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Pembangunan Sensor Nanogap Berdasarkan Silikon Pada 

Penebat Untuk Pengesanan Escherichia Coli O157: H7 

ABSTRAK 

 

Kemajuan nanoteknologi yang pesat telah membantu dalam pembangunan biosensor 

dan aplikasinya. Penyelidikan lepas menunjukkan peranti sensor nanogap 

berkeupayaan mempamerkan ciri-ciri elektrikal yang paling baik dalam pengesanan 

sampel biomolekul. Sensor Nanogap mempunyai sepasang elektrod menghadap satu 

sama lain, dimana molekul yang terperangkap di antaranya dapat dikenalpasti dengan 

mengukur pencirian elektrik. Proses pembangunan nanogap secara konvensional 

memerlukan teknik tambahan yang lama dan rumit. Oleh itu, projek penyelidikan ini 

memberi tumpuan kepada pembangunan struktur nanogap seragam dengan beza saiz 

dalam skala nanometer yang mampu mengesan Escherichia coli O157:H7 (E. coli 

O157:H7) pada tahap kepekatan yang rendah. Pembangunan peranti ini dibahagikan 

kepada struktur nanogap dan struktur pad emas menggunakan kaedah litografi elektron 

(EBL) dan fotolitografi konvensional. Substrat silikon pada penebat (SOI) digunakan 

untuk membangunkan struktur nanogap dan emas digunakan untuk pad emas untuk 

tujuan pengambilan data. Peranti nanogap yang dibangunkan, dilaksanakan pencirian 

fizikalnya menggunakan Elektron Pengimbas Pancaran Medan dan Mikroskop Elektron 

Pengimbas. Sementara itu, prestasi peranti ini diuji dengan menilai bacaan kapasitans 

dan impedans pada kadar frekuensi dari 1.0 MHz ke 0.1 Hz pada suhu bilik dengan 

input 1.0 mV menggunakan Penganalisis Dielektrik. Peranti ini diuji dengan air 

ternyahion dan paras pH yang berbeza untuk mengoptimumkan sensitiviti sensor 

berdasarkan saiz nanogap. Sebelum pengesanan asid deoksiribonukleik (DNA) E. coli 

dilaksanakan, peranti ini diubahsuai permukaannya dengan kumpulan silana NH2-

Amine dari 3-aminopropiltrietoksilana (APTES) dan glutaraldehid adalah untuk 

mengikat DNA dan APTES secara kovalen. Prinsip pengesanan E. coli berdasarkan 

pada perubahan kepadatan cas selepas proses pemegunan prob dan penghibridan 

sasaran DNA pada permukaan yang telah diubahsuai. Keputusan menunjukkan, peranti 

dengan saiz nanogap 40, 80 dan 100 nm telah berjaya dibangunkan. Didapati, peranti 

nanogap paling kecil, 40 nm menunjukkan tahap sensitiviti dan kestabilan yang tinggi 

berbanding peranti nanogap yang lebih besar, 80 dan 100 nm. Projek ini berjaya 

menghasilkan sensor nanogap bersaiz 40 nm sebagai biosensor dalam mengesan E. coli 

O157:H7. Peranti ini mampu membezakan nilai impedans antara DNA pelengkap, 

bukan pelengkap dan tidak sepadan tunggal. Di samping itu, nanogap sensor ini berjaya 

mengesan sasaran DNA E. coli O157:H7 pada had kepekatan dari 10 nM sehingga 1 

pM. Persamaan regresi linear adalah 𝐶 (𝜇𝐹) = 3 × 10−7𝑥 + 5 × 10−9   dan pekali 

korelasi adalah 0.98. 

 
 

 
 

 
 

 
 

©This
 ite

m is
 pr

ote
cte

d b
y o

rig
ina

l c
op

yri
gh

t 

 



xvii 

Development Of Silicon On Insulator Based Nanogap Sensor For 

Escherichia Coli O157:H7 Detection 

ABSTRACT 

 

Breakthrough in nanotechnology provides a great extent in biosensor development and 

application. Previous studies showed that nanogap sensor device provides excellent 

electrical behavior in sensing biomolecules samples. Nanogap sensor is a device having 

a pair of electrodes facing each other, which a molecule trapped in between its will be 

identified by observing the electrical characterization. Conventional development 

process requires prolonged and tedious compulsory additional method. Thus this 

research project focus on developing various size of uniform nanogap structure in 

nanometre scales which are capable of sensing Escherichia coli O157:H7 (E. coli 

O157:H7) at a low concentration level. The development of the device was divided into 

nanogap structure and gold pad structure process using electron beam lithography 

(EBL) method and conventional photolithography method respectively. Silicon on 

insulator (SOI) substrate was used to fabricate the nanogap structure and gold was used 

as a gold pad for a probing purpose. The developed nanogap devices was physically 

characterized by Field Emission Scanning Electron Microscopy and Scanning Electron 

Microscope. Meanwhile, the performance of the devices was tested by evaluating the 

capacitance and impedance reading by sweeping a frequency from 1M Hz to 0.1 Hz at 

room temperature with 1.0 mV input using Dielectric Analyzer. The devices were tested 

with de-ionized water and different pH level to optimize the sensor sensitivity that 

related to the nanogap size. Prior to the detection of E. coli deoxyribonucleic acid 

(DNA), the device was surface modified with NH2-Amine functionalized silane group 

using 3-aminopropyltriethoxysilane (APTES) and glutaraldehyde for DNA to be 

covalently bonded with the APTES modified surface. The principle of the E. coli 

detection is based on charge density changes of the DNA probe immobilization and 

DNA target hybridization on the modified surface. The morphological testing results 

shows that the developed devices were observed with 40, 80 and 100 nm nanogap size. 

It was found that, the device with smallest gap size, 40 nm shows the highest sensitivity 

and stability compared to the device with bigger gap size, 80 and 100 nm. In this project 

40 nm size nanogap device was successfully developed as biosensor for E. coli O157: 

H7 detection with capability to distinguish the impedance value between 

complementary, non-complementary and single mismatch DNA sequences. In addition, 

the device was able to detect E. coli O157: H7 DNA target at concentration limit from 

10 nM to 1 pM with linear regression equation is 𝐶 (𝜇𝐹) = 3 × 10−7𝑥 + 5 × 10−9 

and the correlation coefficient is 0.98. 
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1 

CHAPTER 1 : BACKGROUND 

1.1 Introduction 

Nano-based sensor has been introduced as biosensor since decades and been 

continuously developed and improved with multiple methods, process and materials 

along with an advancement of nanotechnology (Chao, Zhu, Zhang, Wang, & Fan, 2016; 

Junhui, Hong, & Ruifu, 1997; Pandit, Dasgupta, Dewan, & Ahmed, 2016). In the 

current research work, a novel Silicon-On-Insulator (SOI) based nanogap sensor has 

been developed and demonstrated as a biosensor for the detection of a foodborne 

opportunistic pathogen, Escherichia coli O157:H7 (E. coli O157:H7). E. coli O157:H7 

is able to release the toxic compounds, especially when they are associated with the 

food materials and cause the severe foodborne illness to the human. 

To focus on this issue, nanogap sensor was developed using a combination of 

high-end and a standard conventional photolithography processes, which were Electron 

Beam Lithography (EBL) and Ultra-Violet Lithography (UVL).  The EBL process was 

introduced in this research to fabricate a pair of electrodes with a nanometre gap size. 

Meanwhile, the UVL process is a conventional method to fabricate the gold pad for the 

purpose of electrical characterization. For the biosensor application, E. coli O157:H7 

detection was performed using a specific deoxyribonucleic acid (DNA) from E. coli 

O157:H7 as a target analyte placed between the nanogap electrodes by complementing 

with the probe DNA. The immobilized E. coli O157:H7 DNA probe was bind to the 

DNA target complementary sequence by hybridization among DNA bases (A with T 

and G with C). The binding process is then transduced into an electrical signal, where 

 
 

 
 

 
 

 
 

©This
 ite

m is
 pr

ote
cte

d b
y o

rig
ina

l c
op

yri
gh

t 

 



2 

the properties of dielectric change between the nanogapped electrodes during electrical 

characterization (Teles & Fonseca, 2008; Zhao, Ali, Brook, & Li, 2008). In this chapter, 

specifically discussed the problem statements, research objectives, scopes and thesis 

organization. 

1.2 Problem Statements 

Foodborne disease caused by highly virulent pathogens, E. coli O157:H7 is 

easily transmitted from the ingestion of contaminated food, water or oral contact with 

the contaminated surface or infected animals, that’s lead to severe case hemolytic-

uremic syndrome (HUS) to human especially infants, young children, pregnant women 

and elderly (Carl A. Batt, 2014). E. coli O157:H7 is sufficient to cause infection with 

low concentration dose compared to other strains (Arthur, Bosilevac, & Nou, 2005). So 

that, the quantitative measurements on E. coli O157:H7 is highly necessary to find and 

eliminate the minute contamination from the food-stuffs.   

Early 20th century, conventional methods such as the culture-based and 

molecular methods have been applied in the detection of E. coli. However, most of these 

methods involve a culturing, screening, enrichment step, plating on the selective 

medium or binding of the fluorescent dye to the E. coli O157:H7, which may take hours 

to days to complete and need higher concentration for detection (Schleif, 2010; Xue, 

Velayudham, Johnson, & Saha, 2009). Thus, the problem is to generate a biosensor with 

a high-performance analysis on E. coli O157:H7, in a quantitative manner in order to 

overcome the above issues. 
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Several lines of the study show that nanogap devices have drawn a particular 

interest and opportunities in biosensing applications (Xing Chen et al., 2010). This is 

due to the capability of nanogap device to characterize a molecules in a nanometre size. 

However, the early generation of nanogaps faced difficulty in maintaining the detection 

stability due to lack of optimization in standardize the gap size pattern and fabrication 

method (Sheul, Chia, Lin, Lieh, & Tung, 2006). The electrical properties increase with 

decreasing the size of the gap, but the gaps must not be too small to remain accessible 

to the molecules and to avoid molecules posit into the distorted state (Ding, Herrmann, 

De Nijs, Benz, & Baumberg, 2015). In encyclopedia of nanotechnology, Nevill 

suggested that the nanogap size is between 1 to 100 nm as it represents the practical 

upper limit of the characteristic thickness of electrical double layer (J. T. Nevill, D. 

Malleo, 2016). Thus, a design with size of gap less than 100 nm distance for E. coli 

O157:H7 detection is focused in this study, as it is crucial.  

 In current studies different methods for fabricating nanogap electrodes such as 

electromigration (Ito, Yagi, Morihara, & Shirakashi, 2015; Motto et al., 2012), 

mechanically control break junctions (Muller, van Ruitenbeek, & de Jongh, 1992; 

Zhitenev, Meng, & Bao, 2002), controlled electrochemical platting (Morales et al., 

1997) and nanoconstriction (Gehring et al., 2016) have been demonstrated. However, 

the methods were complex and tedious. Thus, the best suitable method to overcome the 

electrical double layer in samples is needed for the nanogap based biosensor generation. 

The capability of nanogaps for detecting small size and quantity of biomolecules 

is favorable for E. coli O157:H7 detection. Development of nanogap based biosensor is 

able to enhance the sensitivity and selectivity of E. coli O157:H7 detection methods. 
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Application of nucleic acid hybridization on the nanogap electrode have been actively 

developing because of the specificity, speed, portability and low cost (Ch Postma, 2010; 

Fanget et al., 2014; Zaffino, Mir, & Samitier, 2014). Furthermore, compared with the 

protein-based E. coli detection method, DNA bound to nanogap can maintain its 

biological activities. Thus, these novelties are significant for the development of 

nanogap device for E. coli O157:H7 detection through DNA hybridization process. 

1.3 Research Objectives 

The primary aim of this research is to develop Silicon-On-Insulator nanogap 

device based on capacitive sensing via top-down approach for foodborne Escherichia 

coli O157:H7 (E. coli O157:H7) detection. This research objective for biosensor 

application is further accomplished through the following specific objectives: 

i. To design, fabricate and characterize the nanogap device using Electron 

Beam and Ultra-Violet lithographic processes. 

ii. To investigate the effect of the different sizes of nanogap electrodes in 

excitation frequency against different pH ranges. 

iii. To examine the performance of the developed device for biosensing 

application using E. coli O157:H7 DNA detection quantitatively. 

 

 

 
 

 
 

 
 

 
 

©This
 ite

m is
 pr

ote
cte

d b
y o

rig
ina

l c
op

yri
gh

t 

 



5 

1.4 Research Scopes 

This research study is embarked based on the following scopes: 

i. To study and review the fundamental and designing Silicon-On-Insulator 

(SOI) nanogap based capacitive sensor, and to understand the suitable 

strategies for fabricating nanogap device. 

ii. To design and optimize two patterns layout image of SOI nanogap device, 

where first pattern (Pattern 1) is chosen as the nanogap electrode structure 

and second pattern (Pattern 2) is chosen as a pad for the electrodes. Both 

patterns will be designed with the aid of the standard AutoCAD software. 

Pattern 1 will be transferred directly to electron beam lithography (EBL) 

and Pattern 2 will be transferred onto chrome glass mask. 

iii. To fabricate the SOI nanogap device by combining an EBL process and a 

conventional photolithography process. The EBL will be the major process 

as the nanogap electrodes will be fabricated directly using design Pattern 

1 with several sizes of gaps. It is a very important step to produce a perfect 

nanogap structure as small as possible in order to sense the atomic level 

biomolecules. 

iv.  To investigate and characterize the optical and physical characteristics of 

nanogap structures by using High-power Microscopy and Scanning 

Electron Microscopy. 

v. To synthesize E. coli O157:H7 DNA probe and analyte for immobilization 

and hybridization processes. This preparation will be performed at MARDI 

under Biotechnology Department supervision. 
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vi. To prepare, functionalize and modify the sensing area surface between 

nanogap electrodes with complementary E. coli O157:H7 DNA to 

complement the probe DNA by immobilization and hybridization processes, 

respectively. 

vii. To understand and measure the electrical characterization and testing the 

performance of fabricated nanogap sensor during E. coli O157:H7 DNA 

biosensing application. 

 

1.5 Thesis Organization 

This thesis is organized into five separate chapters, numbered as Chapter 1 to 5. 

The first chapter distinctly addressed the problem statements, primary and specific 

research objectives and scopes of the overall research work carried out to fulfill this 

thesis. 

The importance of nanotechnology and existing methodologies for nanogap 

device fabrication, E. coli O157:H7 detection, and the relevant work described in the 

past on nanogap device as a biosensor is overviewed in the second chapter. 

The third chapter focused on the research methodology, where nanogap design, 

fabrication and application of E. coli O157:H7 detection is elaborated thoroughly. This 

chapter explained overall process flow including preparation, characterization and 

optimization through morphological and electrical testing. The surface modification and 

functionalization processes for E. coli O157:H7 DNA probe immobilization and E. coli 

O157:H7 DNA target hybridization are explained in this chapter. 
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The fourth chapter discussed the results obtained from the morphological and 

electrical characterizations of the nanogap device. The capacitance result is measured 

using the dielectric analyzer.  Studies on the potential applications of the biosensor are 

described with the results revealed for E. coli O157:H7 DNA detection. The ability of 

the device to discriminate DNA probe, complementary, non-complimentary, 

mismatched targets is assessed to justify its high-performance detection. 

Finally, the fifth chapter reported the conclusion of the overall research work 

and propose the future directions in this field for further improvement. 
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