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Model Baru Gelombang Perambatan Rangkaian Pengesan Tanpa Wayar 
Berdasarkan Protokol ZigBee untuk Perlindungan Persekitaran Rumah Hijau 

Mangga

ABSTRAK

Rangkaian pengesan tanpa wayar (WSN) adalah teknologi berpotensi dan ianya digunakan 
secara meluas untuk memantau dan mengawal keadaan alam sekitar bagi pertanian tepat. 
Penggunaan nod WSN dalam persekitaran sebenar berhadapan dengan kesesuaian pautan 
komunikasi dan liputan rangkaian khususnya dalam kes penggunaan nod tanpa wayar 
berhampiran dengan tanah dan juga kewujudan tumbuh-tumbuhan yang padat dimana 
ianya mungkin boleh menjejaskan isyarat perambatan. Pemodelan saluran komunikasi 
tanpa wayar amat penting untuk mencapai kejayaan dalam perlaksanaan sistem WSN 
persekitaran pertanian. Dalam WSN, ketepatan perambatan model ‘path loss’ membantu 
untuk kesesuaian penilaian prestasi realisasi, mencapai komunikasi yang boleh dipercayai, 
meningkatkan kecekapan kuasa nod rangkaian dan juga mengurangkan keseluruhan kos 
rangkaian tanpa wayar. Banyak model ‘path loss’ telah digunakan untuk pemodelan 
saluran komunikasi tanpa wayar tetapi kebanyakannya tidak sesuai untuk aplikasi WSN 
disebabkan oleh medium perambatan dan juga piawaian IEEE 802.15.4. Dalam 
penyelidikan ini, ‘path losses’ perambatan isyarat WSN dalam persekitaran rumah hijau 
mangga dikaji dengan menggunakan piawaian WSN berdasarkan ZigBee. Pelbagai 
pengukuran empirikal telah dijalankan untuk memeriksa kesan ‘path loss’ pada setiap
bahagian pokok dengan ketinggian pemancar yang berbeza-beza untuk memilih ketinggian 
antena yang paling sesuai digunapakai dalam semua eksperimen bagi memperolehi model 
‘path loss’ yang baru. Kepastian model perambatan ‘path loss’ yang baru untuk 
persekitaran rumah hijau (Greenhouse Propagation Path Loss Model - GHPLM) diperolehi 
berdasarkan teknik regresi. Model baru ini digunakan untuk mengira jumlah ‘path losses’ 
dan penggunaan nod rangkaian pengesan dalam bidang sebenar berdasarkan pengukuran 
jarak pemisahan maksimum. Hasilan daripada kerja ini telah membuktikan bahawa 
ketinggian antena dan kedalaman tumbuh-tumbuhan adalah dua faktor terpenting dalam 
pemodelan saluran.  Model ‘Plane Earth’ (PE) juga tidak tepat untuk meramalkan ‘path 
loss’ dalam persekitaran sebenar disebabkan ianya berdasarkan pendekatan simplistik dan 
dianggap sangat optimis dalam senario perambatan sebenar seperti kes persekitaran rumah 
hijau ini. Dengan itu, gabungan model ini dengan model ‘path loss’ tumbuh-tumbuhan 
menghasilkan keputusan yang lebih menyakinkan dan ini boleh menggambarkan perlakuan 
sistem WSN yang betul apabila digunakan dalam persekitaran sebenar. Keputusan 
empirikal telah membuktikan bahawa model GHPLM adalah model terbaik jika 
dibandingkan dengan model-model empirikal perambatan ‘path loss’ sediaada. ‘Mean 
Absolute Percentage Error (MAPE)’ yang digunakan untuk mengukur perbezaan antara 
nilai sebenar dan nilai ramalan adalah 3.96% untuk model GHPLM berbanding dengan 
model ‘path losess’ tumbuh-tumbuhan yang lain dimana peratusannya adalah 44.55%, 
41.07%, 31.82% dan 15.48% untuk model-model Weissberger, ITU-R, FITU-R and 
COST235 masing-masing.
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A New Wireless Sensor Network Wave Propagation Model Based on ZigBee Protocol 
for Protected Mango Greenhouse Environment

ABSTRACT

The wireless sensor network (WSN) is the promising technology and it is widely used for 
monitoring and controlling the environmental conditions of precision agriculture. The 
deployment of the WSN nodes in real environments faces hard challenges of proper 
communication links and network coverage especially in the case of deployment of 
wireless nodes near the ground and the existence of dense vegetation which may impair the 
propagating signals. Modeling of wireless communication channel is important to achieve 
a successful implementation of WSN system in agricultural environment. In WSN, 
accurate propagation path loss models help for realization appropriate evaluation of the 
WSN performance, achieving more reliable communication, improving the power 
efficiency of the network nodes and decreasing the overall cost of the wireless network. 
There are many propagation path loss models used for modeling wireless communication 
channels, but most of them might not be suitable for the WSN applications due to 
propagation medium and the IEEE 802.15.4 standard. In this research, the WSN signal 
propagation path losses inside the mango greenhouse environment are investigated by 
using WSN based on the ZigBee standards. Various empirical measurements were 
conducted to examine the effect of each part of a tree on path loss with different 
transceivers’ heights to select the best antenna heights that adopted in all experiments for 
deriving the new path loss model. Indeed, a new propagation path loss model for 
greenhouse environment (Greenhouse Propagation Path Loss Model - GHPLM) is derived 
based on a regression technique. This new model is used for computing the total 
propagation path losses and for deployment the wireless sensor nodes in the real field 
based on the maximum separation distance measurements. The outcomes from this work 
proved that the antenna heights and the vegetation depth are the two most important factors 
in channel modeling. The empirical results emphasize that the Plane Earth (PE) model is 
inaccurate for predicting path loss in real environments due to it is based on simplistic 
approaches and considered to be very optimistic in real propagation scenarios as the case in 
mango greenhouse environment. Thus, the combination of this model with the vegetation 
path loss model contribute more convincing results and can best describe the behavior of 
actual WSN systems when deployed in a real environment. The empirical results proved 
that the GHPLM model is the best candidate compared to other existing empirical 
propagation path loss models. The Mean Absolute Percentage Error (MAPE) that 
measured the difference between the actual and prediction path loss was 3.96% for the new 
GHPLM model compared to other vegetation path losses which were 44.55%, 41.07%, 
31.82% and 15.48% for Weissberger, ITU-R, FITU-R and COST235 models respectively.
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1   Background 

 

Currently, agriculture requires advanced technology to improve the quality of 

yield, reducing environmental effects on crops, and protecting agricultural 

environments. Precision agriculture (PA) is beneficial towards these goals, and it is duly 

applied to observe environmental conditions, such as temperature, humidity, and light 

(Awasthi & Reddy, 2013). Furthermore, PA controls the amount of water, pesticides, 

and fertilizers in the agricultural field in order to enhance and improve the quality of the 

yields based on the required environmental conditions of the field (Awasthi & Reddy, 

2013; Mestre et al., 2011). In agricultural environments, the PA relies on the use of 

modern technologies to promote variable management practices within a field (Mestre 

et al., 2011). The implementation of PA depends on the collection of huge amounts of 

information related to environmental conditions in the agricultural field and the status of 

the crops. Such information is usually gathered by the number of sensor nodes that are 

distributed in the field. The network sensor nodes cooperate to gather specified data, 

which is then conveyed to the main sink node via the internet, wireless network, or 

Local Area Network (LAN), where decision-making unit processes it and take action(s) 

based on system’s setup (Keshtgary & Deljoo, 2012; Vougioukas et al., 2013). 

The Wireless Sensor Network (WSN) is the promise technology for sensing the 

environmental conditions and the status of crops at suitable costs and accuracies 
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(Vougioukas et al., 2013). WSN includes a number of nodes, where each node consists 

of a number of units such as sensors, Radio Frequency (RF) communication unit 

(transceivers), processing unit (microcontroller), and  power source unit (battery) 

(Vougioukas et al., 2013). The WSNs have been used in various agricultural 

applications for sensing and data acquisition, such as monitoring weather conditions of 

temperature, humidity, and soil moisture (Li et al., 2009; O'Shaughnessy & Evett, 

2010), precision irrigation and valve control-based on weather and soil sensing (Evans 

et al, 2011), and precision livestock and the food industry (Ruiz-Garcia et al., 2009). 

The WSN's developers’ adoption of the ZigBee protocol for the wireless sensors 

applications. The Zigbee is an open and global standard for WSN, aiming for low costs, 

low rates, and low power consumption. The ZigBee implements the upper layer (the 

network and application layers) of the Open System Interconnection Reference Model 

(OSI), and it relies on the IEEE802.15.4 protocol for the implementation of two lower 

layers (the Physical  and Data Link Layers) (Feng et al., 2010).  

The success of the WSN applications depends on the reliability of the 

communication between the wireless sensor nodes. Therefore, the well-known 

propagation mechanisms via the agricultural environment are critical for 

communication and sensing in such environments (Peng et al, 2012). The main issue for 

deploying WSN in real environments is determining the positions of the network nodes.  

It must be placed close enough to realize a reliable connection. The maximum 

separation distance between each two contiguous nodes depends on the output power of 

the transmitter, the gain of the antennas, and the attenuation that occurs due to free-

space or obstacles (Vougioukas et al., 2013).  

In wireless communication systems, the propagation path loss models are used 

to predict the path loss of the transmitted signals, calculating the average of power 
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received, and determining the maximum allowable separation distance between two 

adjacent nodes (AlSayyari et al., 2014c). Such propagation path loss models are usually 

derived according to certain environmental properties where the transceivers are 

operating.  

There are two main approaches for modeling wireless channels, namely the 

theoretical model (also called deterministic) and empirical model (also called a 

probabilistic model or statistical model) (Rappaport, 2002). Theoretical models report 

very accurate values for path losses, but these models are only occasionally available in 

practice because they are very complicated and can only be solved by numerical 

methods, which require exact environmental information related to the wireless channel, 

such as the geometry and the electrical properties of soil. This information is usually 

very difficult to obtain from real environments. The empirical models are derived based 

on actual measurements. The advantages of the empirical models over theoretical 

models include their ease of implementation and their ability to include all environment 

related parameters that affect the propagation of the radio (Meng et al.,  2009b; Sharma 

& Singh, 2010).  

 

1.2 Research Background  

 

In WSN, the precise propagation path loss models can help to (Akyildiz & 

Vuran, 2010; Otero et al., 2010):  

 Achieve proper evaluation and optimize the network’s performance.  

 Improving the power efficiency of wireless sensors. 

 Achieving more reliable communication. 

 Reducing the overall cost of the wireless network. 
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Many researchers have proposed and adopted different propagation path loss 

models for WSN nodes deployment planning in different environments. These 

researches can be classified into three groups. The first group of researchers adopted 

two of the most well-known model of large scale propagation path loss models i.e.  Free 

Space Path Loss (FSPL) model and Plane Earth (PE) model for predicting path loss and 

determine the separation distance between the wireless nodes. Both models rely on 

simplistic approaches, and they are regarded as very optimistic for predicting path loss 

in real environment, such as the greenhouse environment, where there are obstacles 

between the wireless sensor nodes. 

The evaluation of the WSN’s performance was based on the available empirical 

propagation path loss models in simulation environments. This was the focal point of 

the second group of researchers. The simulation environments assumed that the signal 

propagation path between transceivers nodes is line of sight (LOS) situation (there are 

no obstacles between wireless nodes), therefore, the produced results will not reflect the 

actual scenario. 

Contrarily, in the third group, the researchers proposed various propagation path 

loss models based on the actual measurements performed in different environments. 

The propagation path loss model for each environment depends on many factors, such 

as the type of the terrain, the objects that exist in this terrain, the hardware used in 

measurements, and the antenna heights of transceivers nodes. 

Hence, existing wireless communication models are not optimal representation 

of WSN vegetation channel, and this work focuses on deriving an empirical path loss 

model, namely Greenhouse Path Loss Model (GHPLM) based on actual measurements 

conducted in a greenhouse environment for modeling this environment. 
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