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Interferometer Mach-Zehnder Bersepadu Optik untuk Aplikasi Penderia Biologi 

 

 

ABSTRAK 

 

Denggi merupakan masalah kesihatan yang semakin ketara dan melibatkan 

lebih daripada separuh populasi dunia. Disebabkan oleh kepesatan pertumbuhan 

penduduk dan perubahan iklim dunia, lebih 2.5-3 bilion orang, merangkumi lebih 

daripada 40% daripada penduduk dunia kini berisiko tinggi untuk menghidapi deman 

denggi. Malaysia, yang terletak berhampiran dengan garisan khatulistiwa, merupakan 

salah satu negara yang paling terjejas oleh denggi di rantau Pasifik Barat. Kes-kes 

deman denggi di Malaysia telah melebihi sasaran negara, iaitu 50 kadar insiden deman 

denggi bagi setiap 100,000 penduduk sejak 2005 sehingga kini. Kit ujian denggi amat 

diperlukan kerana ia boleh mempercepatkan process pengesanan awal denggi di mana-

mana dengan masa yang singkat. Namun begitu, penggunaan kit ujian ini bagi 

pengawasan denggi amat terhad kerana disebabkan kos ujian yang tinggi dan 

kelemahan ketepatan ujian. Oleh sebab itu, kajian ini bertujuan untuk membangunkan 

penderia biologi yang menenuhi keperluan kit ujian bagi pengawasan denggi 

terutamanya di negara-negara membanggun, di mana sumber adalah terhad. Kajian ini 

menggunakan teknologi penderia biologi optik tanpa tanda dalam mereka-bentuk 

penderia biologi ini. Reka-bentuk Interferometer Mach-Zehnder bersepadu optik telah 

dijalankan berdasarkan kaedah simulasi yang menggunakan perbezaan terhingga tiga 

dimensi secara perambatan alur. Perisian OptiBPM dipilih kerana ia adalah mesra-

pengguna dan ia membolehkan simulasi tiga dimensi yang diperlukan dalam kajian ini 

dilaksanakan. Konsep utama kajian ini adalah untuk mengoptimumkan prestasi 

Interferometer Mach-Zehnder bersepadu optik melalui pengoptimuman setiap 

komponen, iaitu pandu gelombang optik rabung, pemecah-Y dan penukar mod-saiz. 

Prestasi optima telah mencapai had pengesanan 5.448x10
-7 

unit indeks biasan, yang 

merupakan dapatan yang baru bagi penyelidikan seumpamanya, dengan menggunakan 

pandu gelombang rabung dengan lebar 3.5µm, kedalaman 1nm dan ketebalan 75nm. 

Tambahan pula, kepekaan penderia ini telah meningkat ke 5011* 2π rad disebabkan 

oleh panjang interaksi yang optima, iaitu 16mm. 
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Integrated Optical Mach-Zehnder Interferometer for Biosensor Application 

 

 

ABSTRACT 

 

Dengue is an emerging global health problem affecting over half the world’s 

population. With the rapid pace of population growth and climate change, the 

population at risk of dengue has reached the figure of 2.5-3.0 billions, approximately 

40% of the world’s population. Malaysia, a dengue hyperendemic country located near 

the equator, is one of the most affected countries by dengue in Western-Pacific region. 

The national target for the incidence rate of DF/DHF cases, 50 cases per 100,000 

populations, has long been exceeded since 2005 until now. Rapid diagnostic test is in 

great demand ever since, however the current RDT is not sufficient as an effective 

passive surveillance system due to the high cost and lack of accuracy. Hence, this study 

aimed to develop a dengue RDT that is not only have the characteristics of point-of-

care (POC) diagnostic but also suits the criteria needed to achieve a large scale disease 

surveillance in most developing countries where resources are limited. Label-free 

optical biosensor had been proposed to realized an ideal surveillance RDT. The design 

of integrated optic Mach-Zehnder Interferometer (IO-MZI) biosensor had been carried 

out based on the simulation and fabrication method. Simulation of IO-MZI was carried 

out by using three-dimensional finite difference beam propagation method with the aim 

of sensitivity and detection limit optimization. OptiBPM software is selected because it 

is user-friendly and it allows three-dimensional simulation which is needed in this 

research. The main concept of this research is to optimize performance of IO-MZI 

through the optimization of each individual component which are rib waveguide, Y-

branch splitter and mode-size converter. The optimized IO-MZI achieved detection 

limit of 5.448x10
-7 

RIU, which is the novelty of this research, with the use of rib 

waveguide with width of 3.5µm, depth of 1nm and thickness of 75nm. Besides, the 

sensitivity, S of the IO-MZI biosensor has been improved to 5011*2π rad because of 

the optimized interaction length of 16mm.  
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CHAPTER 1  

 

INTRODUCTION 

 

1.1 Background 

 

Dengue is an emerging global health problem affecting over half the world‟s 

population (Duane J. Gubler & Clark, 1995; Guzman et al., 2010; Monath, 1994; E.-E. 

Ooi & Gubler, 2008). Due to the current induced disease burden in developing countries, 

dengue is considered as neglected tropical disease by World Health Organization 

(WHO). It is also the most important and widespread arthropod-borne viral infection in 

tropical and subtropical countries, mostly between latitudes 35
o
N and 35

o
S where 

dengue viruses (DENVs) were easily transmitted by the principal vector, Aedes aegypti.  

Aedes aegypti, the primary vector of dengue original from Africa had evolved as 

a peridomestic mosquito species that is highly associated with human habitation 

(Monath, 1994). Dengue viruses is a flavivirus within the Flaviviradae family and there 

are four distinct serotypes of DENV namely DENV-1, DENV-2, DENV-3 and DENV-4 

(WHO, 2009). Each of them can infect human and cause similar spectrum of illness. 

Flaviviradae family contains more than 70 viruses with some of them poses a threat to 

public health as Yellow Fever virus (YFV), West Nile virus (WNV), Japanese 

encephalitis virus (JEV) and thick-borne encephalitis virus (TBEV) (Rigau-Perez et al., 

1998; Whitehead, Blaney, Durbin, & Murphy, 2007).  Non-human primates are the 

original host of DENVs where the virus evolved slowly and entered urban cycle 

independently an estimated 500-1,000 years ago (Whitehead et al., 2007). Virus 

transmission cycle between human and vector mosquito is shown in Figure 1.1. The 

cycle is started with the non-infective mosquito vector taking a blood meal from a 
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viraemic person and become infective after an incubation period of 8-10 days (Monath, 

1994). The infective mosquito can then easily transmit the DENVs by simply probing 

the skin or taking a blood meal of humans.  

 

 
Figure 1.1: Urban cycle (b) of dengue virus (DENV) (a)  transmission between Aedes aegyti (c) 

and humans (Whitehead et al., 2007). 

 

 After an incubation period of 3-8 days, infection of DENV in human body 

produce a broad spectrum of clinical presentation ranging from asymptomatic, 

undifferentiated febrile illness, dengue fever (DF) and more severe dengue hemorrhagic 

fever (DHF) and dengue shock syndrome (DSS) (Ministry of Health, 2010; WHO, 

2009). The non-complicated dengue fever had been recognized for >200 years. The 

systemic DF is not life threatening but it can be fatal in its severe form; DHF and DSS. 

These severe dengue had only been recognized recently and the first report of DHF is 

being made in 1950s. (Whitehead et al., 2007) The case fatality rate (CFR) of DSS is 

12-44% and it is this DSS that claims most life of dengue patients (Rigau-Perez et al., 

1998). 

With the rapid pace of population growth and climate change, the population at 

risk of dengue has reached the figure of 2.5-3.0 billion, approximately 40% of the 

world‟s population (Guzman et al., 2010; PDVI, 2009). According to the report of 
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