

Synthesis and Characterization of Silicon Carbide Nanotube via Microwave Assisted Method

by

TONY VOO CHUNG SUNG 1531711772

A thesis submitted in fulfilment of the requirements for the degree of Master of Science in Nanomaterials Engineering

> Institute of Nano Electronic Engineering UNIVERSITI MALAYSIA PERLIS (UniMAP)

> > 2018

THESIS DECLARATION FORM

UNIVERSITI MALAYSIA PERLIS

DECLARATION OF THESIS			
Author's full name	:	Tony Voo Chung Sung	
Date of birth	:	3 March 1991	
Title	:	Microwave Assisted Synthes	is of Silicon Carbide Nanoubes
			6023
Academic Session	:	2015/2016	dinal
I hereby declare that th at the library of UniMA	his <u>thesi</u> P. This <u>t</u>	s becomes the property of University of University is classified as :	sti Malaysia Perlis (UniMAP) and to be placed
CONFIDENTI	AL	(Contains confidential informati	on under the Official Secret Act 1972)
RESTICTED		(Contains restricted informati research was done)	on as specified by the organization where
	ss .	agree that my <u>thesis</u> is to copy or on-line open access (fu	o be made immediately available as hard Il text)
I, the author, give per	mission	to the UniMAP to reproduce thi	s thesis in whole or in part for the purpose of
research or academic	exchang	je only (except during a period of	years, if so requested above).
O			Certified by:
SIGNATURE			SIGNATURE OF SUPERVISOR
910303-12-5 (NEW IC NO.	461 / PASS F	PORT NO.)	Dr Voon Chun Hong NAME OF SUPERVISOR
Date :			Date :

ACKNOWLEDGEMENT

Thanks to God for his blessing and giving me health that enables me to complete my degree of Master of Science in Nano-Material Engineering at University Malaysia Perlis. It is a pleasant aspect that I have now the opportunity to express my gratitude for all of them. It is the most appreciated to honour to my family, my dad and mum which always give an encouragement, motivation, understanding and support over me.

I would like to express thousand my sincere gratitude to my supervisor, Dr Voon Chun Hong and my co-supervisor, Dr Lee Chang Chuan and En Wan Abdul Rahman Assyahid for their invaluable guidance, constant support, and continuous encouragement and help me in all time to carry out this research and writing this thesis. I also sincerely thanks for the time spent on proof reading and correcting my mistakes along with teaching and guiding me in the laboratory.

My special thanks to my examiners who give their comments, opinion and suggestion to improve my research project. I would like to extend my appreciation to all staff of Institute of Nano-Electronic Engineering (INEE) especially to Prof Dr Uda Hashim, Ir. Dr. Mohd Khairuddin Md Arshad, Dr Subash C B Gopinath, Dr Liu Wei Wen, Dr Ruslinda Abdul Rahim and all technical staff from INEE for their special effort with valuable technical guidance during my completion of this project. Special thanks also appreciated for technical staff from School of Material Engineering, En Nasir and En Hadzrul for their helping in my characterization test.

At last but not least, I offer my regards and special thanks for all of my friends who supported and guided me in any aspect during the completion of my study and thus helping me in finishing my thesis.

TABLE OF CONTENTS

			PAGE
THE	SIS DEC	LARATION	i
ACK	NOWLE	DGEMENT	ii
TABI	LE OF C	ONTENTS	iii
LIST	OF TAB	BLES	vii
LIST	OF FIG	URES	viii
LIST	OF SYM	IBOLS AND ABBREVIATIONS	xi
LIST	OF EQU	JATION	XV
ABST	FRAK	to,	xvi
ABST	FRACT	cte ^O	xvii
CHA	PTER 1 I	INTRODUCTION	
1 1	Resear	ch Background	1
1.1	Proble	m Statement	л Д
1.2	Resear	ch Objective	7
1.5	Resear	ch Scope	, 8
1.4	O	en beope	0
CHA	PTER 2 I	LITERITURE REVIEW	
2.1	Nano-I	Materials	9
2.2	Carbor	n Nanotubes (CNTs)	10
	2.2.1	Synthesis of Carbon Nanotubes (CNTs)	12
	2.2.2	Properties of Carbon Nanotubes (CNTs)	14
2.3	Silicon	n Dioxide (SiO ₂)	16
2.4	Silicon	n Carbide (SiC)	18

2.5	Silicon	Carbide (SiC) Nano-Materials	22
2.6	Silicon	Carbide Nanotubes (SiCNTs)	27
	2.6.1	Synthesis of Silicon Carbide Nanotubes (SiCNTs)	27
	2.6.2	Properties of Silicon Carbide Nanotubes (SiCNTs)	29
2.7	Microv	vave System	32
2.8	Types	of Microwave Cavity	35
	2.8.1	Multi-mode Microwave Cavity (MMC)	35
	2.8.2	Single-mode Microwave Cavity (SMC)	36
2.9	Princip	les of Microwave Heating	38
2.10	Microv	vave Hybrid heating	45
2.11	Microv	vave Heating of Carbon materials	48
2.12	Variab	les Affecting Synthesis of Silicon Carbide Nano-materials by	
	Carbot	hermal Reduction	53
	2.12.1	Ratio of Raw Materials	53
	2.12.2	Heating Temperature	55
	2.12.3	Heating Duration	56
	2.12.4	Types of Starting Materials	58
2.12	Reaction	ons of Carbothermal Reductions of Silica	59
2.13	Mecha	nism of Formation of One Dimensional Silicon Carbide (SiC)	
	Nano-r	naterials by Carbothermal Reduction	60
CHAP	TER 3 N	METHODOLOGY	
3.1	Introdu	iction	64
3.2	Materia	als	66
	3.2.1	Carbon Nanotubes (CNTs) and Silicon Dioxide (SiO ₂)	66
3.3	Sample	e Preparation	68

- 3.3.1 Preparation of Blend of Silicon Dioxide (SiO₂) and Carbon Nanotubes (CNTs)
 3.3.2 Synthesis of Silicon Carbide Nanotube (SiCNTs) using Microwave Heating
- 3.4 Characterization of Silicon Carbide Nanotube (SiCNTs) 72

	3.4.1	X-Ray Diffraction (XRD)	72
	3.4.2	Field Emission Scanning Electron Microscopy (FESEM)	72
	3.4.3	Transmission Electron Microscopy (TEM)	73
	3.4.4	Energy Dispersive X-Ray (EDX)	73
	3.4.5	Photoluminescence Spectroscopy (PL)	73
	3.4.6	Fourier Transform Infrared (FTIR)	74
	3.4.7	Thermo-gravimetric Analysis (TGA)	75
ATT 1			
	PTER 4	RESULTS AND DISCUSSION	
4.1	Chara	cterization of Multi-Walled Carbon Nanotubes (MWCNTs),	
	Single	-Walled Carbon Nanotubes (SWCNTs) and Silicon Dioxide	76
	(SiO_2)		
	4.1.1	X-Ray Diffraction (XRD)	76
	4.1.2	Field Emission Scanning Electron Microscopy (FESEM)	78
	4.1.3	Energy Dispersive X-Ray (EDX)	79
	4.1.4	Photoluminescence Spectroscopy (PL)	80
	4.1.5	Fourier Transform Infrared (FTIR)	81
	4.1.6	Thermo-gravimetric Analysis (TGA)	84
4.2	Effect	of Different Ratio of MWCNTs and SiO_2 on the Synthesis of	86
	4 2 1	V ProvDiffraction (VPD)	86
	4.2.1	Field Emission Scapping Electron Microscopy (EESEM)	00
	4.2.2	Energy Dispersive Y Pay (EDY)	00
	4.2.3 G2 4	Photoluminescence Spectroscopy (PL)	02
	4.2.4	Fourier Transform Infrared (ETIR)	92
	4.2.5	Thermo-gravimetric Analysis (TGA)	98
43	Fffect	s of Different Heating Temperature on the Synthesis of SiCNTs	101
1.5	431	X-Ray diffraction (XRD)	101
	432	Field Emission Scanning Electron Microscopy (FESEM)	101
	433	Energy Dispersive X-Ray (FDX)	105
	т.з.з / 2 /	Dispersive A-Ray (DDA)	107
	4.3.4	r notorunnicscence specifioscopy (r L)	100

	4.3.5	Fourier Transform Infrared (FTIR)	110
	4.3.6	Thermo-gravimetric Analysis (TGA)	111
4.4	Effects	s of Different Heating Duration on the Synthesis of SiCNTs	113
	4.4.1	X-Ray diffraction (XRD)	113
	4.4.2	Field Emission Scanning Electron Microscopy (FESEM)	115
	4.4.3	Energy Dispersive X-Ray (EDX)	116
	4.4.4	Photoluminescence Spectroscopy (PL)	118
	4.4.5	Fourier Transform Infrared (FTIR)	120
	4.4.6	Thermo-gravimetric Analysis (TGA)	122
4.5	Effects	s of Different Types of CNTs on the Synthesis of Silicon	124
	Carbid	le Nano-materials (SiCNMs)	124
	4.5.1	X-Ray diffraction (XRD)	124
	4.5.2	Field Emission Scanning Electron Microscopy (FESEM)	127
	4.5.3	Energy Dispersive X-Ray (EDX)	130
	4.5.4	Transmission Electron Microscopy (TEM)	131
	4.5.4	Photoluminescence Spectroscopy (PL)	136
	4.5.5	Fourier Transform Infrared (FTIR)	137
	4.5.6	Thermo-gravimetric Analysis (TGA)	139
CHAP	TER 5	CONCLUSION	
5.1	Conclu	usion	141
6.2	Recon	mendation and Suggestion	144
	$\langle \chi \rangle$	*	
REFEI	RENCE	S	145
LIST OF PUBLICATION		171	

APPENDIX A 173

LIST OF TABLES

NO		PAGE
2.1	Comparison of properties of several semiconductor materials	21
2.2	Value of real, $\dot{\epsilon}$, imaginary permittivity, $\hat{\epsilon}$ and loss tangent of the epoxy/MWCNTs and epoxy/SWCNTs	52
3.1	Properties of MWCNTs, SWCNTs and SiO ₂	67
3.3	Study of effect of processing parameters	71
1	Percent weight loss of MWCNTs, SWCNTs and SiO ₂ particles after TGA analysis.	174
2	Percent weight loss of SiC 11, 13, 15 and 17	174
3	Percent weight loss of SiC 1350, 1400 and 1450	174
4	Percent weight loss of SiC 20, 40 and 60	175
5	Percent weight loss of SiCNTs and SiCNWs.	175
	ornis item is protected by O.	

LIST OF FIGURES

NO		PAGE
2.1	Schematic representation of CNTs where a) graphene layer structure	
	of carbon atoms and b) formation of types of CNTs which is armchair,	11
	zigzag and chiral depended on the rolling of graphene layer	
2.2	Coaxial structures of the a) SWCNTs and b) MWCNTs	12
2.3	Schematic of the arc discharge technique for the synthesis of CNTs	13
2.4	Schematic of the chemical vapor deposition (CVD) technique for the	1.4
	synthesis of CNTs	14
2.5	Chemical structure of the SiO ₂	17
2.6	Structure of SiC	19
2.7	Stacking sequences of double layers of 3C, 4H, 6H and 15-SiC	20
2.8	Schematic diagram of a magnetron	33
2.9	Microwave irradiation wave with mode stirrer inside the multi-mode	26
	cavity (MMC)	50
2.10	Schematic diagram of single mode microwave cavity (SMC)	37
2.11	Electromagnetic wave of microwave	39
2.12	Movement of free charge depending in oscillating field	40
2.13	The polarization of the dipole moments of dipole molecules	41
2.14	Interfacial interaction of charge at the material surface for	42
	heterogeneous materials	42
2.15	Types of materials according to the interaction with microwaves a)	
(Microwave reflectors, b) Transparent to microwaves and c)	45
	Microwave absorbers	
2.16	Temperature profile within the sample for a) conventional heating, b)	18
	microwave heating and c) microwave hybrid heating	40
2.17	Microwave heating for a) solution and b) carbon based solid	50
2.18	The mechanism of VLS model of SiC nanowires formation	61
2.19	Mechanism of VS model of the synthesis of SiC nanowires	62
2.20	Comparison mechanism of a) VLS and b) SLS model of formation of	63

one-dimensional SiC nano-materials

3.1	The multi-mode cavity microwave sintering furnace model HAmiLab-	69
	V3.	
3.2	Schematic diagram of setup in multi-mode cavity of microwave	69
	sintering furnace	07
4.1	XRD patterns of a) MWCNTs, b) SWCNTs and c) SiO ₂ particles	77
4.2	FESEM images of a) MWCNTs, b) SWCNTs and c) SiO ₂ particles	79
4.3	EDX spectra of a) MWCNTs, b) SWCNTs and c) SiO ₂ particles	80
4.4	PL spectra of a) MWCNTs, b) SWCNTs and c) SiO ₂ particles	81
4.5	FTIR spectra of a) MWCNTs and b) SWCNTs.	83
4.6	FTIR spectra of SiO ₂ particles.	83
4.7	TGA curves of MWCNTs, SWCNTs and SiO ₂ particles	85
4.8	XRD patterns of a) SiC 11, b) SiC 13, c) SiC 15 and d) SiC 17.	88
4.9	FESEM images of a) SiC 11, b) SiC 13, c) SiC 15 and d) SiC 17. Red	00
	circle: SiO ₂ particles, blue circle: MWCNTs.	90
4.10	EDX spectra of SiCNTs synthesized from a) SiC 11, b) SiC 13, c) SiC	02
	15 and d) SiC 17.	92
4.11	PL spectra of SiCNTs synthesized from a) SiC 11, b) SiC 13, c) SiC	05
	15 and d) SiC 17.	95
4.12	FTIR spectra of SiCNTs synthesized from a) SiC 11, b) SiC 13, SiC	07
	15 and d) SiC 17.	97
4.13	TGA analysis of SiCNTs synthesized from SiC 11, 13, 15 and 17.	100
4.14	XRD pattern of a) SiC 1350, b) SiC 1400 and c) SiC 1450.	104
4.15	FESEM images of a) SiC 1350, b) SiC 1400 and c) SiC 1450 red	100
	circle: SiO ₂ particles, Blue circle: MWCNTs, Green circle: SiCNTs.	106
4.16	EDX spectra of a) SiC 1350, b) SiC 1400 and c) SiC 1450.	108
4.17	PL spectra of a) SiC 1350, b) 1400 and c) SiC 1450.	109
4.18	FTIR spectra of a) SiC 1350, b) SiC 1400 and c) SiC 1450.	111
4.19	TGA curves of SiC 1350, 1400 and 1450.	112
4.20	XRD patterns of a) SiC 20, b) SiC 40 and c) SiC 60.	114
4.21	FESEM images of a) SiC 20, b) SiC 40 and c) SiC 60. Red circle:	116

	SiO ₂ particles, blue circle: MWCNTs, Green circle: SiCNTs.	
4.22	EDX spectra of a) SiC 20, b) SiC 40 and c) SiC 60.	118
4.23	PL spectra of a) SiC 20, b) SiC 40 and c) SiC 60.	120
4.24	FTIR spectra of a) SiC 20, b) SiC 40 and c) SiC 60.	121
4.25	TGA analysis of the SiC 20, 40 and 60.	123
4.26	XRD patterns of a) SiCNTs synthesized from blend of SiO ₂ particles	
	and MWCNTs and b) SiCNWs synthesized from blend of SiO_2	127
	particles and SWCNTs	
4.27	FESEM images of a) SiCNTs synthesized from blend of SiO ₂ particles	
	and MWCNTs and b) SiCNWs synthesized from blend of SiO_2	130
	particles and SWCNTs	
4.28	EDX spectra of a) SiCNTs synthesized from blend of SiO_2 particles	
	and MWCNTs and b) SiCNWs synthesized from blend of SiO_2	131
	particles and SWCNTs	
4.29	TEM images of a) raw MWCNTs, b)SiCNTs synthesized from blend	
	of SiO ₂ particles and MWCNTs and c) SiCNWs synthesized from	134
	blend of SiO ₂ particles and SWCNTs in the ratio of 1:3	
4.30	PL spectra of a) SiCNTs synthesized from blend of SiO_2 particles and	
	MWCNTs and b) SiCNWs synthesized from blend of SiO_2 particles	137
	and SWCNTs	
4.31	FTIR spectra of a) SiCNTs synthesized from blend of SiO_2 particles	
	and MWCNTs and b) SiCNWs synthesized from blend of SiO_2	138
	particles and SWCNTs	
4.32	GA curves of SiCNMs synthesized from blend of SiO ₂ particles and	140
	CNTs (MWCNTs and SWCNTs)	140

LIST OF SYMBOLS AND ABBREVIATIONS

- 0D Zero-Dimensional
- 1D **One-Dimensional**
- **Two-Dimensional** 2D
- 2θ Two-Theta
- 3D Three-Dimensional
- α -SiC Alpha-Silicon Carbide
- β-SiC Beta-Silicon Carbide
- С Carbon
- **CNTs** Carbon nanotubes
- CO Carbon Monoxide
- CO_2 Carbon Dioxide
- red by original copyright Chemical Vapor Deposition CVD
- d Distance
- DC Direct Current
- Depth of Penetration D_p
- DFT **Density Functional Theory**
- EDX Energy Dispersive X-Ray
- f Frequency
- **FESEM** Field Emission Scanning Electron Microscopy
 - FeS Iron (III) Sulphide
 - **FTIR** Fourier Transform Infrared
 - GaAs Gallium Arsenic

- Giga Hertz GHz
- GPa **Giga Pascals**
- h Height
- **HFCVD** Hot Filament Chemical Vapor Deposition
 - IR Infrared
 - kBr Potassium Bormide
 - KHz Kilo Hertz
 - kV Kilo Volt
 - ide ted by original copyright LaB6 Lanthanum hexaboride
 - mA Mili-Amperes
 - Molecular Dynamics MD
 - Magnesium Oxide MgO
 - Mega-Hertz MHz
 - mm Milimeters
- Multi-Mode Cavity MMC
- MOSFET Metal-oxide-semiconductor field-effect transistor Milliliters ml
 - MTS methyltrichlorosilane
- **MWCNTs** Multi-Walled Carbon Nanotubes
 - Ni Nickel
 - Nano-meters nm
 - Oxygen 0
 - Р Power

- PL Photoluminescence
- RF Radio Frequency
- Si Silicon
- SiC Silicon Carbide
- SiCl₄ Silica Tetrachloride
- Si NW Silicon Nanowires
- SiO Silicon Monoxide
- SiO₂ Silicon Dioxide
- SMC Single-mode Cavity
- SMS Shape Memory Synthesis
- Solution-Liquid-Solid SLS
- by original copyright Silicon Carbide Nanotubes SiCNTs
- Single-Walled Carbon Nanotubes **SWCNTs**
 - Transmission Electron Microscopy TEM
 - Thermo-Gravimetric Analysis TGA
 - Loss Tangent $Tan \, \delta$
 - Vapor-Solid VS
 - Vapor-Liquid-Solid VLS
 - W Watt
 - **X-Ray Diffraction** XRD
 - Degree Celcius °C
 - \mathcal{E}' Dielectric Constant
 - $\mathcal{E}^{"}$ Dielectric Loss Factor

- ϵ^0 Permeability Free Space
- λ Wavelength
- θ Degree
- Micro-gram μg
- Micro-meter μm

orthis term is protected by original copyright

LIST OF EQUATIONS

NO		PAGE
2.1	Loss Tangent (Tan δ)	42
2.2	Energy generated inside of heated materials (P)	43
2.3	Depth of penetration (Dp)	43
2.4	Overall reaction formation of SiC	59
2.5	Formation of SiO gas	60
2.6	Formation of SiC	60
3.1	Energy band gap	74
4.1	Step reaction SiO_2 and C to produce SiO gas with Gibbs free energy	103
4.2	Reaction formation SiC with Gibbs free energy	103
4.3	Arrhenius Equation	104
4.4	Reaction of SiO gas and CO gas formed SiC	125
	othis item is protected by	

Sintesis dan pencirian tiub nano siliko karbida melalui kaedah berbantu mikro

ABSTRAK

Silikon karbid (SiC) dikenali umum sebagai salah satu bahan paling berguna berdasarkan sifat bahannya yang sangat keras dan menyamai kriteria yang dimiliki oleh berlian. Tiub nano silikon karbida (SiCNTs) dan wayar nano silikon karbida (SiCNWs) mempunyai potensi yang bermanfaat dan stabil pada suhu yang tinggi, dan keadaan persekitaran yang kritikal untuk penggunaan sistem elektronik. Tujuan kajian ini dijalankan adalah untuk mengenalpasti kesan penghasilan nisbah campuran di antara silikon dioksida dan MWCNTs, suhu pemanasan, tempoh pemanasan, dan jenis-jenis nano tiub karbon (MWCNTs dan SWCNTs) pada penghasilan SiCNTs oleh pemanasan menggunakan gelombang mikro dari segi rupa bentuk, komposisi kandungan, sifat-sifat optikal dan kestabilan terma. Kesan nisbah berbeza telah dikaji dengan mevariasikan pelbagai nisbah molar partikel SiO₂ dan MWCNTs dalam adunan 1:1, 1:3, 1:5 dan 1:7 manakala untuk kajian kesan pemanasan pula, suhu telah diubah dari 1350°C, 1400°C dan 1450°C. Tempoh pemanasan selama 20, 40 dan 60 minit telah digunakan dalam kajian ini untuk mengkaji dan mengenalpasti kesan tempoh pemanasan pada penghasilan SiCNTs. Dua jenis CNTs (MWCNTs and SWCNTs) telah digunakan untuk mengkaji kesan perbezaan jenis-jenis CNTs pada penghasilan SiCNMs. Pencampuran ultrasonik digunakan untuk campuran SiO₂ dan MWCNTs dalam ethanol yang kemudiannya dikeringkan sebelum ditekan menjadi 3 mm pellet. Selepas itu, pellet dimasukkan ke dalam mangkuk pijar alumina dan pemanasan gelombang mikro dilakuan dalam 2.45 GHz pelbagai mod rongga gelombang mikro dengan kadar pemanasan 30°C/minit. FESEM dan TEM telah digunakan untuk mengkaji morfologi SiCNMs. Sementara itu, analisis komposisi telah dilakukan dengan menggunakan XRD dan EDX. PL telah digunakan untuk mengkaji sifat-sifat optik manakala, sifat terma telah dikaji dengan menggunakan analisis TGA. Nisbah 1:3 partikel SiO₂ dan MWCNTs menunjukkan penghasilan fasa tunggal SiCNTs fasa disokong oleh corak XRD di mana tiada lagi sisa partikel SiO₂ dan MWCNTs yang dapat diperhatikan. Sementara itu, proses pemanasan pada suhu 1400°C dan tempoh pemanasan 40 minit telah dikenalpasti sebagai suhu dan tempoh paling sesuai untuk penghasilan fasa tunggal SiCNTs di mana partikel SiO₂ dan MWCNTs bertindak balas dengan sepenuhnya menjadi fasa tunggal SiCNTs. Tambahan pula, fasa tunggal SiCNTs telah berjaya dihasilkan daripada campuran partikel SiO₂ dan MWCNTs dalam nisbah 1:3 manakala campuran partikel SiO₂ dan SWCNTs dalam nisbah yang sama membentuk SiCNWs. Imej TEM telah mengesahkan bahawa SiCNTs yang dihasilkan mempunyai struktur tiub berongga manakala SiCNWs mempunyai struktur wayar nano yang kukuh. Ia boleh diandaikan bahawa nisbah partikel SiO₂ dan MWCNTs, suhu dan tempoh pemanasan mempunyai kesan yang signifikan terhadap penghasilan SiCNTs. Selain daripada itu, jenis CNTs juga memainkan peranan yang penting dalam pembentukan SiCNMs di mana SiCNTs telah diperolehi daripada campuran partikel SiO₂ dan MWCNTs manakala SiCNWs telah dihasilkan daripada campuran partikel SiO2 dan SWCNTs yang telah digunakan. Daripada keputusan kajian ini, dapat disimpulkan bahawa pemanasan gelombang mikro untuk penghasilan fasa tunggal SiCNTs telah dicapai di antara campuran partikel SiO₂ dan MWCNTs pada nisbah 1:3, suhu pemanasan pada 1400°C, tempoh pemanasan selama 40 minit telah digunakan dalam kajian ini.

Microwave Assisted Synthesis of Silicon Carbide Nanotubes

ABSTRACT

Silicon carbide (SiC) is well known as one of the most useful materials due to its high hardness next to diamond. Silicon carbide nanotubes (SiCNTs) and nanowires (SiCNWs) especially have high potential in high temperature and harsh environment electronic applications. The objectives of this study were to investigate the effect of ratio of SiO₂ particles and MWCNTs, heating temperature, heating duration and types of CNTs (MWCNTs and SWCNTs) on the synthesis of SiCNTs by microwave heating in terms of morphology, compositions, optical properties and thermal stability. Effect of different ratio was studied by varying the molar ratio of SiO_2 particles and MWCNTs in the blend to 1:1, 1:3, 1:5 and 1:7 while for the study of effect of heating temperature, temperature was varied from 1350 °C, 1400 °C and 1450 °C. Heating duration of 20, 40 and 60 minutes were used in this study to investigate the effect of heating duration on the synthesis of SiCNTs. Two types of CNTs (MWCNTs and SWCNTs) were used to investigate the effect of type of CNTs on synthesized SiCNMs. Ultrasonic mixing was used to mix SiO₂ particles and MWCNTs in ethanol which was then dried before being cold pressed into 3 mm pellet. After that, the pellet was put into alumina crucible and microwave heating was conducted in a 2.45 GHz multi-mode cavity microwave with heating rate of 30 °C/minute. FESEM and TEM were used to investigate the morphology of the SiCNMs. Meanwhile, composition analysis was done by using XRD and EDX. PL was used to study the optical properties, while thermal properties were investigated by using TGA analysis. Ratio 1:3 of SiO₂ particles and MWCNTs has showed synthesis of single-phase SiCNTs as supported by XRD patterns where no residual of SiO₂ particles and MWCNTs was observed. Meanwhile, heating temperature at 1400 °C and 40 minutes heating duration was determined as the most ideal temperature to synthesize single-phase SiCNTs in which SiO₂ particles and MWCNTs reacted completely become single-phase SiCNTs. Furthermore, single phase SiCNTs was successfully synthesized from blend of SiO₂ particles and MWCNTs in the ratio of 1:3 while blend of SiO₂ particles and SWCNTs in similar ratio formed SiCNWs. Images of TEM have confirmed that the synthesized SiCNTs has hollow tubular structure while SiCNWs has a solid nanowires structure. It can be postulated that ratio of SiO₂ particles and MWCNTs, heating temperature and heating duration has significant effect to the synthesis of SiCNTs. Besides that, type of CNTs (MWCNTs and SWCNTs has significant effect on the formation of SiCNMs where SiCNTs was obtained from the blend of SiO₂ particles and MWCNTs while SiCNWs synthesized when blend of SiO₂ particles and SWCNTs was used. It can be concluded that microwave heating for the synthesis of single-phase SiCNTs was achieved when blend of SiO₂ particles and MWCNTs in the ratio of 1:3, heating temperature at 1400 °C, heating duration of 40 minutes was used in this study.

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Silicon carbide (SiC) is an important ceramic material which is known as carborundum and consists of silicon and carbon atom with chemical formula of SiC. The set of unique properties such as high hardness and strength at elevated temperature, excellent thermal conductivity and stability, good wear and corrosion resistance make SiC a highly attractive material for many applications including structural ceramics, heating and corrosion protective elements (Chu *et al.*, 2012; Ivekovic *et al.*, 2013). Besides that, SiC is also considered as a high potential candidate for electronic applications such as high power switching and high voltage light emitting diodes (Oliveros, Guiseppi-Elie and Saddow, 2013; Pedersen *et al.*, 2012). Furthermore, high hardness and wear resistance of SiC makes it a very ideal material for abrasive machining applications such as grinding and sand blasting (Wijesundara and Azevedo, 2011).

Due to the discovery of carbon nanotubes (CNTs), nano-materials has been thoroughly studied and investigated worldwide by researchers due to the novel properties which are associated with large surface area and quantum size effects. For example, when an object is in nano-scale size, its surface area to volume ratio is high (Huang *et al.*, 2013). This in turn increases the reactivity due to more surfaces are available for reactions. Meanwhile, quantum size effect describes the physics of electron properties in solids when particle size falls within nano-scale size (Aznan and Johan, 2012). Changes of electron properties at nano-size caused the changes in the properties of bulk material. These novel properties of nano-materials show new and unsual properties which render a limitless possibility of potential applications for nano-materials in many fields including medicine, composite, structural, aerospace and others (Dumrongbunditkul *et al.*, 2016; Kim *et al.*, 2016; Qu *et al.*, 2016). Nano-materials are materials that consisted of nano-scale dimensions within range of 1-100 nm and produced by nanotechnology.

Meanwhile, nanotechnology is a branch of technology that deals with dimensions of materials of less than 100 nm especially in manipulation of individual atoms and molecules (Kim *et al.*, 2016). In brief, nano-materials can be categorized into zero-dimensional (0 D), one-dimensional (1 D), two-dimensional (2 D) and three-dimensional (3 D) with each has different dimensions over nanometer length. 0 D nano-materials are structures with all dimensions on nanometer scale such as nano-particles and nano-spheres (Yu *et al.*, 2015), while 1 D nano-materials are structures with two dimensions on nanometer scale such as nanowires and nanotubes (Suresh 2013). 2 D nano-materials only have one dimension on the nanometer scale that is perpendicular to layer plane such as nano-flakes and nano-platelets (Zhang, 2015). 3 D nano-materials are ensembles of the nano-materials such nanowires connected

through single-crystalline junctions and have overall dimensions on the nano or micro scale (Wu *et al.*, 2015).

Among SiC nanostructures, one dimensional SiC nanostructures such as SiC nanowires, nanotubes, nano-rods, nano-whiskers and many others have been extensively studied by researchers due to the potential of one dimensional SiC nanostructures in wide range of applications. Many one-dimensional SiC nanostructures has been reported successfully applied in applications such as photo-catalyst (Liu *et al.*, 2012), field-effect transistor (Andersson, Pearce and Lloyd, 2013), composite (Pozuelo, Kao and Yang, 2013), field emitters (Wu *et al.*, 2012), sensors (Wang *et al.*, 2012), catalyst (Hao *et al.*, 2012), super-capacitors (Gu *et al.*, 2013) and bio-imaging probes (Fradetal *et al.*, 2014) due to the outstanding properties exhibited by one dimensional SiC nanostructures such as high thermal conductivity, excellent chemical inertness, high energy band gaps and better field emitting properties (Mizsei and Czett, 2012; Xin *et al.*, 2012)

Silicon carbide nanotubes (SiCNTs) are known as one of the many types of one dimensional SiC nanostructures which has the structure of nanotube consisted tubular layer with silicon and carbon atoms joined in strong covalent bonding (Taguchi *et al.*, 2005). SiCNTs are extensively studied since SiCNTs have properties such as high reactivity of exterior surface and excellent stability at high temperature, high fracture toughness, excellent thermal stability and ability to withstand high temperature and corrosive environments comparing to CNTs (Barghi, Tsotsis and Sahimi, 2014).

1.2 Problem Statement

Although SiCNTs was successfully synthesized at low temperature of 935°C from the reaction of CNTs and SiO powder by Sun *et al.*, (2002), Latu-Romain *et al.*, (2013) from the SiNW and Xie, Tao and Wang (2007) by CVD method, the cost SiO powder used in the reaction was expensive compared to SiO₂ particles. Furthermore, the synthesized SiCNTs also consisted of unreacted SiO powder and CNTs and thus single-phase SiCNTs could not be obtained. Meanwhile, use of the gold catalyst and HFCVD by Latu-Romain *et al.*, (2013) was practically impossible and rendered very high cost for the synthesis of SiCNTs. Moreover, use of the catalyst during the synthesis of SiCNTs by CVD method often caused the presence of impurities and this resulted in the need of further purification steps to remove the impurities. In addition, the use of methyltrichlorosilane (MTS) as precursor was expensive and costly compared to CNTs. All of these, in turn caused the increase of production costs of SiCNTs.

Based on these reported current methods of synthesis of SiCNTs, there are disadvantages for the methods such as large consumption of energy, long heating duration, lower heating rates and presence of impurities which has resulted difficulties to obtain high purity single-phase SiCNTs with reduced processing times and high heating rates. Thus, there is need to propose an alternative synthesis method which can reduce the consumption of energy and synthesize high purity single-phase SiCNTs with shorter heating duration and fast heating rates.

Recently, microwave heating method has been developed as the new way for the synthesis of the SiC nanostructures such as nano-powder (Ebadzadeh and Marzban-Rad, 2009; Moshtaghioun et al., 2012; Van Laar et al., 2015), nano-wires (Lu et al., 2007; Oh et al., 2011; Sundaresan et al., 2007) and nano-whiskers (Kuang and Cao, 2013; Li, Shirai and Fuji, 2013). The first successful synthesis of SiC from silicon and charcoal powder by using commercial microwave oven at 2.45 GHz for 10 minutes was reported at 1994, although impurity was observed together with the synthesized SiC. Microwave is a form of electromagnetic energy with frequency range of 300 MHz to 300 GHz and is widely used in telecommunications. Microwave heating is the process in which the material absorbs electromagnetic energy of microwave via molecular-level interactions with electromagnetic field (Santos et al., 2011). Materials with high dielectric properties and polar characteristics such as water and carbon are able to interact with the electromagnetic field of microwave and thus volumetrically produce heat energy (Yu, Shrestha and Baik, 2015).

Comparatively, conventional heating involves the transfer of the heat from heat sources to the material through the mechanism of conduction, convection and radiation. Conventional methods possess some disadvantages since the heat loss to surroundings frequently occurs during the transfer of the heat from heat source to materials. Furthermore, the heating rate and distribution of heat inside the material are not uniform because of the instability in the heat transfer and difference in the gradient of the temperature from outside to inside of material (Oghbaei and Mirzaee, 2010). Meanwhile, microwave heating is able to synthesize the SiC nanostructures with no impurities and chemical catalyst is not necessary. Furthermore, microwave heating has shown that faster heating rate, shorter heating duration and lower consumption of energy can be achieved for the synthesis of SiC nanostructures (Wang *et al.*, 2016).

Carbon materials such as multi-walled carbon nanotube (MWCNTs) and single-walled carbon nanotubes (SWCNTs) were known as good microwave absorbing materials and can be heated uniformly and rapidly when exposed to microwave heating (Kim, Lee and Lee, 2014). By using the advantages of interaction of CNTs with microwave, a fundamental study of synthesis of SiCNTs by using microwave assisted synthesis was proposed.

us synthesis was proposed.

1.3 Research Objective

This study focused on the feasibility of synthesis of SiCNTs by using microwave heating and the effect of processing parameters on the formation of SiCNTs. The objectives of this study are:

- a) To investigate the effect of molar ratio of SiO₂:MWCNTs, heating temperature and heating duration on the formation of SiCNTs by microwave heating in terms of morphology, compositions, optical and thermal properties
- b) To investigate the effect of types of CNTs (MWCNTs and SWCNTs) on the formation of SiCNTs by microwave heating in terms of morphology, compositions, optical and thermal properties.