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ABSTRACT 

 In this work, a derived derivative-free conjugate gradient method for large-scale symmetric non-
linear equations is proposed. The basic idea of the method combines the Newton’s direction of 
conjugate gradient method and Quasi Newton from the work of Andrei using a standard secant 
equation. The aim is to reduce the number of iterations, the CPU time and function evaluation of 
a given functions. The search direction is obtained using the normal frame of the conjugate 
gradient method via a new non-monotone line-search procedure. The proposed scheme was 
implemented using MATLAB and the computational results for the set of problems show that the 
algorithm substantially outperforms the known conjugate gradient methods by Andrei. The 
derivative-free nature of the proposed method gives it advantage to solve relatively large-scale 
problems by avoiding the computation of Jacobian inverse. The computed parameter 𝛽𝑘  
improved the efficiency of the algorithm by reducing the function values significantly. As 
compared to some existing methods, the numerical results on the given benchmark test problems 
show that the proposed algorithms are practically effective. It is accurate in terms of time of 
computation and valid in terms of number of iterations. Thus, suitable for solving nonlinear 
equations problems. 

Keywords: Conjugate gradient, derivative free, line-search, nonlinear equations, non-
monotone. 

1 INTRODUCTION 

Consider nonlinear equations of the form 

𝐹(𝑥) = 0, 𝐹: 𝑅𝑛  → 𝑅𝑛,                  (1) 

where 𝐹(𝑋) = (𝑓1(𝑋), 𝑓2(𝑋),⋯ , 𝑓𝑛(𝑋))𝑇 ,    𝑋 = (𝑥1, 𝑥2,⋯ , 𝑥𝑛) is continuous on 𝑅 [1]. 

Many problems of the form (1) arises from various applications in mathematics such as differential 
equations, optimization, operations research and so on. Sometimes, effective variational inequalities 
methods for solving unconstrained optimization problems of the form 

min
𝑥∈𝑅

𝑓(𝑥),                   (2) 
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is also effective in solving problems of the form (1) by converting (2) into nonlinear system of 
equations using a penalty function 𝑓(𝑥) = ‖𝐹(𝑥𝑘)‖2

2 . The unconstrained problem (2) can be viewed 
as the nonlinear systems (1) as the first-order optimality condition of the problem (2), where 𝐹(𝑥) is 
the gradient of 𝑓: 𝑅𝑛 → 𝑅 if it exists and 𝑓 is assumed to be continuous and bounded below. Fermat’s 
extremum theorem suggests that if a point 𝑥∗ is the local minimizer of the unconstrained 
optimization problem (2) then problem (1) holds [2]. Thus, studying the iterative algorithms for 
solving nonlinear equations is of great importance. The Newton method is one of the most effective 
method for solving such equations due to its rapid convergence and easy implementation. 
Unfortunately, The Newton method requires the computation of the Jacobian matrix, sometimes it 
fails if the derivatives functions are zero [3,4,5]. The Quasi-Newton method was developed to 
overcome the major shortcomings associated with the famous Newton method. However, it inherits 
the problem of storing 𝑛 × 𝑛 matrices throughout the iteration process, which makes it unsuitable 
for large-scale problems [6]. Many researchers [2, 4, 6, 7], developed crucial approaches to overcome 
the storage problem associated with Quasi-Newton method by developing the matrix-free method. 
The following is the most widely use the search direction 

𝑑𝑘 = −𝐵𝑘
−1𝐹(𝑥𝑘),                  (3) 

with 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘.                   (4) 

In equation (3), the term 𝐵𝑘 represents the exact Hessian matrix ∇2𝑓(𝑥𝑘) in the case of Newton’s 
method while in Quasi-Newton method represents the approximation of the Hessian matrix. The 
approximation of the Hessian matrix 𝐵𝑘, must satisfy the Secant equation as follows: 

𝐵𝑘𝑠𝑘+1 = 𝑦𝑘                    (5) 

where 𝑠𝑘 = 𝑥𝑘+1 − 𝑥𝑘 and 𝑦𝑘 = 𝐹(𝑥𝑘+1) − 𝐹(𝑥𝑘). 

Given an initial starting point 𝑥0  ∈ 𝑅𝑛, popular iterative methods, such as Newton method, Quasi-
Newton method or conjugate gradient method, for solving (2) uses an updating rule defined as in 
equation (4), which is used to generate the updated iterate with different line search, where 𝛼𝑘 and 
𝑑𝑘 denote step size and search direction, respectively.  

In this research, the current work [9] is considered to improve in solving equation (1). The algorithm 
is built on the strategy of derivative free line search technique [10]. However, their algorithm 
requires descent directions with respect to the squared norm of the residual. This means the 
computation of a directional derivative, or its good approximation is required at every iteration. 

In this paper, the sections are organized as follows: section 1 gives the brief introduction of the 
existing problem, section 2 presents the new method and its algorithm based on the modified secant 
equation while in section 3 reports a detailed explanation on a numerical result. Finally, section 4 
reports some concluding remarks and recommendation. 
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2 THE PROPOSED METHOD: MODIFIED NON CLASSICAL CONJUGATE GRADIENT 
PARAMETER (NCCG) 

Consider equation (4), to compute the next iteration 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘, the choice of linesearch 
procedure, which selects the step size 𝛼𝑘 > 0 is required. Also, the selection of the parameter 𝛽𝑘+1 
which determines the next search direction is also required. The parameter 𝛽𝑘+1 can be chosen in a 
variety of ways, [11, 12, 13]. This section presents the non classical conjugate gradient parameter, 
resulted from the following classical direction [9, 14]. Notice that Newton direction for solving (1) is 
given by  

𝑑𝑘+1 = −∇2𝑓(𝑥𝑘+1)
−1𝑔(𝑥𝑘+1).                (6) 

Quasi-Newton method use  

𝑑𝑘+1 = −𝜃𝑘+1𝑔(𝑥𝑘+1) + 𝛽𝑘𝑠𝑘 ,                 (7) 

where 𝑔(𝑥𝑘) = 𝛻𝑓(𝑥𝑘). The line search 𝛼𝑘 is selected along search direction 𝑑𝑘. The scalar 𝛽𝑘 is called 
Conjugate Gradient parameter. The 𝜃𝑘+1 is a parameter in 0 < 𝜃𝑘 < 1. Observe that, if 𝜃𝑘 = 1 then 
(7) becomes steepest decent algorithm and if 𝜃𝑘 = 0, the (7) becomes classical conjugate algorithm 
based on the choice of the scalar parameter 𝛽𝑘. The iterative process is initialized with 𝑥0 and 𝑑0 =
−𝑔0. To develop an algorithm for solving (1), we choose parameter 𝛽𝑘 in equation (7) in such a way 
that 𝑑𝑘+1 satisfy the newton direction. 

 The need to determine the more effective 𝛽𝑘 in (7) is motivated by the work of [9,14]. 

Now, equating (6) and (7) gives 

−∇2𝑓(𝑥𝑘+1)
−1𝑔(𝑥𝑘+1) = −𝜃𝑘+1𝑔(𝑥𝑘+1) + 𝛽𝑘𝑠𝑘,              (8) 

where ∇2𝑓(𝑥𝑘+1) = 𝐽(𝑥𝑘) is the Jacobian of 𝑓 at 𝑥𝑘 

−𝐽(𝑥𝑘)
−1𝑔(𝑥𝑘+1) = −𝜃𝑘+1𝑔(𝑥𝑘+1) + 𝛽𝑘𝑠𝑘.               (9) 

By multiplying both side of (9) with 𝐽(𝑥𝑘) gives 

−𝐽(𝑥𝑘)𝐽(𝑥𝑘)
−1𝑔(𝑥𝑘+1) = −𝐽(𝑥𝑘)𝜃𝑘+1𝑔(𝑥𝑘+1) + 𝛽𝑘𝐽(𝑥𝑘)𝑠𝑘.            (10) 

This can be simplified as 

−𝑔(𝑥𝑘+1) = −𝐽(𝑥𝑘)𝜃𝑘+1𝑔(𝑥𝑘+1) + 𝛽𝑘𝐽(𝑥𝑘)𝑠𝑘.             (11) 

Again, by multiplying both side of (11) with 𝑠𝑘
𝑇 yields 

−𝑠𝑘
𝑇𝑔(𝑥𝑘+1) = −𝐽(𝑥𝑘)𝜃𝑘+1𝑔(𝑥𝑘+1)𝑠𝑘

𝑇 + 𝛽𝑘𝑠𝑘
𝑇𝐽(𝑥𝑘)𝑠𝑘.             (12) 

From the Secant condition  

𝐽(𝑥𝑘)𝑠𝑘 = 𝑦𝑘 .                 (13) 
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Then, from equation (13) 

𝐽(𝑥𝑘)𝑠𝑘 = 𝑦𝑘 → (𝐽(𝑥𝑘)𝑠𝑘)
𝑇 = (𝑦𝑘)

𝑇 = 𝑠𝑘
𝑇(𝐽(𝑥𝑘))

𝑇
,            (14) 

also, 

𝑠𝑘 = 𝐽(𝑥𝑘)
−1𝑦𝑘 → 𝑠𝑘

𝑇 = (𝐽(𝑥𝑘)𝑦𝑘)
𝑇 = 𝑦𝑘

𝑇(𝐽(𝑥𝑘)
−1)𝑇,            (15) 

since it is symmetric, then 𝐽(𝑥𝑘)
𝑇 = 𝐽(𝑥𝑘), therefore equation (12) can be re written as  

−𝑠𝑘
𝑇𝑔(𝑥𝑘+1) = −𝜃𝑘+1𝑔(𝑥𝑘+1)𝑦𝑘

𝑇 + 𝛽𝑘𝑦𝑘
𝑇𝑠𝑘. 

This implies,  

𝛽𝑘𝑦𝑘
𝑇𝑠𝑘 = 𝜃𝑘+1𝑔(𝑥𝑘+1)𝑦𝑘

𝑇 − 𝑠𝑘
𝑇𝑔(𝑥𝑘+1),             (16) 

hence,  

𝛽𝑘 =
𝜃𝑘+1𝑔(𝑥𝑘+1)𝑦𝑘

𝑇−𝑠𝑘
𝑇𝑔(𝑥𝑘+1)

𝑦𝑘
𝑇𝑠𝑘

,               (17) 

with 𝜃𝑘+1 =
𝑠𝑘
𝑇𝑠𝑘

𝑠𝑘
𝑇𝑠𝑘

∈ (0,1)∀,    𝑘 ≥ 0,  𝑠𝑘 = 𝑥𝑘+1 − 𝑥𝑘 and  𝑦𝑘 = 𝑔𝑘+1 − 𝑔𝑘 . 

Thus, 

𝑑𝑘+1 = −𝜃𝑘+1𝑔(𝑥𝑘+1) + 𝛽𝑘
∗𝑠𝑘 ,    𝜃𝑘+1 ∈ (0,1).             (18) 

The scheme will become 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 , where 𝛼𝑘 is determined using  

𝛼𝑘 = 𝑚𝑎 𝑥{𝑠, 𝑟𝑠, 𝑟2𝑠,⋯ },                (19) 

satisfying −𝑔(𝑥𝑘 + 𝛼𝑘𝑑𝑘)
𝑇𝑑𝑘 ≥ 𝜔𝛼𝑘‖𝑔(𝑥𝑘 + 𝛼𝑘𝑑𝑘)‖‖𝑑𝑘‖

2 with 𝑟, 𝜔 ∈ (0,1). 

It is clear that the line search is well defined. 

Thus,  

𝑑𝑘+1 = {
−𝐹(𝑥𝑘+1),                                            𝑘 = 0,

−𝜃𝑘+1𝐹(𝑥𝑘+1) + 𝛽𝑘
∗𝑑𝑘 ,                 𝑘 ≥ 1,

            (20) 

where 𝛽𝑘
∗ =

𝜃𝑘+1𝑔(𝑥𝑘+1)𝑦𝑘
𝑇−𝑠𝑘

𝑇𝑔(𝑥𝑘+1)

𝑦𝑘
𝑇𝑠𝑘

 as defined in equation (17). 

In order to ensure convergence properties and to improve the overall efficiency for new CG 
algorithm. The non monotone line search procedure in [10] is used. They easily guarantee that the 
curvature condition 𝑠𝑘

𝑇𝑦𝑘 > 0 is fulfilled for all 𝑘 , where 𝑠𝑘 = 𝛼𝑘𝑑𝑘 = 𝑥𝑘+1 − 𝑥𝑘  and 𝑦𝑘 = 𝑔𝑘+1 − 𝑔𝑘 . 
Thus, well-suited for our purposes. 
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2.1 Algorithm of Modified Non Classical Conjugate Gradient Parameter (NCCG) 

Step 1. Initializations. Choose the initial point 𝑥0 ∈ 𝑅𝑛, 𝑑0 = −𝑔0 and set 𝑘 = 0.  
Step 2. Compute 𝑔(𝑥𝑘) and the search direction 𝑑𝑘 . 
Step 3. Determine the step size 𝛼𝑘 using the non-monotone line search (19).  
Step 4. Check the stopping condition. If yes, stop, otherwise go to next step. 
Step 5. Update 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘. 
Step 6 Update search direction 𝑑𝑘 using (20).  
Step 7. Set 𝑘 = 𝑘 + 1 and go to Step 2. 

The non-monotone line search used in the algorithm greatly improve the efficiency of the new 
scheme. 

3 RESULTS AND DISCUSSION 

This section presents the numerical experiment of the current research. The research used number 
of iterations (NI), CPU time to complete the process (CPUT) and number of function evaluations 
(‖𝐹(𝑥𝑘)‖) as metrics for the comparison, where the notation, ‖. ‖ denotes the Euclidean norm. The 
experiment gives the role of the parameter 𝛽𝑘

∗ (17) in reducing the number of iterations (NI), the 
number of function evaluations and the CPU time (CPUT) required to solve the problem. The 
performance analysis given by Dolan and Moore [15] is adopted to analyze our findings. A set of 
benchmark problems is represented by 𝑃 be and 𝑆 denotes the set of algorithms. Dolan and Moore 
[15] defined 𝑡𝑝,𝑠 to be the number of iterations, the number of function evaluations or the CPU time 

in seconds (as the case may be) required to solve the problem 𝑝 ∈ 𝑃 by algorithm 𝑠 ∈ 𝑆. Comparison 
of each of the three measures is based on the performance ratio defined by 

𝑟𝑝,𝑠 =
𝑡𝑝,𝑠

min𝑡𝑝,𝑠:𝑠∈𝑆
 .  

The performance profile is given by  

𝜌𝑠(𝜏) =
|{𝑝∈𝑃:log2(𝑟𝑝,𝑠)≤𝜏}|

|𝑃|
.  

The scheme solved some benchmark test problems using different initial starting points with 
different dimensions as contained in Table 1-6. Both algorithms were coded in MATLAB R2017a [16] 
and run on a PC with intel Core (TM) i5-8250u processor with 4 GB of RAM and CPU 1.60 GHZ. The 
dimensions whose ranging from 𝑛 = 10 and 𝑛 = 10,000 are used on a test Problems as in the 
appendix. 

A particular algorithm is said to outperform its counterpart if the number of iterations (NI), CPU time 
(CPUT) to complete the process and/or number of function evaluations is less than that of its 
counterpart. In each of the following Table, the S/N means the serial number of a particular problem, 
Dim represents the dimension, ISP indicates the initial starting point, NI means number of iterations, 
while time to compute a particular problem is denoted as CPUT and the value of function evaluation 
is given by ‖𝐹(𝑥𝑘)‖. The proposed algorithm is denoted as NCCG which means non classical conjugate 
gradient and CCG means the classical conjugate gradient. 
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Table 1: The numerical comparison of NCCG and CCG methods for problem 1 

   NCCG CCG 
S/N Dim ISP NI CPUT ‖𝑭(𝒙𝒌)‖ NI CPUT ‖𝑭(𝒙𝒌)‖ 

1 10 0.2 4 1.130041 8.51× 10−4 6 0.143981 2.30× 10−4 

 100  5 0.004332 1.41× 10−5 6 0.004506 7.28× 10−4 

 1000  5 0.003294 4.47× 10−5 7 0.003664 4.60× 10−4 

 10000  5 0.11432 1.41× 10−4 8 0.022551 2.91× 10−4 

 100000  5 0.340451 4.47× 10−4 8 0.289295 9.21× 10−4 

 10 0.3 6 0.001291 5.90× 10−5 5 0.001763 9.400500 

 100  6 0.001394 1.86× 10−4 6 0.001791 5.94× 10−4 

 1000  6 0.003372 5.90× 10−4 7 0.004359 3.76× 10−4 

 10000  7 0.028916 2.62× 10−6 8 0.032299 2.38× 10−4 

 100000  7 0.308379 8.27× 10−6 8 0.332582 7.52× 10−4 
 

Table 2: The numerical comparison of NCCG and CCG methods for problem 2 

   NCCG CCG 
S/N Dim ISP NI CPUT ‖𝑭(𝒙𝒌)‖ NI CPUT ‖𝑭(𝒙𝒌)‖ 

2 10 0.3 6 0.039174 5.90× 10−5 5 0.002866 9.40× 10−4 

 100  6 0.001288 1.86× 10−4 6 0.001639 5.94× 10−4 

 1000  6 0.002898 5.90× 10−4 7 0.003111 3.76× 10−4 

 10000  7 0.022872 2.62× 10−6 8 0.036739 2.38× 10−4 

 100000  7 0.231628 8.27× 10−6 8 0.257751 7.52× 10−4 

 10 0.4 4 0.001074 8.28× 10−4 5 0.001156 2.58× 10−4 

 100  5 0.001948 2.44× 10−5 5 0.001513 8.17× 10−4 

 1000  5 0.002523 7.73× 10−5 6 0.006202 5.17× 10−4 

 10000  5 0.020067 2.44× 10−4 7 0.017179 3.27× 10−4 

 100000  5 0.247454 7.73× 10−4 8 0.161788 2.07× 10−4 
 

Table 3: The numerical comparison of NCCG and CCG methods for problem 3 

   NCCG CCG 
S/N Dim ISP NI CPUT ‖𝑭(𝒙𝒌)‖ NI CPUT ‖𝑭(𝒙𝒌)‖ 

3 10 0.1 3 0.00138 1.85× 10−4 7 0.05084 6.87× 10−4 

 100  3 0.001256 6.91× 10−4 8 0.001458 8.95× 10−4 

 1000  4 0.002747 1.04× 10−5 10 0.003827 4.54× 10−4 

 10000  4 0.018833 3.31× 10−5 11 0.032131 5.75× 10−4 

 100000  4 0.199151 1.05× 10−4 12 0.356706 7.27× 10−4 

 10 0.6 14 0.001544 8.80× 10−4 11 0.002995 8.97× 10−4 

 100  10 0.002066 6.25× 10−6 13 0.002503 7.87× 10−4 

 1000  10 0.011984 7.78× 10−4 15 0.006531 4.68× 10−4 

 10000  9 0.04547 7.03× 10−6 16 0.045158 6.06× 10−4 

 100000  9 0.48783 4.49× 10−5 17 0.508228 7.69× 10−4 
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Table 4: The numerical comparison of NCCG and CCG methods for problem 4 

   NCCG CCG 
S/N Dim ISP NI CPUT ‖𝑭(𝒙𝒌)‖ NI CPUT ‖𝑭(𝒙𝒌)‖ 

4 10 0.3 89 0.008401 5.32× 10−4 5 0.018059 8.95× 10−4 

 100  90 0.001346 1.34× 10−4 6 0.025939 5.67× 10−4 

 1000  90 0.003513 4.23× 10−4 7 0.059255 3.58× 10−4 

 10000  91 0.034007 9.06× 10−8 8 0.481044 2.27× 10−4 

 100000  91 0.291538 2.87× 10−7 8 5.352658 7.17× 10−4 

 10 0.5 6 0.001167 2.40× 10−5 5 0.001656 8.61× 10−4 

 100  6 0.001423 7.58× 10−5 6 0.002133 5.45× 10−4 

 1000  6 0.003551 2.40× 10−4 7 0.004556 3.44× 10−4 

 10000  6 0.031712 7.58× 10−4 8 0.036236 2.18× 10−4 

 100000  7 0.308359 1.99× 10−6 8 0.37573 6.89× 10−4 
 

Table 5: The numerical comparison of NCCG and CCG methods for problem 5 

   NCCG CCG 
S/N Dim ISP NI CPUT ‖𝑭(𝒙𝒌)‖ NI CPUT ‖𝑭(𝒙𝒌)‖ 

5 10 0.2 11 0.047317 3.37× 10−4 7 0.002663 1.38× 10−4 

 100  12 0.00189 7.05× 10−6 7 0.003266 4.36× 10−4 

 1000  12 0.005069 2.23× 10−5 8 0.00891 1.65× 10−4 

 10000  12 0.044967 7.05× 10−5 8 0.060027 5.23× 10−4 

 100000  12 0.459352 2.23× 10−4 9 0.703779 1.98× 10−4 

 10 0.3 6 0.001542 3.86× 10−5 7 0.001947 1.22× 10−4 

 100  6 0.001832 1.22× 10−4 7 0.002061 3.85× 10−4 

 1000  6 0.00545 3.86× 10−4 8 0.004526 1.46× 10−4 

 10000  7 0.038168 2.49× 10−6 8 0.040112 4.62× 10−4 

 100000  7 0.472431 7.88× 10−6 9 0.423607 1.75× 10−4 
 

Table 6. The Numerical Comparison of NCCG and CCG methods for problem 6 

   NCCG CCG 
S/N Dim ISP NI CPUT ‖𝑭(𝒙𝒌)‖ NI CPUT ‖𝑭(𝒙𝒌)‖ 

6 10 0.7 4 0.00139 1.44× 10−5 5 0.015706 3.92× 10−4 

 100  4 0.001618 4.54× 10−5 6 0.001932 1.48× 10−4 

 1000  4 0.004974 1.44× 10−4 6 0.00477 4.68× 10−4 

 10000  4 0.026852 4.54× 10−4 7 0.041989 1.76× 10−4 

 100000  5 0.303721 2.97× 10−7 7 0.431781 5.57× 10−4 

 10 0.2 7 0.001653 2.80× 10−5 5 0.001909 7.44× 10−4 

 100  7 0.001754 8.86× 10−5 6 0.002076 2.81× 10−4 

 1000  7 0.004562 2.80× 10−4 6 0.005727 8.87× 10−4 

 10000  7 0.040687 8.86× 10−4 7 0.039254 3.34× 10−4 

 100000  8 0.472439 1.07× 10−6 8 0.448025 1.26× 10−4 
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Therefore, after comparing the two algorithms, notice that the new algorithm performs better in 
Problems 1, 2, 4 and 6, as compare to the existing algorithm. While in problems 3 and 5, both the 
algorithms compete remarkably and never failed to converge. The efficiency of the parameter 𝛽𝑘

∗ in 
(20) gives a numerical evidence that it has greatly improve the performance, since it has remarkably 
reduced the number of iterations (NI), CPU time (CPUT) to compute a solution and the value of 
function evaluations ‖𝐹(𝑥𝑘)‖, thereby indicating that the solution obtained is a true approximation 
of the exact solution compared to the existing method. 

Figure 1: Performance profile of NCCG and CCG methods with respect to the number of iterations. 

 

 

Figure 2: Performance profile of NCCG and CCG methods with respect to the CPU time. 
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Figure 3: Performance profile of NCCG and CCG methods with respect to the functions evaluation. 

The performance profile used on numerical results was derived by Dolan and Moore [15] and used 
to plot Figures 1, 2 and 3. Figure 1 gives the performance profiles for the number of iterations for the 
solved problems. In the figure the new algorithms outperformed the existing method when the 𝜏 ≥
0.1. While Figure 2 shows the CPU time of the new algorithms is less than that of its counterpart when 
the value is 𝜏 ≤ 0.2.  Figure 3 shows that the new algorithms outperform the other methods in terms 
of the number of function evaluations when 𝜏 ≥ 0.2. The overall performance is remarkably 
commendable since it solves a higher percentage of the given problems. 

4 CONCLUSION 

In this article, numerical results of the entire work are presented. The performance of the existing 
work in [9] titled CCG and that of our proposal in algorithms NCCG are compared. The comparison 
are in terms of iterations (NI), CPU times (CPUT) and function evaluations. The new parameter 
presented enhanced the overall behavior of the method, in other words, it outperforms the method 
[9] in all the metrics. It proved to be efficient in terms iterations (NI), reliable in terms of CPU time 
(CPUT) and accurate in terms function evaluations when the benchmark test in the appendix are 
used. The line search procedure used preserved the conjugacy conditions of the overall algorithm. 
Thus, making the profiles reveal an appreciable improvement of the efficiency as long as the 
robustness. Therefore, it is recommended for the solution of Non-Linear Equations of the form (1). 
In an effort to verify the effectiveness of the proposed method, an ardent researcher may confirm the 
global convergence result of the proposed method. 
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APPENDIX 

This section presents the test problems used for the numerical experiments. The test problems are 
taken from the Estonian test problem collection [8] and [17]. 

Problem 1. (System of Nonlinear Equations) 

𝐹𝑖(𝑥) = 𝑒𝑥𝑖
2−1 − 𝑐𝑜𝑠(1 − 𝑥𝑖

2) = 0⃗ ;  𝑖 =  1,2,3, . . . , 𝑛. 

𝑥0 = (0.5,0.5,0.5, . . . ,0.5)𝑇 and 𝑥0 = (0.2,0.2,0.2, . . . ,0.2)𝑇 . 
 
Problem 2. (System of 𝑛 Nonlinear Equations) 

𝐹𝑖(𝑥) = (1 − 𝑥𝑖
2) + 𝑥𝑖(1 + 𝑥𝑖𝑥𝑛−2𝑥𝑛−1𝑥𝑛) − 2 = 0⃗ ; 𝑖 = 1,2,3,⋯ , 𝑛. 

𝑥0 = (0.5,0.5,0.5, . . . ,0.5)𝑇 and 𝑥0 = (0.2,0.2,0.2, . . . ,0.2)𝑇 . 
 

Problem 3. (System of n Nonlinear Equations)  

𝐹𝑖(𝑥) = 𝑥𝑖 −  0.1𝑥𝑖+1
2 = 0⃗ ; 𝑖 = 1,2,3, . . . , 𝑛. 

𝑥0 = (0.5,0.5,0.5, . . . ,0.5)𝑇 and  𝑥0 = (0.2,0.2,0.2, . . . ,0.2)𝑇 . 

 
Problem 4.  (System of Non-Smooth Equations)  

𝐹(1) = 𝑥1 ∗ (𝑥1
2 + 𝑥2

2) − 1 = 0⃗ ,

𝐹(𝑖) = 𝑥𝑖 ∗ ((𝑥𝑖−1)
2 + 2𝑥𝑖

2 + 𝑥𝑖+1
2 ) − 1 = 0⃗ ,

𝐹(𝑛) = 𝑥𝑛 ∗ (𝑥𝑛−1
2 + 𝑥𝑛

2) = 0⃗ ,

      

𝑖 =  1,2,3,… , 𝑛. 
Problem 5. (Weber-Werner) 

𝐹1(𝑥) = 𝑥1
2 − 2𝑥1  +  

1

3
𝑥2

3 +
2

3
= 0⃗ , 

𝐹2(𝑥) = 𝑥1
3 − 𝑥1𝑥2 −  2𝑥1 +  0.5𝑥2

2 +  1.5 = 0⃗ . 
 
Problem 6. (Allgower-Georg) 

𝐹1(𝑥) = (𝑥1 − 𝑥2
2)(𝑥1 − 𝑠𝑖𝑛 (𝑥2)) = 0⃗ , 

𝐹2(𝑥) = (𝑐𝑜𝑠 (𝑥2) − 𝑥1)(𝑥2 − 𝑐𝑜𝑠 (𝑥1)) = 0⃗ . 

 

 


