 

10−4 3NBBDF 
ABISBDF 
RDIBM 
3BDF 

33,333 
55,555 
10,000 
33,333 

2.09995e-008 
6.26692e-007 
1.79766e-008 
1.10333e-04 

1.19296e+000 
5.68143e+000 
1.66571e-001 
 2,582,756μs 

10−5 3NBBDF 
ABISBDF 
RDIBM 
3BDF 

333,333 
555,555 
100,000 
333,333 

2.10257e-010 
6.32740e-009 
1.82566e-010 
1.10361e-05 

1.19173e+001 
5.59821e+001 
1.43458e+000 
26,011,417μs 

10−6 3NBBDF 
ABISBDF 
RDIBM 
3BDF 

3,333,333 
5,555555 
1,000,000 
3,333,333 

1.41029e-011 
6.33362e-011 
1.85567e-012 
1.10363e-06 

1.19110e+002 
5.53567e+002 
1.28786e+001 
260,435,329μs 
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Table 3 Comparison of Errors for Problem 2 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 4: Graph of Log10(𝑀𝐴𝑋𝐸) against the step size h for Problem 2 
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3ESBBDF

ABISBDF

RDOBBDF

Numerical Result for Problem 2 
𝑯 MTHD NS MAX-ERR EXEC-TIME 
10−2 3ESBBDF 

ABISBDF 
RDIBM 

333 
555 
100  

2.5780e-002 
3.8321e-003 
2.2979e-003 

3.96563e-001 
5.58677e-002 
2.98278e-002 

10−3 3ESBBDF 
ABISBDF 
RDIBM  

3,333 
5,555 
1,000  

2.2907e-003 
4.0533e-005  
2.1066e-005 

3.66799e+000 
5.54512e-001 
1.79012e-001 

10−4 3ESBBDF 
ABISBDF 
RDIBM  

33,333 
55,555 
10,000  

2.0972e-005 
4.2669e-007 
1.9765e-007 

3.35906e+000 
5.52149e-001  
1.49191e+000 

10−5 3ESBBDF 
ABISBDF 
RDIBM  

333,333 
555,555 
100,000  

 2.002e-007 
4.3274e-009 
1.7932e-009 

3.01024e+001 
5.49867e+000 
1.20674e+001 

10−6 3ESBBDF 
ABISBDF 
RDIBM 

3,333,333 
5,555555 
1,000,000  

1.8702e-009 
4.3335e-009 
1.6004e-011 

2.96155e+002 
5.35204e+000 
1.20678e+001 
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Table 4: Comparison of Errors for Problem 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Graph of Log10(𝑀𝐴𝑋𝐸) against the step size h for Problem 3 
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3ESBBDF

Numerical Result for Problem 3 
𝑯 MTHD NS MAX-ERR EXEC-TIME 
10−2 3ESBBDF 

3NBBDF 
RDIBM 

666 
333 
555 

4.83217e-003 
3.51456e-003 
2.61015e-003 

6.23441e-005 
5.52416e-004 
3.11121e-005  

10−3 3ESBBDF 
3NBBDF 
RDIBM 

6,666 
3,333 
5,555 

5.95338e-005 
4.90191e-005 
3.73116e-005 

6.65467e-004 
4.50367e-003 
2.96482e-004  

10−4 3ESBBDF 
3NBBDF 
RDIBM 

66,666 
33,333 
55,555 

5.95692e-007 
5.20417e-007 
3.73371e-007 

6.48433e-003 
4.36918e-002 
2.94261e-003  

10−5 3ESBBDF 
3NBBDF 
RDIBM 

666,666 
333,333 
555,555 

5.95974e-009 
5.25030e-009 
3.73652e-009 

6.58687e-002 
4.34808e-001 
2.92149e-002  

10−6 3ESBBDF 
3NBBDF 
RDIBM 

6,666,666 
3,333,333 
5,555,555 

6.18636e-011 
5.25648e-011 
4.05313e-011 

6.23434e-001 
4.35791e+00 
2.90945e-001  
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Table 5: Comparison of Errors for Problem 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Graph of Log10(𝑀𝐴𝑋𝐸) against the step size h for Problem 4 

Considering the Table 2, 3, 4 and 5 comprising problem 1, 2, 3 and 4, it has been shown that the newly 
proposed method, RDIBM outperformed the 3BDF, ABISBDF and 3NBBDF in terms of accuracy in 
problems 1, 2, 3 and 4, and computational time in Problem 1, 3 and 4. While, 3NBBDF has good 
accuracy and executional time than 3BDF, ABISBDF and 3ESBBDF in problems 1 and 3. However, the 
3NBBDF and 3ESBBDF competes closely in terms of accuracy of the scale errors in Problems 4. 
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Numerical Result for Problem 4 
𝑯 MTHD NS MAX-ERR EXEC-TIME 
10−2 3ESBBDF 

3NBBDF 
RDIBM 

333 
666 
555 

2.23033e-002 
6.98707e-002  
4.45713e-003 

3.67590e-002 
2.63337e-002 
2.41226e-002 

10−3 3ESBBDF 
3NBBDF 
RDIBM 

3,333 
6,666 
5,555 

3.56164e-003 
5.40956e-003 
3.74938e-005 

8.56636e-002 
2.60816e-001 
2.42705e-001 

10−4 3ESBBDF 
3NBBDF 
RDIBM 

33,333 
66,666 
55,555 

3.56515e-005 
3.08942e-005 
3.52727e-007 

8.54385e-001 
2.60725e+000 
2.40503e+000 

10−5 3ESBBDF 
3NBBDF 
RDIBM 

333,333 
666,666 
555,555 

3.60706e007 
3.18534e-007 
3.31505e-009 

8.53788e+000 
2.60597e+001 
2.40064e+001 

10−6 3ESBBDF 
3NBBDF 
RDIBM 

3,333,333 
6,666,666 
5,555,555 

3.61122e-009 
3.19872e-009 
3.11313e-011 

8.53356e+001 
2.60700e+002 
2.40003e+001 
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Similarly, the accuracy of the scale errors and executional time of the proposed methods, RDIBM 
found to be better than all the methods compared in Problems 2. 

To further depicts visibly the performance of the proposed method, RDIBM with respect to the other 
methods compared, the graphs of Log10(MAXE) against the step size h for all the problems tested are 
plotted (using Matlab) in Figure 3, 4, 5 and 6. From the figures the above statement is validated. The 
proposed method can be an alternative solver for first order stiff initial value problem of ordinary 
differential equation.  

6 CONCLUSION 

A robust diagonally implicit block method with two off-step points for solving stiff initial value 
problem of ordinary differential equation was derived. The method can generate four solution values 
at a time per step. The properties of the proposed method has been checked, the method is found to 
be Zero and A-stable, capable of solving stiff initial value problems of ordinary differential equations. 
Some selected problem validated the performance of proposed method in terms of accuracy of the 
scale error and executional time. Hence, the proposed method can be an alternative solver of first 
order system of stiff IVP of ordinary differential equations. 

REFERENCES 

[1]  C.F. Curtiss and J.O. Hirschfelder, “Integration of Stiff Equations,” in Proceedings - 1952 of the 
National Academy of Sciences, 1952, vol. 38, pp. 235-243. 

[2]  J. R. Cash, “On the integration of stiff systems of ODEs using extended backward differentiation 
formulae,” Numerische Mathematik, vol. 34, pp. 235-246, 1980. 

[3]  J. R. Cash, “Modified extended backward differentiation formula for the numerical solution of 
stoff IVPs in ODE and DAEs," Computational and Applied Mathematics, vol. 125, pp. 117-130, 
2000. 

[4]  Z. B. Ibrahim, K. Othman, and M.B. Suleiman, “Implicit r-point block backward differentiation 
formula for solving first- order stiff ODEs,” Applied Mathematics and Computation, vol. 186, pp. 
558-565, 2007. 

[5]  H. Musa, M. B. Suleiman, F. Ismail, N. Senu, Z. A. Majid, and Z. B. Ibrahim, “A new fifth order 
implicit block method for solving first order stiff ordinary differential equations,” Malaysian 
Journal of Mathematical Sciences, vol. 8, pp. 45-59, 2014. 

[6]  H. Musa, M. B. Suleiman, and N. Senu, “Fully implicit 3-point block extended backward 
differentiation formula for stiff initial value problems,” Applied Mathematical Sciences, vol. 6, 
pp. 4211-4228, 2012. 

[7]  H. Musa, M. B. Suleiman, F. Ismail, N. Senu, and Z. B. Ibrahim, “An Accurate Block Solver for Stiff 
Initial Value Problems,” ISRN Applied Mathematics, Article ID 567451, pp. 1-10, Aug. 2013, doi: 
http://dx.doi.org/10.1155/2013/567451. 

http://dx.doi.org/10.1155/2013/567451


A. M. Sagir and M. Abdullahi / A Robust Diagonally Implicit Block Method for Solving First…  

271 

[8]  Z. B. Ibrahim, N. Zainuddin, K. I. Othman, M. Suleiman, and I. S. M. Zawawi, “Variable order 
block method for solving second order ordinary differential equations,” Sains Malays., vol. 48, 
pp. 1761–1769, 2019. 

[9]  S. J. Aksah, Z. B. Ibrahim, and I. S. M. Zawawi, “Stability Analysis of Singly Diagonally Implicit 
Block Backward Differentiation Formulas for Stiff Ordinary Differential Equations,” 
Mathematics, vol. 7, 211, 2019. 

[10]  Z. B. Ibrahim and I. S. M. Zawawi, “A Stable Fourth Order Block Backward Differentiation 
Formulas (α) for Solving Stiff Initial Value Problems,” ASM Sci. J., Special Issue 6, for SKSM26, 
pp. 60-66, 2019. 

[11]  N. Abd Rasid, Z. B. Ibrahim, Z. A. Majid, and F. Ismail, “Formulation of a new implicit method 
for group implicit BBDF in solving related stiff ordinary differential equations,” Statistics, vol. 
9, no. 2, pp. 144-150, 2021. 

[12]  Z. B. Ibrahim and A. A. Nasarudin, “A class of hybrid multistep block methods with A-stability 
for the numerical solution of stiff ordinary differential equations,” Mathematics, vol. 8, p. 914, 
2020. 

[13]  A. M. Sagir, “Numerical Treatment of Block method for the solution of Ordinary Differential 
Equations,” International Journal of Bioengineering and Life Science, vol. 8, no. 2, pp. 16 – 20, 
2014. 

[14]  A. M. Sagir, “On the Approximate Solution of Continuous Coefficients for Solving Third Order 
Ordinary Differential Equations,” International Journal of Mathematical and Computational 
Sciences, vol. 8, no. 1, pp. 67-70, 2014.  

[15]  A. S. Masanawa, “An accurate Computation of Block Hybrid Method for Solving Stiff Ordinary 
Differential Equations,” International Organization of Scientific Research Journal of 
Mathematics (IOSR-JM), vol. 4, no. 4, pp. 18-21, 2012. 

[16]  M. Abdullahi, S. Suleiman, A. M. Sagir, and B. Sule, “An A-stable block  integrator scheme for 
the solution of first order system of IVPs of ordinary differential equations,” Asian Journal of 
probability and statistics, vol. 16, no. 4, pp. 11-28, 2022. 

[17]  M. Abdullahi and H. Musa, “Order and Convergence of the enhanced 3 point fully implicit super 
class of block backward differentiation formula for solving first order stiff initial value 
problems,” FUDMA Journal of Sciences (FJS), vol. 5, no. 2, pp. 579-584, 2021. 

[18]  H. Musa and A. M. Unwala, “Extended 3 point super class of block backward  differentiation 
formula for solving first order stiff initial value problems,” Abacus (Mathematics Science 
Series), Vol. 44, no. 1, 2019.  

[19]  N. I. N. Ismail, Z. A. Majid, and N.Senu, “Hybrid multistep block method for solving neutral delay 
differential equations,” Sains Malaysiana, vol. 49, no. 4, pp. 929-940, 2020. 

 



Applied Mathematics and Computational Intelligence 
Volume 11, No. 1, Dec 2022 [252 – 273] 

272 

[20]  N. M. Nasir, Z. A. Majid, F. Ismail, and N. Bachok, “Direct integration of the third-order two point 
and multipoint Robin type boundary value problems,” Mathematics and Computers in 
Simulation, vol. 182, pp. 411-427, 2021. 

[21]  A. N. Fairuz and Z. A. Majid, “Rational methods for solving first-order initial value problems,” 
International Journal of Computer Mathematics, vol. 98, no. 2, pp. 252-270, 2021. 

[22]  N. F. A’in, Z. A. Majid, and Z. B. Ibrahim, “Explicit Schemes based on Rational Approximant for 
Solving First Order Initial Value Problems (Skim tak Tersirat berdasarkan Pendekatan Nisbah 
bagi Menyelesaikan Masalah Nilai Awal Peringkat Pertama),” Sains Malaysiana, vol. 49, no. 11, 
pp. 2859-2870, 2020. 

[23]  Z. A. Majid, N. M. Nasir, F. Ismail, and N. Bachok, “Two point diagonally block method for 
solving boundary value problems with Robin boundary conditions,” Malaysian Journal of 
Mathematical Sciences, vol. 13, pp. 1-14, 2019. 

[24]  M. Abdullahi and H. Musa, “Enhanced 3 point fully implicit super class of block backward 
differentiation formula for solving first order stiff initial value problems,” FUDMA Journal of 
Sciences (FJS), vol. 5, no. 2, pp. 120-127, 2021. 

[25]  M. B. Suleiman, “Solving Higher Order ODEs Directly by the Direct Integration Method,” 
Applied Mathematics and Computation, vol. 33, pp. 197-219, 1989. 

[26]  M. B. Sulaiman, H. Musa, F. Ismail, N. Senu, and Z. B. Ibrahim, “A new super class of block 
backward differentiation formula for stiff ODEs,” Asian European journal of Mathematics, vol. 
7, no. 1, 2013. 

[27]  B. Babangida and H. Musa, “Diagonally Implicit Super Class of Block Backward Differentiation 
Formula with Off-Step Points for Solving Stiff Initial Value Problems,” Journal of Applied and 
Computational Mathematics, vol. 5, no. 5, pp. 1-7, 2016, doi: https://doi.org/10.4172/2168-
9679.1000324   

[28]  A. M. Zanaria and M. Suleiman, “Predictor-Corrector Block Iteration Method for Solving 
Ordinary Differential Equations,” Sains Malaysiana, vol. 40, no. 6, pp. 659–664, 2011. 

[29]  Y. A. Yahaya and A.M. Sagir, “An Order Five Implicit 3-Step Block Method for Solving Ordinary 
Differential Equations,” The Pacific Journal of Science and Technology, vol. 14, no. 1, pp. 176-
181, 2013. 

[30]  I. S. M. Zawawi, Z. B. Ibrahim, F. Ismail, and Z. A. Majid, “Diagonally implicit block backward 
differentiation formula for solving ODEs,” International journal of mathematics and 
mathematical sciences, Article ID 767328, 2012, https://doi.org/10.1155/2012/767328  

[31]  M. B. Suleiman, H. Musa, F. Ismail, and N. Senu, “A new variable step size block backward 
differentiation formula for solving stiff initial value problems,” International Journal of 
Computer Mathematics, vol. 90, no. 11, pp. 2391-2408, April 2013, DOI: 
https://doi.org/10.1080/00207160.2013.776677 

https://doi.org/10.4172/2168-9679.1000324
https://doi.org/10.4172/2168-9679.1000324
https://doi.org/10.1155/2012/767328
https://doi.org/10.1080/00207160.2013.776677


A. M. Sagir and M. Abdullahi / A Robust Diagonally Implicit Block Method for Solving First…  

273 

[32]  J. Fatokun, P. Onumanyi, and U.W. Sirisena, “Solution of Ordinary System of Ordinary 
Differential Equations by Continuous Finite Difference Methods with Arbitrary Basis 
Functions,” Journal of Nigerian Mathematical Society, vol. 24, pp. 31 –36, 2005. 

[33]  M. Shafiq, M. Abbas, F. A. Abdullah, A. Majeed, T. Abdeljawad, and M. A. Alqudah, “Numerical 
solutions of time fractional Burgers’ equation involving Atangana–Baleanu derivative via 
cubic B-spline functions,” Results in Physics, vol. 34, p. 105244, 2022.  

[34]  B. Khan, M. Abbas, A. S. Alzaidi, F. A. Abdullah, and M. B. Riaz, “Numerical solutions of advection 
diffusion equations involving Atangana–Baleanu time fractional derivative via cubic B-spline 
approximations,” Results in Physics, vol. 42, p. 105941, 2022. 

[35]  M. Rani, F. A. Abdullah, I. Samreen, M. Abbas, A. Majeed, T. Abdeljawad, and M. A. Alqudah, 
“Numerical approximations based on sextic B-spline functions for solving fourth-order 
singular problems,” International Journal of Computer Mathematics, pp. 1-20, 2022. 

 


