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LUASJALUR SIMETRI LIMA LIANG REFLEKTOMETER UNTUK 

DIAGNOSIS KECEDERAAN OTAK BERASASKAN PENGIMEJAN 

GELOMBANG MIKRO 

ABSTRAK 

Kecederaan otak dianggap sebagai salah satu penyebab penting untuk kematian di seluruh 

dunia dengan lebih daripada 15 juta orang mengalami serangan strok otak setiap tahun, 

menurut Pertubuhan Kesihatan Sedunia (WHO). Keterbatasan teknik konvensional 

pengimejan kepala seperti MRI dan scan CT telah ditunjukkan didalam tesis di mana ciri 

diagnosis mudah alih dan cepat tidak dapat dilakukan. Pengimejan berasaskan radar 

(RBI) ditangani sebagai penyelesaian yang berpotensi kerana keberkesanan dan 

kebolehannya untuk diagnosis utama kecederaan otak. Walau bagaimanapun, struktur 

yang besar dan kos penganalisis rangkaian vektor (VNA) yang tinggi mengehadkan 

potensi RBI. Lima liang reflektometer (FPR) mempunyai potensi untuk menggantikan 

VNA. Dua prototaip FPR telah dicadangkan dalam tesis ini. Prototaip pertama 

melibatkan satu jajaran metamaterial negatif (SNG) yang terletak pada bahagian tanah 

satu cincin tunggal FPR, manakala yang kedua melibatkan rangkaian penggantian dua 

peringkat tambahan pada cincin tengah pertama. Dalam prototaip pertama, cincin tunggal 

FPR direka berdasarkan parameter teoretikal yang disepadukan dengan jajaran 

metamaterial SNG pada satah tanah yang telah dioptimumkan untuk mendapatkan jalur 

lebar yang lebih besar. Ia diperhatikan bahawa ketelusan berkesan substrat berubah 

disebabkan pengaruh metamaterial SNG yang akhirnya mengubah impedans talian 

penghantaran FPR di bahagian depan substrat. Jajaran metamaterial meningkatkan 

prestasi keseluruhan cincin tunggal FPR dengan peningkatan sebanyak 65.62% pecahan 

jalur lebar (BW-10 dB) pada jalur pertama dan 76.23% pada jalur kedua berbanding dengan 

reka bentuk tanpa jajaran metamaterial. Prototaip pertama mempunyai zon operasi dwi-

jalur yang beralih dari 0.93 GHz ke 2.19 GHz dan dari 3.27 GHz hingga 4.49 GHz. 

Prototaip kedua terdiri daripada rangkaian dua peringkat dengan garisan penghantaran 

antara peringkat dan pemadanan berbilang bahagian pada setiap lengan. Dalam evolusi 

prototaip kedua, garisan-garisan penghantaran antara peringkat beralih sebanyak 36˚ 

(yang merupakan separuh nilai faktorisasi jarak sudut antara-liang 72˚) dalam beberapa 

langkah mengoptimumkan, iaitu, a) tidak beralih b) beralih sebahagian dan c) reka bentuk 

beralih sepenuhnya. Reka bentuk beralih sepenuhnya yang mempunyai 36˚ alihan antara 

peringkat dan satu lagi 36° alihan lengan telah menghasilkan panjang elektrik tambahan 

yang dilalui oleh isyarat transmisi antara-liang untuk meningkatkan jalur lebar sehingga 

88.04% (dari 1.004 GHz hingga 2.583 GHz). Di samping pencapaian jalur lebar, 

kekompakan FPR yang dicadangkan disumbangkan oleh garis melengkung di bahagian 

padanan luar yang membolehkan pengurangan panjang sebanyak 43.09% dan lebar 

sebanyak 43.12% berbanding dengan reka bentuk yang tidak kompak. Kedua-dua 

prototaip telah direka dan diukur. Perbezaan antara keputusan simulasi dan diukur dinilai 

dengan menggunakan sisihan mutlak min. 88.04% jalur lebar dari cadandan reka bentuk 

beralih sepenuhnya FPR adalah jalur lebar tertinggi di antara literatur yang berpotensi 

membawa kepada ketepatan tertinggi diagnosis kecederaan otak yang berasaskan 

pengimejan gelombang mikro. 
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 SYMMETRIC WIDEBAND FIVE PORT REFLECTOMETER FOR 

MICROWAVE-IMAGING-BASED BRAIN INJURY DIAGNOSIS 

ABSTRACT 

 

Brain injury is considered as one of the vital reasons for death worldwide with more than 

15 million people suffer from brain stroke attack each year, according to World Health 

Organization (WHO). The limitations of conventional head imaging techniques such as 

MRI and CT-scan have been pointed out in the thesis where a portable and prompt 

diagnosis features are not made possible. Radar-based imaging (RBI) is addressed as a 

potential solution due to its effectiveness and aptness for a primary diagnosis of brain 

injury. However, the bulky structure and high-cost of vector network analyzer (VNA) 

limit the RBI potential. Five port reflectometer (FPR) has potential to substitute VNA. 

Two prototypes of FPR have been proposed in this thesis. First prototype involves a 

single negative (SNG) metamaterial array located at the ground of single ring FPR, 

whereas the second one involves double tier compensating network in additional to the 

first central ring. In the first prototype, the single ring FPR is designed based on the 

theoretical parameters integrated with SNG metamaterial array at the ground plane which 

has been optimized to obtain a larger bandwidth. It is observed that the effective 

permittivity of the substrate is changed due to the influence of SNG metamaterial which 

eventually changed the characteristic impedance of the transmission lines of the FPR at 

the front side of the substrate. The metamaterial array enhances the overall performance 

of single ring FPR with an increment of 65.62% fractional bandwidth (BW-10 dB) in the 

first band and 76.23% in the second band as compared to the design without metamaterial 

array. The first prototype has a dual-band operating zone extending from 0.93 GHz to 

2.19 GHz and from 3.27 GHz to 4.49 GHz. The second prototype consists of double tier 

networks with inter-tier transmission lines and multi-section matching at each of arms. 

In the evolution of the second prototype, inter-tier transmission lines are shifted by 36˚ 

(which is half factorized value of inter-port angular distance of 72˚) in several optimizing 

steps, namely, a) non-shifted b) partially shifted and c) fully shifted design. Fully shifted 

design which has 36˚ shifted inter-tier and another 36˚ shifted arms has created additional 

electrical length traversed by inter-port transmission signals to enhance the bandwidth up 

to 88.04% (from 1.004 GHz to 2.583 GHz). In addition of bandwidth achievement, such 

compactness of proposed FPR is contributed by the curved lines at the outer matching 

sections which enable a reduction of 43.09% in length and 43.12% in width compared to 

the non-compact design. Both prototypes have been fabricated and measured. 

Discrepancies between simulated and measured results are assessed using mean absolute 

deviation. The 88.04% bandwidth of the proposed fully shifted FPR is the highest 

bandwidth among literatures which potentially leads to a higher accuracy of microwave 

imaging-based brain injury diagnosis. 
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CHAPTER 1 : INTRODUCTION 

1.1 Introduction 

Brain injury, a medical emergency is one of the major causes of death and 

physical and mental disability worldwide. It can occur from external and internal force 

suddenly forces the brain, causing some organ or the whole body to malfunction owing 

to the damage of the part of the brain controlling that limb or organ. Sometimes it may 

cause death to the affected person if the injury is severe. 

Among other brain injuries, each year 2.5 people among 10,000 people are 

affected by intracranial hemorrhage (ICH) alone each year. About 44% of those affected 

die within a month. As per the statement of World Health Organization (WHO), each 

year about 15 million people suffer from brain stroke attack. Among them, 5 million of 

them die while 5 million of them go to permanent disability (B. Mohammed, Abbosh, 

Henin, & Sharpe, 2012).  

A stroke occurs when a blood vessel within the brain bursts or swell due to the 

external force or internal disease. This hampers the adequate oxygen supply to the brain 

tissues, causing the brain cells to die and consecutively failure of brain function.  

Therefore, rapid diagnosis of brain injury is needed to recover the affected patient 

completely.  

 
 

 
 

 
 

 
 

©This
 ite

m is
 pr

ote
cte

d b
y o

rig
ina

l c
op

yri
gh

t 

 



2 

1.2 Research Background 

To-the-date there are sensitive technologies for head imaging like computed 

tomography (CT) scan and magnetic resonance imaging (MRI) for primary diagnosis of 

brain injuries. These technologies are bulky, immobile and expensive. 

Moreover, MRI technology made compulsory for the subject (patient) to lay down 

on a table, which can invoke fear of being in narrow space (Claustrophobia). Three-

quarter of the affected patients do not get proper affordable medical imaging according 

to WHO (Ahmed Toaha Mobashsher, 2016). Moreover, heavy machineries used in MRI 

and CT scan retard the portability of these technologies and paramedic teams cannot carry 

these heavy machineries to the patient on-the-spot for early diagnosis. Therefore, it is 

imperative to facilitate a new non-invasive, non-ionizing, low-cost alternative to these 

technologies, which can be affordable to the rural clinics and carried out by ambulance 

to ensure early diagnosis. 

1.2.1 Microwave Imaging (MWI): An Alternative Brain Imaging Technology 

Researchers have proposed a technique called microwave imaging (MWI), as an 

alternative on-the-spot detection system for stroke and brain tumor. Among other 

advantages of MWI include being non-invasive, the capability to focus the energy, wide 

range of frequencies, less expensive and portable features (Ahmed Toaha Mobashsher, 

2016; Zubaida Abdul Sattar, 2012). MWI has been successfully implemented in breast 

tumor detection (Fear et al., 2013; Fear, Meaney, & Stuchly, 2003) and more recently in 

head injury detection (D Ireland & Bialkowski, 2011a; A. T. Mobashsher, Nguyen, & 

Abbosh, 2013; Ahmed Toaha Mobashsher, 2016; Ahmed Toaha Mobashsher & Abbosh, 
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2016; B. J. Mohammed, Abbosh, Ireland, & Bialkowski, 2012; S. Mustafa, Mohammed, 

& Abbosh, 2013). 

Blood has different dielectric property than brain tissue, accumulation of blood in 

hemorrhagic or ischemic condition creates a dielectric contrast among the bleeding 

affected area and surrounding area. The dielectric contrast is the basic property that 

creates a difference in the transmitted microwave signals, carrying information of the 

stroke in MWI-based brain injury diagnosis system. 

There are different types of MWI techniques which include passive, hybrid and 

active approaches (Xu Li, Davis, Hagness, Van Der Weide, & Van Veen, 2004). Only 

active approach has been reported for head injury diagnosis. There are two types of active 

MWI, namely microwave tomography (MT) and wideband (WB) radar-based imaging 

(RBI). Different algorithm has been proposed for RBI, which include delay and sum 

(DAS) beamformer, delay multiply and sum (DMAS) beamformer (Lim, Nhung, Li, & 

Thang, 2008), coherence weighted beamformer and microwave space time (MIST) 

beamformer (Bond, Li, Hagness, & Van Veen, 2003). DAS algorithm is the basis of the 

enormous mainstream of RBI.  

In RBI, the head is illuminated with microwave pulse. The dielectric contrast 

between the normal and tumor tissue or the stroke zone generates backscattered signals 

which are then collected through the receivers at microwave frequencies. The RBI uses 

delay and sum (DAS) or confocal beamformer which is based on a time-shift algorithm 

to collect the backscattered energy from a particular synthetic focal point within the head. 

The measurements are carried out in the frequency domain and then the data are 

converted into time domain backscattered signal by inverse fast Fourier transformation 
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