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ABSTRACT 

An insurance policy is a contract agreement between the policyholder and the insurance 
company. For the contract agreement to run, policyholders need to pay premiums to insurance 
companies. On the other hand, the insurance company must underwrite the risk if the 
policyholder does submission of claims. It is necessary to estimate the reserves of claims for the 
company insurance accurately to prepare several funds for settlement of claim. Generalized 
Linear Model (GLM) can be used to estimate the claim values in a univariate form which only 
consists of 1 LoB (Line of Business). In practice, almost every insurance company has various 
types of LoB which depends on one another. Therefore, the GLM can be expanded to a 
multivariate GLM which can be used to estimate the claim data with more than one LoB. The 
researcher also wants to compare between an estimated reserve calculations of Swiss Re Group’s 
claims using the Multivariate Evolutionary GLM Adaptive Simple Method and GLM with the 
Tweedie Family Distribution Approach to find a more accurate method of finding claim reserves 
for each line of Swiss Re Group’s business data.  

Keywords: multivariate evolutionary distribution GLM with the adaptive model, simple GLM 
with the tweedie family distribution approach 

1 INTRODUCTION 

Insurance policy is a contract agreement between the policyholder (the insured) and the insurance 
company (the insurer). Policyholders need to pay premiums to the insurance company. In return, the 
insurance company must bear the risk if the policyholder makes a claim, and the insurance company 
needs to set aside money from premium payments to be used as claim reserves. Claim reserves, as a 
liability, certainly affects the level of the company's solvency. Therefore, it is necessary to estimate 
the exact claim reserves so that the insurance company can prepare a certain amount of funds for 
settlement of claims. 

Estimation of claims reserves can be done using GLM (Generalized Linear Model). GLM can be used 
to estimate claim with univariate data which only consists of 1 LoB (Line of Business). In practice, 
almost every insurance company has various types of LoB which are dependent on one another [1]. 
Therefore, GLM was extended to multivariate GLM which can be used to estimate claim data with 
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more than one LoB. The random factors on multivariate GLM will change recursively and the 
dependence between these factors will be calculated using the common shock approach [1]. 

Furthermore, the Tweedie family distribution method will be used to estimate the claim reserves 
with univariate data. Meanwhile, multivariate evolutionary GLM method will be used to estimate 
multivariate data. Then which method can produce the highest level of accuracy? This is the topic 
that we will discuss in this research. 

2 MATERIAL AND METHODS 

In calculating estimated claim reserves, it is necessary to pay attention to the form of claim data used. 
There are 2 forms of claim data model, namely univariate and multivariate. Many journals have 
discussed claim reserving for univariate data, including the Simple GLM method with the Tweedie 
family distribution approach [2], the Bornhuetter-Ferguson method [3], Benktander [4] and the 
Chain Ladder [5]. 

The Chain Ladder and Bornhuetter-Ferguson methods are traditional methods for predicting 
outstanding claims for a long tail business [6]. Chain ladder is the method most often used to predict 
the size of future claims using internal company information in the past with a run-off triangle and 
an estimator of age-to-age factor same as the Bornhuetter-Ferguson method [5]. However, this Chain 
Ladder method has several weaknesses, namely the model uses past data so that it is no longer in 
accordance with the latest data, which results in a fundamental discontinuity of the estimation 
sequence [7]. This method also cannot differentiate between the claim reserves for IBNR and RBNS 
[8]. In addition, the Benktander method only produces accurate estimates for stable claims data only, 
this can be seen from the MSE value [4]. 

Meanwhile, for multivariate claim data, the reserve can be calculated using the Tweedie family 
distribution and the multivariate evolutionary GLM using the Adaptive Estimation approach [9]. 
Evolutionary models are grouped into 2 types based on the distribution assumptions used, namely 
the Gaussian model and the non-Gaussian model. The Gaussian model relies on the assumptions of 
Gaussian observations and model factors. The recursive estimator for the model factor used in the 
Gaussian model is the dual Kalman filter [10], which is the best linear estimator based on the mean 
square error. Then, for the non-Gaussian model, the dual Kalman filter is no longer the best linear 
estimator for the factors, because the distribution assumption used in this model has deviated from 
the Gaussian assumption. Then instead [11] created a particle filter [12] that is used as a simulation-
based solution [13, 14] for the univariate evolutionary GLM framework using the second-order 
Bayesian revision [15] estimation procedure. So, in the multivariate evolutionary GLM there are two 
Adaptive estimation approaches that will be used, namely a particle filter with learning parameters 
for the general framework and a dual Kalman filter for the special cases of the Gaussian model. The 
two filters mentioned above place a greater emphasis on recent data thereby increasing the 
possibility of producing a more accurate projection of future claims. 

2.1 Observation Component 

Observations and explanatory factors are linked by the structure of the mean. In this framework, the 
modified Hoerl curve (discrete version of the Gamma curve) allows the use of the calendar year effect. 
This curve is determined using the functions 𝑗 and 𝑙𝑜𝑔(𝑗) to estimate the development pattern of the 
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claims. The advantages of the Hoerl curve are an efficient model, resistant to fluctuations in 
observations, and extrapolation outside the range of the observed development year. In the context 
of evolutionary reserves, this curve permits systematic changes in claims activity over time. The 
structure of the mean can be written using the log-link function on the Hoerl curve as follows: 

log (𝜇𝑖,𝑗
(𝑛)

) = 𝑎𝑖
(𝑛)

+ 𝑟𝑖
(𝑛)

. log(𝑗) + 𝑠𝑖
(𝑛)

. 𝑗 + ℎ𝑡
(𝑛)

 (1) 

 

where 𝑎𝑖
(𝑛)

 is accident year factor, 𝑟𝑖
(𝑛)

 and 𝑠𝑖
(𝑛)

 are factors of Hoerl curve that determine the pattern 

of development of the ith accident year, and ℎ𝑡
(𝑛)

 is a factor of the calendar year. Note that 𝑎𝑖
(𝑛)

, 𝑟𝑖
(𝑛)

 

and 𝑠𝑖
(𝑛)

are accident-year-specific, while ℎ𝑡
(𝑛)

 is calendar-year-specific. The structure of the mean can 

be modified according to the case. One special case of the multivariate evolutionary GLM framework 
is the multivariate Gaussian model assuming Gaussian observations (where log transformations can 
be applied if the distribution of observations is log normal). The Multivariate Gaussian model allows 
dependency between calendar years between LoBs. The observation components for this particular 
case are: 

𝑌𝑖,𝑗
(𝑛)

= 𝑎𝑖
(𝑛)

+ 𝑟𝑖
(𝑛)

. log(𝑗) + 𝑠𝑖
(𝑛)

. 𝑗 + ℎ𝑡
(𝑛)

+ 𝜍𝑖,𝑗
(𝑛)

                𝜍𝑖,𝑗
(𝑛)

~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎
𝜍(𝑛)
2 ) (2) 

 

2.2 State Component 

The recursive evolution of random factors is determined through state components. The observation 
component is the structure for the standard GLM in reserve. In the standard structure, the same fixed 

parameter values are used to capture the development year effect (e.g. 𝑟𝑖
(𝑛)

= 𝑟(𝑛), 𝑠𝑖
(𝑛)

= 𝑠(𝑛)in 

terms Hoerl curve) for all accident years. This means that one average development pattern is 
assumed for all accident years. The difference in computation of reserves using a multivariate 

evolutionary GLM framework with simple GLM lies in the provisions of the factors 𝑎𝑖
(𝑛)

, 𝑟𝑖
(𝑛)

, 𝑠𝑖
(𝑛)

 and 

ℎ𝑡
(𝑛)

 which exists in the mean structure. These factors are random and keep growing over time. So 
that every accident year has its own development pattern. The evolution of each accident year can be 
determined using a time series process such as the ARMA process. In simple terms, the evolution of 

a state uses a random process. The evolution of 𝑎𝑖
(𝑛)

, 𝑟𝑖
(𝑛)

 and 𝑠𝑖
(𝑛)

 is as follows: 
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where 𝜎
 𝑎𝜖𝑖

(𝑛)
2 , 𝜎

 𝑟𝜖𝑖
(𝑛)

2 , 𝜎
 𝑠𝜖𝑖

(𝑛)
2  is the variance of the respective errors  𝑎𝜖𝑖

(𝑛)
,  𝑟𝜖𝑖

(𝑛)
,  𝑠𝜖𝑖

(𝑛)
 in evolution. 

These variances are model parameters that must be estimated. 

The evolution of the calendar factor ℎ𝑡
(𝑛)

 is determined by a random process that has been modified 
to involve interdependencies between calendar years via a common shock approach.  

ℎ𝑡
(𝑛)

= ℎ𝑡−1
(𝑛)

+  ℎ𝜖𝑡
(𝑛)

+ 𝜆(𝑛).  ℎ𝜖�̃�               ℎ𝜖𝑡
(𝑛)

~𝑁𝑜𝑟𝑚𝑎𝑙 (0, 𝜎
 ℎ𝜖 

(𝑛)
2 ) (6) 

 

There are two sources of disturbance in this evolution, namely line specific disturbance  ℎ𝜖𝑡
(𝑛)

 and 

common shock disturbance  ℎ𝜖�̃� . And the variance is 𝜎
 ℎ𝜖 

(𝑛)
2 , 𝜎 ℎ�̃�

2  and 𝜆(𝑛) are model parameters. The 

dependence between calendar years is affected by ℎ𝜖�̃�. This common shock disturbance can 
represent changes in calendar year t that affect all lines simultaneously. The effect of the common 
shock on each row is often different due to the difference in the effect received on several rows, 

therefore it is better to use the scale factor 𝜆(𝑛) to adjust for the effect of the common shock on each 
row. 

2.3 State Space Matrix Representation 

This section describes a matrix representation of the framework for the multivariate evolutionary 
GLM. This matrix representation is referred to as a state space representation. The purpose of the 
matrix representation for the evolutionary model is to represent the relationship between 
observations and random factors and the development of random factors over time. So that it can 
describe the model estimation well. 

2.3.1 Observation Component 

In this framework, claim reserving data can be thought of as a multivariate time series process. Every 
time there are new observations, each accident year will be the basis for calculating this process. The 
observation vector in the accident year i or 𝑌𝑖  is the vector of all 𝑁. (𝐼 − 𝑖 + 1) data claims in the same 
accident year in the run-off triangle. 

2.3.2 State Component 

The random evolution of 𝛾𝑖  can be represented in the form of a matrix as; 

𝛾𝑖 = 𝛾𝑖−1 + 𝜖𝑖,             𝜖𝑖~𝑁𝑜𝑟𝑚𝑎𝑙 (0, 𝑄𝛾𝜖)   𝛾
 

𝛾
  (7) 
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2.4 Adaptive Estimation 

Representation of space matrix circumstances from this framework used as developtment from 
approximation of estimation. that random factor including year non-calender factor yi (i = 1, ..., I) and 
year calender factor 𝜓𝐼

 . Parameter that still unknown determined as; 

Θ = {𝜎
𝑎∈(𝑛)
2 , 𝜎

𝑟∈(𝑛)
2 , 𝜎

𝑠∈(𝑛)
2 , 𝜎

𝑛(𝑛)
2 , 𝜎𝑛𝜖

2 , 𝜆(𝑛), 𝜙(𝑛); 𝑛 = 1, … , 𝑁} (8) 

 

where  𝜙(1), … , 𝜙(𝑁) replaced by 𝜎
𝜁(1)
2 , … , 𝜎

𝜁(𝑁)
2  if Gaussian model is used. 

Recursive Bayesian Structure will give more weight for new data that used where it can give more 
response to prediction model where this is more actual to reality and change could be seen gradually 
from time to time. Recursive Estimation and Framework Structure where random factor determined 
as recursive using old factor and parameter can increasing random factor calibration when the data 
is few. Because of that, calibration that used accident year dimension as main time dimension for make 
use of data that availability is more in early of accident year [8]. 

3 RESULTS AND DISCUSSION 

3.1 Data Overview 

The dataset used in this research are claim values and premium values for line of business liability 
reinsurance and motor reinsurance services from Swiss Re Group, which is a Comprise P&C 
Reinsurance and Corporate solution. The used variables are claim values and premium values. There 
is no missing value in dataset and the range time that is used is January – October 2018. From the 
claim values that are available in dataset, a runoff triangle is made for each line of business. Tables 
shown below are premium values and runoff triangles for reported claims per month (cumulative) 
for each line of business. 

Table 1: Reported Claims per Month (cumulative) for Liability Reinsurance 

 Premium Jan-18 Feb-18 Mar-18 Apr-18 May-18 Jun-18 Jul-18 Aug-18 Sep-18 Oct-18 

01/18 2668.12 199.753 432.583 619.326 839.025 1083.06 1157.37 1191.24 1215.8 1274.03 1309.06 

02/18 2579.27 215.194 572.446 825.973 1077.15 1210.44 1301.42 1353.45 1405.11 1421.28   

03/18 2412.58 49.5659 371.774 560.001 711.634 901.323 985.286 1040.27 1059.39     

04/18 2003.16 80.7781 411.143 539.873 783.886 942.896 1089.33 1089.04       

05/18 1727.32 68.09 328.383 547.178 681.812 780.503 883.676         

06/18 1329.15 70.596 335.527 520.456 650.11 716.347           

07/18 1212.89 68.514 256.022 441.441 637.458             

08/18 1112.92 66.9074 215.111 345.75               

09/18 1156.29 47.532 192.312                 

10/18 1500.18 48.5309                   
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Table 2: Reported Claims per Month (cumulative) for Motor Reinsurance 

 Premium Jan-18 Feb-18 Mar-18 Apr-18 May-18 Jun-18 Jul-18 Aug-18 Sep-18 Oct-18 

01/18 1555.11 680.333 1061.07 1180.27 1221.81 1247.98 1259.09 1264.65 1257.15 1259.06 1268.84 

02/18 1573.92 615.401 1061.63 1177.17 1275.66 1280.48 1288.96 1289.54 1291.86 1293.93   

03/18 1299.77 222.421 787.973 871.215 888.448 919.959 922.329 923.492 923.552     

04/18 1153.15 38.8192 656.959 795.225 838.976 851.555 860.039 855.358       

05/18 1343.87 168.378 890.638 1057.06 1080.98 1094.22 1108.35         

06/18 1355.12 299.019 942.295 1070.57 1105.54 1133.51           

07/18 1395.34 280.799 937.08 1117.4 1170.66             

08/18 1115.95 147.219 670.267 810.73               

09/18 1902.29 334.382 1348.15                 

10/18 2446.88 335.299                   

 

 

(a)       (b) 

Figure 1: Claim per Accident Month in: (a) Motor Reinsurance; and (b) Liability Reinsurance 

As shown from the plots, there are several differences between claim per accident month in liability 
reinsurance and motor reinsurance. In motor reinsurance, the highest claim is in September and the 
lowest is in October. Meanwhile, in liability reinsurance, the highest claimed value is in February and 
the lowest in October. Lastly, in the case liability reinsurance, we can conclude that there is a 
significant decrease of the claimed amount at the end of the period.  

Figure 2 represents loss ratio per development month for liability reinsurance and motor 
reinsurance. From both plots, we can infer that there is a significant increase of loss ratio in the 
second month, which then became the maximum point in each accident months, in exception for 
accident month January and February in motor reinsurance. Aside from that, shown from the liability 
reinsurance graph, there are no consistent pattern seen for each accident month, thus leading us to 
question whether we are able to model both different line of businesses in one go using a multivariate 
evolutionary generalized linear model framework with adaptive estimation. Furthermore, when the 
plots shown varying patterns for each accident years, could a multivariate generalized linear model 
framework with adaptive estimation be the best approach to model this dataset. 
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(a)      (b) 

Figure 2: Loss Ratio per Development Month in: (a) Liability Reinsurance; and (b) Motor Reinsurance 
 

3.2 A Multivariable Evolutionary Generalized Linear Model Framework with Adaptive 
Estimation 

A Multivariate Evolutionary Generalized Linear Model is applied to datasets on hand. This research 
revolves more around the application of GLM with a different Tweedie distribution approach with a 
different power parameter p so as the model output might give a more flexible dispersion model. In 
addition, 50.000 samples are used for every time step, filter initiation is also used with static GLM 
estimation with a mean structure such as:    

𝑎𝑖
(𝑛)

+ 𝑟𝑖
(𝑛)

log 𝑗 + 𝑠𝑖
(𝑛)

𝑗 + 𝑏𝑖,1
(𝑛)

𝕀{𝑗=1} + 𝑏𝑖,2
(𝑛)

𝕀{𝑗=2} + ℎ𝑡
(𝑛)

  (9) 

 
On the other hand, changes in claim pattern per month are also monitored. To acquire the estimation 
graph which are to be used in making pattern plots of claim values to development month for every 
accident year, filtered values from random factors are required, which are in the table below. 

Table 3: Filter Values from Random Factors 

n i 𝒂𝒊
(𝒏)

 𝒓𝒊
(𝒏)

 𝒔𝒊
(𝒏)

 𝒃𝒊,𝟏
(𝒏)

 𝒃𝒊,𝟐
(𝒏)

 

1 1 -2.087543252 1.309957 -0.55933 0.524395 -3.54663 
 2 -2.013931471 1.326508 -0.57422 0.370883 -3.38264 
 3 -2.124276212 1.386341 -0.60775 -0.23523 -3.18238 

 4 -2.059553345 1.428034 -0.57666 -0.39653 -3.25512 
 5 -2.015587325 1.401532 -0.56355 -0.53013 -3.09946 

 6 -1.958315133 1.426051 -0.57668 -0.36193 -2.98265 

 7 -1.831956881 1.465512 -0.52227 -0.39831 -2.85423 
 8 -1.858938768 1.471362 -0.58565 -0.32022 -2.86975 

 9 -1.848340336 1.464519 -0.61427 -0.48828 -2.8444 
 10 -1.82580777 1.430496 -0.62445 -0.76258 -2.87436 

2 1 2.160242943 -0.71604 1.463018 0.455415 0 
 2 2.047210591 -0.77495 2.157653 1.189497 0.276643 
 3 2.049707678 -0.85201 1.837196 1.790101 0.386594 

 4 2.304503967 -0.8926 1.153137 2.313895 0.486357 
 5 2.25675042 -0.90987 1.364345 2.30707 0.378763 
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 6 2.223863193 -0.91475 1.79176 2.231462 0.417468 

 7 2.192819508 -0.85437 1.739 

 

 

 

 

 

 

 

 

 

0.330494 
 8 2.363158001 -0.81734 1.494443 1.528353 0.265106 

 9 2.481085559 -0.80687 1.323609 1.791329 0.648373 
 10 2.464978385 -0.79961 1.383014 1.840059 0.275103 

   

   

   

(a) 

    

   

   

(b) 

 
Figure 3: Reveal Loss Ratios Patterns with Development Month every Accident Month in: (a) Liability 

Reinsurance; and (b) Motor Reinsurance 
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The plots above reveal loss ratios patterns with development month every accident month for their 
respective line of businesses as the axis. These plots are used to check every change in loss ratios 
pattern to development month in each accident month, and by using that line we can conclude 
whether our model can find a pattern from our dataset. The plots show that in the line of business 
liability reinsurance, particle filter cannot find a stable pattern from the 1st until the 4th month due 
to the drastic changes in each month.  

But, by the fifth month, the filter particles were able to detect the loss ratios pattern. There are two 
possibilities. The particle filter can't detect patterns for loss ratios that has too much development 
year or the particle filter is not good at detecting loss ratios patterns that deviate from the Hoerl 
curve. But overall, we can summarize filter particles are sufficient in detecting loss ratios patterns by 
development month. To clarify that the filter particles can find loss ratios to development patterns in 
each accident month for the respective line of businesses, heatmaps are used to show the comparison 
between the real data with the top triangle made with the model we just made. 

 

Figure 4: Heatmaps of Real Reported Loss Ratios per Development Month and Fitted Value Liability 
Reinsurance 

According to the heatmaps, the accuracy of the Multivariate Generalized Linear Model Framework 
with Adaptive Estimation for each element in the line of business liability reinsurance is still around 
1. This shows that the filter particle from the said method can find loss ratios to development month 
patterns excellently, thus it will produce a good loss ratio prediction. In addition, we can concur that 
the accuracy rate gets better in the lower region of the triangle. 

Table 4: Predicted Claims per Month (decrement) for Liability Reinsurance 

 
Premium 

Jan-
18 

Feb-
18 

Mar-
18 

Apr-
18 

May-
18 

Jun- 
18 

Jul-
18 

Aug-
18 

Sep-
18 

Oct-
18 

01/18 2668.12 125.31 325.99 228.85 222.59 169.24 108.75 36.653 32.39 35.22 35.000 

02/18 2579.27 138.76 360.99 253.42 246.49 187.40 120.43 40.588 35.86 39.00  

03/18 2412.58 106.14 276.13 193.84 188.54 143.35 92.120 31.046 27.43   

04/18 2003.16 111.51 290.10 203.65 198.08 150.60 96.780 32.616    

05/18 1727.32 93.667 243.67 171.06 166.38 126.50 81.293     

06/18 1329.15 83.355 216.85 152.23 148.06 112.57      
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07/18 1212.89 88.611 230.52 161.83 157.40       

08/18 1112.92 63.898 166.23 116.69        

09/18 1156.29 53.437 139.01         

10/18 1500.18 49.000          

 

Table 5: Predicted Claims per Month (cumulative) for Motor Reinsurance 

 
Premium 

Jan- 
18 

Feb- 
18 

Mar-
18 

Apr-
18 

May-
18 

Jun-
18 

Jul- 
18 

Aug-
18 

Sep-
18 

Oct-
18 

01/18 2668.12 344.577 693.435 158.704 51.355 22.855 10.107 23.317 0.725 1.982 10.000 

02/18 2579.27 350.985 706.330 161.655 52.310 23.280 10.295 23.751 0.739 2.018  

03/18 2412.58 245.112 493.269 112.893 36.531 16.258 71.895 16.586 0.516   

04/18 2003.16 229.009 460.862 105.476 34.131 15.189 67.171 15.497    

05/18 1727.32 295.019 593.703 135.879 43.969 19.568 86.533     

06/18 1329.15 306.455 616.718 141.146 45.673 20.326      

07/18 1212.89 323.905 651.833 149.183 48.274       

08/18 1112.92 232.932 468.758 107.283        

09/18 1156.29 444.816 895.157         

10/18 1500.18 335.000          

 

3.3  Forecast 

To find out how much claim reserves estimation the Swiss Re Group needs to prepare, in particular 
for the motor reinsurance and liability reinsurance, we can see the table below. 

Table 7: Claim Reserves Estimation for Liability Reinsurance 

 Jan-
18 

Feb-
18 

Mar-
18 

Apr-
18 

May-
18 

Jun-
18 

Jul- 
18 

Aug-
18 

Sep-
18 

Oct-
18 

Total 

01/18            
02/18          35 35 
03/18         33 33 66 
04/18        27 30 30 87 
05/18       27 25 28 27 107 
06/18      77 25 23 26 25 176 
07/18     107 71 23 21 24 23 269 
08/18    130 98 65 21 19 22 21 376 
09/18   123 119 90 60 19 18 20 20 469 
10/18  159 113 110 83 55 18 16 18 18 590 

 

Table 8: Claim Reserves Estimation for Motor Reinsurance 

 Jan-
18 

Feb-
18 

Mar-
18 

Apr-
18 

May-
18 

Jun-
18 

Jul- 
18 

Aug-
18 

Sep-
18 

Oct-
18 

Total 

01/18           0 
02/18          3 3 
03/18         1 3 4 
04/18        25 1 4 30 
05/18       9 1 1 4 15 
06/18      10 9 1 1 4 25 
07/18     22 10 9 1 1 4 47 
08/18    53 23 10 10 1 1 4 102 
09/18   163 55 24 11 10 1 1 4 269 
10/18  741 169 57 24 11 11 1 1 5 1020 
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4 CONCLUSION 

According to this research, we can summarize filter particles yang that we have obtained A 
Multivariate Evolutionary Generalised Linear Model Framework with Adaptive Estimation are 
sufficient in detecting loss ratios patterns by development month. However, if we look at the RMSE 
generated for each line of business, the RMSE generated by the GLM Simple Method with the Tweedie 
Family Distribution Approach is smaller than the RMSE generated by the Multivariate Evolutionary 
GLM Framework with Adaptive Estimation so we can conclude that the GLM Simple Method with the 
Tweedie Family Distribution Approach is more suitable for us to use in calculating Swiss Re Group's 
claim reserves, especially for motor reinsurance and liability reinsurance.  
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