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ABSTRACT

This paper represents the basic and circular vibration isolator in High Frequencies using
Malaysian natural rubber. Rubber material is chosen because it has very high damping to
ensure the sufficient dissipation of vibration energy from the seismic wave. They are two
methods involve in this paper, which are lumped parameter and wave propagation
techniques. The lumped parameter system is developed to represent the baseline model of
laminated rubber-metal spring. Wave propagation model is developed using non-
dispersive rod. The mathematical modeling of laminated rubber-metal spring has been
developed based on the internal resonance, lumped parameter and finite rod model,
respectively. For a conclusion, the mathematical modeling of a prediction of basic and
circular vibration isolator can be as a tool to predict the new trial-error method for
developing new compounding of the vibration isolator in future, respectively.

Keywords: Laminated rubber-metal spring, vibration isolator, Malaysian natural rubber,
internal resonance, transmissibility

1. INTRODUCTION

Rubber bearing has been widely used as an isolator to suppress the level of vibration, especially
in building structures for earthquake protection. It is made from layers of rubber with thin steel
plates between them, and a thick plate located at the top and the bottom of the rubber materials.
These rubber bearings are located between the bottom of a building and its foundation. By
embedding the metal plates, the combination provides better performance in terms of stress
and strain level when a heavy load is applied and prevents a bulging effect in the horizontal
direction [1]. It is also designed to be very stiff and strong for vertical load; therefore, it can
carry the heavy weight of the building. Imbimo and Luca (1998) studied the rubber bearings to
investigate the effect of the shape factor on the stress distributions and stress concentration of
the natural rubber (NR) elastomer subjected to longitudinal load [2].

In this study, the finite element analysis (FEA) approach was used to produce an approximated
solution. The numerical results found in this study were then compared with an analytical
approximated solution. Based on this comparison study, it was found that a beneficial effect of
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the shape factor was higher stress distribution and stress concentration parallel with the
reduction of edge effects. In 2007, this study was followed by other researchers who studied the
use of rubber bearings to support bridges being built as part of new highway construction in
Greece [3-5]. Two samples of rubber bearings were located at the bridge columns. The test
results showed that the stiffness and damping ratio had a good relationship with longitudinal
load as well as the frequency of the horizontal displacement. The total displacement of the
rubber bearings was proportional to the force applied to them. Figure 1.1 shows the dynamic
model proposed by Manos of an isolated bridge structure. It was found that, by employing the
isolation strategy, the superstructure motion was decoupled from the pier’s motion during an
earthquake. The inertia forces could be reduced and at the same the energy was dissipated by
the vibration isolators, which, finally, reduced the acceleration transmitted into the
superstructure.

Bhuiyan (2010) modelled the hysteretic behaviour of rubber bearings under uni-directional
horizontal displacement and constant horizontal compressive load [6]. Three types of bearing
were used in these studies, namely NR bearing, lead rubber bearing and high-damping rubber
bearing. Several experiments were conducted to analyse the performance of the bearings, such
as basic test, multi-step relaxation, cyclic test and simple relaxation. It was found that the NR
bearings gave the best result in terms of the rate-dependent rheology. This represents the
typical shear stress-strain responses of high-damping rubber bearings where the strain rate
dependency of hysteresis occurs.

Most recently, rubber bearings had successfully been applied in construction of Penang Second
Bridge in Penang, Malaysia. Incorporation of the bearings mainly aimed to avoid the effects
arising from the natural environment, such as earthquakes and ocean waves. Figure 1 shows the
overall view of Penang Second Bridge and Figure 2 shows the location of the rubber bearings in
the bridge.

Figure 1. Overall view of Penang second bridge.
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Figure 2. Location of the rubber bearings in Penang second bridge.

The rubber bearings in Penang Second Bridge were designed to shift the fundamental resonant
frequency of the bridge away from earthquake ground motion frequencies. Several studies had
been conducted before, including the quasi-static, static, dynamic and elastomer tests. Based on
the quasi-static and dynamic tests, a rubber-bearing prototype was developed and a bi-
longitudinal test was carried out in the longitudinal direction. Compression-shear tests in
double shear configuration were also conducted to investigate the shear stiffness and damping
ratio. If the results obtained did not meet the standards used for Penang Second Bridge, a new
prototype was developed with new formulations. In the elastomer test, each compound was
tested according to the international standard developed by Lembaga Getah Malaysia (LGM). A
similar trial-error approach was applied where a new compound would be redesigned to ensure
that the requirements were fulfilled.

Therefore, this paper represents the prediction of the basic and circular vibration isolator in
high frequencies using Malaysian NR. At the end of the study, it hopes the prediction can be as a
tool to predict the new trial-error method for developing new compounding of the vibration
isolator, respectively.

2. MODELLING OF LUMPED PARAMETER SYSTEM

Theory of vibration isolator is developed from elastic springs and viscous damping, which is
called a lumped parameter system. This system is presumed to be massless for convenience in
the modelling process.

In this section, the vibration isolator is modelled using a lumped parameter system consisting of
mass, damper and spring components. To assess the vibration isolation performance, the spring
is loaded with a lumped mass M excited together with a harmonic force eF . The rubber is
ideally modelled as a massless component having a constant stiffness k and damping coefficient
c . The embedded plate is treated as a rigid solid mass m without damping and stiffness. The
laminated rubber-metal spring (LR-MS) model is attached to a rigid structure and the
transmissibility is derived. Vertical motion is the only input that taken into account. Here, the
rotational motion is neglected. Figure 3 shows the schematic diagram of the LR-MS model with
one layer of metal plate, which creates a two-degree-of-freedom system.

Two equations of motion can be derived as follows

eFuukuucuM  )()( 2112111  (1)



Mohd Azli Salim, et al./ Prediction of Basic and Circular Vibration Isolator in High…

244

and

0)()( 22121221212  ukuukucuucum  (2)

where, 1u is the displacement of loaded mass and 2u is the displacement of the embedded plate.

Due to a harmonic force, the resulting motion of the system is also harmonic. Substituting
tjUeu  in Eq. (1) and Eq. (2) with U the complex amplitude and  the frequency, the

equations of motion can be expressed in matrix form as





























































00
0

2

1

211

11

211

112 eF
U
U

kkk
kk

ccc
cc

j
m

M
 (3)

or in general form

FUK]CM ~~[ 2   j (4)

whereM is the mass matrix, C is the damping matrix, K is the stiffness matrix, and U~ and F~ are
the vectors of complex displacement amplitude and force, respectively.
The displacements 1u and 2u at each frequency  can therefore be obtained by

FK]CMU -1 ~[~ 2   j (5)

where A-1 indicates the inverse of matrix A.

Figure 3.Mass-damper-spring model of a lumped parameter system.

For the case of the model in Figure 3, the force transmitted to the base structure can be written
as a function of the displacement of the bottommetal layer.
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For an excitation force of unit amplitude 1eF , the transmissibility, i.e. the amplitude ratio of
transmitted force to excitation force, is thus given by

)( 2
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22
22 ckUF

F
FT t
e

t  (6)

For two layers of metal plates inside the rubber blocks (three-degree-of-freedom system), the
mass, damping and stiffness matrices in Eq. (4) are given by
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By observing the structural pattern of the matrices in Eqs. (3), (4) and (7), for N layers of metal
plates, the matrices thus have dimensions of )1()1(  NN and are expressed as
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Figures 4 to 8 plot the transmissibility for different numbers of layers N of embedded metal
plates. The calculation is made assuming the mass of each plate is the same as the loaded mass.
This assumption is important to make the masses of the metal plates are evenly distributed
along the isolators, and the position always remain the same during apply the huge loaded mass
at the top of the isolator. The damping is also assumed to be very small. Peaks indicating
amplification of the injected force to the received structure can be seen at low frequencies, for
example at 10 Hz, which appear at the natural frequencies of the system where length 14.0L
m, outer radius 05.0R m, inner radius 005.0r m, Young’s modulus 4.1E MPa and
density 920 , respectively By embedding more plates in the rubber, the higher the number of
degree-of-freedom and more natural frequencies the system has. Note that the total length of
the isolator for lumped parameter system is kept constant. Therefore, if N number of masses
from metal plates are added, the length of the isolator becomes  1NL , which then reduces
the stiffness of each element of the isolator. In consequence, increases the internal natural
frequencies of the lumped parameter system apart from the fundamental frequency.
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It can be seen that the resonance peaks appear in the isolation frequency area at roughly 20 Hz,
which degrades the isolation performance of the vibration isolators, and it started from four
metal plates, three metal plates and lastly one metal plates, respectively. It is interesting to
observe that the transmissibility curve rapidly decreases with the increase in the number of
embedded metal plates in the natural rubber above 100Hz. It happens because the damping of
the metal plate effect is reversed in the isolation region, and by increasing the damping in the
natural rubber, it was detrimental to the performance in the isolation region.

Additionally, these results are from the lumped parameter modelling in the form of
transmissibility et FF . The transmissibility curve is started at unity at low frequencies
indicating the initial excitation force. Then, the curve is continuously increasing and the highest
peak is located at 10 Hz, and finally it can be seen reduced below unity until 3000 Hz. However,
it is interesting to observe that the transmissibility curve rapidly decreases with the increased
number of embedded metal plates in the rubber above 100 Hz.
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Figure 4. Lumped parameter system without a metal plate.
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Figure 5. Lumped parameter system with a single metal plate.
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Figure 6. Lumped parameter system with two metal plates.
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Figure 7. Lumped parameter system with three metal plates.
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Mohd Azli Salim, et al./ Prediction of Basic and Circular Vibration Isolator in High…

248

Figure 9 shows the schematic diagram of vibration isolators which is presented as a lumped
parameter system. Then, Figure 10 shows the transmissibility results for the lumped parameter
system with and without a metal plate in one plot. This indicates that the lumped parameter
system improves the vibration isolation at high frequency.

Figure 9. Schematic diagram of vibration isolators: D is outer diameter, d is inner diameter and L is total
length of the isolator.
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Figure 10. Combined results for lumped parameter systems.

However, this lumped parameter system model ignores the mass of the rubber which can
contribute to more internal resonances. Besides that, the reason to ignore the mass of the
rubber is because in reality, it is not relevant to compare the isolators mass with the huge
working load, and furthermore the ratio is too small. The width of the rubber layer is neglected
as, at high frequencies when the wavelength is much smaller than the rubber layer thickness,
wave effects from various directions affect the isolation performance.

Additionally, the application of the lumped parameter system in this section was limited to
frequencies less than 3000 Hz due to a lack of versatility, and potentially the performance of the
system. Besides, there are significant limitations for application of four metal plate in structural
applications, where broadband disturbances of highly uncertain nature can be countered. Then,
the wave effect has been highlighted in the classical rubber rod isolator.
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3. WAVE EFFECTS IN VIBRATION ISOLATION

Vibration isolators that can be used in higher frequencies range must have distributed mass,
stiffness and damping. These three properties are important to investigate the dynamic
behaviours of vibration isolators. For the elastic motion of vibration isolators, these dynamic
behaviours merge with resonance behaviour, and finally create various number of frequencies,
and these represent the natural mode of the vibration isolator. Many researchers agree that the
resonance behaviour occurs in vibration isolators due to wave effects, and it is known as
internal resonances [7].

There have been many discussions about this issue and one of the conclusion that can be made
is that internal resonance is determined by several factors such as material properties,
dimensions, boundary conditions, shape, deformation, shear, tension, compression and many
more [8]. In general, the wave effect occurs in heavy and larger vibration isolators. This is
because small vibration isolators only have static stiffness, which does not influence the internal
resonance. When internal resonance occurs in a vibration isolator in some frequency ranges, the
wavelength of the vibration isolator can be measured and can be compared with the original
length of the vibration isolator. Based on previous studies, it can be stated that the wavelength
will decrease when the frequency ranges increase, and it reveals that, in high frequency ranges,
the internal resonance occurs automatically [9-10].

Generally, heavy instruments or machinery in industry operate at high speeds, which
potentially create many problems in terms of vibration level. Vibration isolation is proposed to
be used to avoid the vibration energy being transferred to the environment, especially to
building structures. This situation is crucial during high frequency, and the selection of the
vibration isolation must be done correctly.

To solve this problem, the idea of a finite rod model has been developed to observe the wave
effects in a vibration isolator; it has a simple shape and can also be modelled as an elastic finite
rod [8]. The properties of the finite rod model consist of internal damping and the mass,
depending on the material density. A finite rod model is developed following the distributed
parameter isolator models, which means conventionally it is a single-degree-of-freedom of a
passive vibration isolation system. This model is able to overcome the high frequency ranges
issue because, even if the internal resonances reach high frequencies, the transmissibility of the
finite rod model will not be reduced when the frequency reaches the resonance limit because it
is one of the versatile and adaptable materials. Additionally, it is able to withstand large strains
and can store more elastic energy, besides, it possesses some inherent damping which is given
benefit for the materials when resonance. The bulk modulus of the rubber is high, and it can be
remained to prevent changes in shape and become much stiffer.

From previous investigation, the initial transmissibility of the finite rod model is only 20 dB per
decade, which is less than twice of the massless model. Apart from that, in the finite rod model
the lateral deformation on longitudinal excitation can be avoided. By using this model, it can be
observed that the quantum of amplitude for internal resonances is reduced by decreasing the
frequency ranges. In this model, one simple conclusion has been made, which is that it is
important to know the first few peaks of internal resonance in order to establish the
performance of the vibration isolator, and this is in agreement with the view of a previous
researcher [11].

3.1 Mathematical Modelling of Wave Effects usingWave Propagation Method

Wave-based method has been developed in order to enhance the prediction tools, and also
increase the computational efficiency, thus it can extend the applicability to evaluate and
determine the models in higher frequencies range. Most of the researchers presume that the
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waveguide properties in wave-based method are homogeneous due to the direction of the
travelling wave. It limits the application of the method itself. Analytical approach for non-
homogenous waveguides, such as ducts, acoustic noise, rod, beam and many more cannot be
applied. Therefore, approximation of the wave solution is used along with the generalized
method for one-dimensional waveguides in term of propagation known as wave propagation
method. This method requires the internal reflection wave in order to neglect local changes due
to material and geometrical properties. Additionally, this method is used to derive the
mathematical expressions for natural frequencies and input mobility of finite length waveguides.
Besides, it can be included in the formulation straightforwardly, and the mathematical
expression of the expansion can be used to develop the approximation form of the natural
frequencies for rods and beams.

In the next section, the wave effect is derived using wave propagation method of forced
vibration response for a rod as an example. A formulation in term of propagation and dynamic
stiffness matrix in longitudinal vibration is presented in details.

3.2 Wave Effects in Longitudinal Vibration

There has been increasing interest in investigating the longitudinal vibration [11]. The finite rod
model, also known as the non-dispersive finite rod model, is one of the examples of this elastic
body. Most studies of the longitudinal wave have only been carried out on the longitudinal
direction and have neglected any lateral contraction on expansion of the rod. This theory is an
approximation based on the strength of materials theory. Several studies have produced an
approximation theory and the results can be concluded as being very good if the wavelengths of
the motion are long compared to the rod’s cross-sectional dimension. In addition, plane cross-
sections of the rod remain as a plane and parallel during deformation by the wave propagation
method.

The aim of this section is to evaluate the characteristics of internal resonance in a non-
dispersive finite rod for a single-degree-of-freedom system in a longitudinal direction. Consider
now the isolator as a rubber block forming the shape of a uniform cylindrical block having
length L subjected to an longitudinal force with amplitude eF , as shown in Figure 11.

Figure 11. Uniform non-dispersive finite rod undergoing longitudinal force.
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The longitudinal wave is assumed to propagate along the length of the non-dispersive finite rod,
and for harmonic excitation at frequency  the displacement can be written as

      tjxjkxjktj eBeAeexUtxu ll  , (9)

where A and B are the complex wave amplitudes and the ll ck  is the longitudinal
wavenumber where   jEcl  1 is the longitudinal wave speed with E the Young’s
Modulus and  the density.

Note that damping has been introduced in the Young’s modulus E where  is the damping loss
factor. The impedance at a particular location can be obtained by unrestraining the motion at
which force is applied, but restraining the motion elsewhere.

The point localized impedances at each end of the isolator (at 0x and Lx  ) are
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From Hooke’s Law at 0x where   leFxu  0 , Eq. (9) gives
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where  SjEl   1 is the longitudinal rigidity and S is the cross-sectional area of the non-
dispersive finite rod.

From the boundary condition in Eq. (10) at Lx  when   0Lu yields (Yan, 2007)
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By substituting Eq. (3.13) into Eq. (3.12) yields
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From the boundary condition stated in Eqs. (10) and (11), the displacement at 0x is
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Applying the principle of reciprocity, where 2211 ZZ  , the point impedances in Eq. (10) and Eq.
(11) are thus given by
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The transfer impedance is defined by restraining the location where the force is applied and
unrestraining the other end of the rod. It is written as
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From Eq. (10) and Eq. (11), where   00 u , this yields BA  . Substituting this to Eq. (12)
gives
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Substituting Eq. (20) and Eq. (21) into Eq. (9), the displacement at the end of the isolator i.e. at
Lx  can be given by

     Lk
k
F

ee
jk
F

Lu l
ll

eLjkLjke ll sin
2 


  (22)

Again, from the principle of reciprocity where 1221 ZZ  , the transfer impedance in Eq. (18) and
Eq. (19) is

     Lkj
ESk

Lkj
k

Luj
FZZ

l

l

l

lle

sinsin1221











 (23)
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Note that here the damping is assumed to be very small, i.e. 1 .

The impedance for the non-dispersive finite rod due to longitudinal waves can therefore be
written in matrix form as

 
 

 




















Lk
Lk

Lkj
k

ZZ
ZZ

Z
l

l

l

ll

cos1
1cos

sin2221

1211




(24)

or

 
 

 











Lk
Lk

Lkj
ES

Z
l

l

l cos1
1cos

sin
 (25)

With the stiffness defined as ZjK  , the stiffness matrix from Eq. (24) is therefore

 
 

 























Lk
Lk

Lk
ES

KK
KK

K
l

l

l cos1
1cos

sin2221

1211 
(26)

4. INTERNAL RESONANCE BEHAVIOUR IN RODS

The longitudinal waves of the impedances of 2211 ZZ  and 2112 ZZ  are shown in Figure 12.
These are plotted for length 14.0L m, outer radius 05.0R m, inner radius 005.0r m,
Young’s modulus 4.1E MPa and density 920 , respectively. According to these figures, the
internal resonance waves for both results started at 68 Hz and fluctuated until high frequency
was reached. Two patterns of internal resonance wave occurred in the longitudinal system; one
is from the positive wave and the other one is from the opposite direction. For the impedance
matrix, the wave starts at point 4101 , which represents the impedance value of the system
itself. However, the value of impedance rapidly decreases associated with the increase of
frequency. The fluctuated wave is huge between the range of 68 Hz to 105 Hz and it is slowly
stabilised with the increase of frequency. According to this figure, the internal resonance for the
impedance matrix occurs to a greater degree only at certain frequencies. Besides, it can be seen
that the wave occurred in higher frequencies, when the wavelength of the rod is comparable
with the rod’s length. Thus, the wavelength is inversely proportional to the frequency, and
finally, it is occurred at high frequencies.
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Figure 12. Longitudinal wave for impedance: - 2211 ZZ  , --- 2112 ZZ  .

Figure 13 shows the internal resonance in the stiffness matrix. The starting point of internal
resonance is located at 5107 , where this value represents the total amount of stiffness of the
non-dispersive finite rod in the longitudinal condition. The wave fluctuations start constantly at
68 Hz in a sinusoidal pattern, but the amplitude rapidly decreases with the increase of
frequency. There is a reasonably close relation of the internal resonance pattern between these
two matrices, but from an analytical approach it is totally different.
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Figure 13. Longitudinal wave for stiffness: - 2211 KK  , --- 2112 KK  .

4.1 Distributed Parameter Isolator

As described in previous section, for conventional vibration isolators, in which the mass of
isolator is assumed to be neglected, the information about isolators’ basic guidelines for
designing new isolators is offered. But according to previous researchers, this assumption is not
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valid for higher frequencies because the wavelength of the isolator is long compared to its
actual size. At higher frequencies, the predictions by using massless vibration isolators are no
longer accurate, and finally it will mislead the internal resonances effect. Therefore, the
distributed parameter isolator is introduced which has distributed mass, stiffness and damping
[12-13].

In this section, the distributed parameter isolator undergoing base motion are investigated.
Additionally, the performance of the vibration isolator in isolating the vibration energy
transmitted to the mass is also assessed. In general, distributed parameter isolator models can
be divided into two categories for the purposes of dynamic investigation. The first category can
be derived using second-order partial differential equations (PDEs) and it is called a non-
dispersive isolator, where the wave speed of the isolator is independent of the frequency. The
second category can be modelled using fourth or higher order PDEs and it is known as a
dispersive isolator, and the wave speed is dependent on the frequency range.

The distributed parameter isolator is modelled as a non-dispersive finite rod under longitudinal
vibration and it is called a laminated rubber-metal spring. Figure 14 shows the schematic
diagram of the basic model of the LR-MS. It consists of alternating layers of vulcanized natural
rubber (NR) reinforces by a metal plate. The basic element of LR-MS model is NR layers
laminated in the middle by a metal plate.

Figure 15 illustrates the schematic diagram for a non-dispersive finite rod where the excitation
force eF is generated by applying mass M at the top of the non-dispersive finite rod, and tF is
the transmitted force. The working mass M represents a total mass effect from preload to the
laminated layer and metal plates. The wave effect equation for a one-dimensional element for
the non-dispersive finite rod was derived in Section 3.3 and the equation was represented in
matrix form.

Basically, the impedance method was used more than 10 years ago, and the purpose of the
study is to identify the relationship between electrical-mechanical properties or to simplify the
mechanical system’s formulation.

Figure 14. Basic elements in a laminated rubber-metal spring.
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In this section, the derivation of one-dimensional elements of the non-dispersive finite rod due
to transmissibility plots has been developed. One of the advantage of using this technique is the
possibility to relate the dynamic behaviour of a finite structure or vibration isolators. On the
other hand, this technique is particularly appropriate for highly damped systems and it can
operate well in high frequency range.

Figure 15.Working mass at the top of the non-dispersive finite rod.

4.2 Basic Assumptions of Isolator Model

Basically, the vibration isolator model can also be called as multilayer elastomeric bearings, in
which composite elements consisting of natural rubber or synthetic rubber bonded and
unbonded with metal plates. Additionally, it has the capability to withstand high compressive
loads with some small longitudinal deformations. It is due to large bulk modulus of the rubber,
and also a large shape factor from rubber layers. From literature, elastomeric bearing or isolator
is widely used to isolate a high-rise building from ground-borne noise, prevent bridge from
huge ocean wave and many more. Until today, there are thousands of buildings and bridges use
rubber isolation to protect the vibration energy from earthquake, and most of these rubber
bearings are in circular shape.

Vibration isolator is subjected to a combination of longitudinal loading and lateral displacement
[14]. Then, the steel plate is not given any role in design process and it is generally considered
as a rigid material in vibration isolator. But according to previous research by Ibrahim (2008),
the vibration isolator bonded by metal plates usually has a high shape factor. It has a high ratio
between loaded area to area free to bulge, and finally the applied stress becomes hydrostatic
compression. Additionally, the maximum shear strain of the vibration isolator happens due to
the combinatory effect of the compression loads and also the lateral displacement. Furthermore,
the consistent measurement of the potential fatigue failure of the vibration isolator is also
considered.

Design specification for vibration isolator recognizes these facts and also be considered in the
design process. According to British Standard, an important criterion for design specification is
focusing on the elongation at break of the vibration isolator. Furthermore, the dimension of the
vibration isolator is important criteria in designing high performance isolator. British Standard
has been adopted as a reference document in United State to design vibration isolator.

tF

Working Mass,
M
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Non-
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The British Standard that focuses on designing the vibration isolator is BE 1/76, and it is widely
used as a reference to develop isolator. It expresses simple calculation of approximate theory
for circular, and also for bonded isolator with metal plates in circular shape. However, this
calculation is concentrated on simple analytical modelling in vertical loading. The new version
of British Standard has been produced by adopting BE 1/76 which is called BS5400. In this new
standard, it emphasizes about some assumptions that need to be made in designing the
vibration isolator by using the previous approximate theory. Additionally, it also discusses the
theory of bonded hollow circular vibration isolator.

4.3 Assumptions of the Basic Design

Natural rubber is a nonlinear and viscoelastic materials. To model the natural rubber as a
vibration isolator, there are certain aspects that need to be considered because such modelling
or prediction solution cannot be expressed in the form of nonlinear behaviour of the materials.
According to this possibility, many researchers concluded that, nearly all analyses of vibration
isolator in prediction methods are presumed linear, such as in the analysis of elasticity, isotropic
behaviour and many more [14]. Even by having these assumptions, the prediction methods are
still very difficult to solve for circular bonded vibration isolator. Therefore, some assumptions
have been made by observing the physical reaction.

By considering an axisymmetric bonded vibration isolator (isolator bonded by metal plate at the
middle of vibration isolator) subjected to small excitation force as shown in Figure 16 where eF
is excitation force, L is length, d is inner diameter, and D is outer diameter, then, the following
assumption are made:

i. Vertical axis of deformation is presumed to have a parabolic shape or bulge, but it
does not apply to metal plates.

ii. Any point of the vibration isolator is identified to have a normal stress and,
iii. Horizontal axis for vibration isolator remains as a plane

(a) (b)

Figure 16. Vibration isolator subjected to small excitation force
(a) unbonded by metal plate and (b) bonded by metal plate.

The normal stress of vibration isolator can be expressed by

 xFeyr   (27)
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x

eF

D
d

x

D
d
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Then, for an axisymmetric condition, it requires the shear stresses  x and  y , where both of
the equation represent the shear stress at x- and y-axis, respectively. Then, the displacement in
the circumferential direction is presumed zero, 0U . Another assumption results for radial
displacement can be written as

   



















2

0
21,
L
yxUyxU x (28)

where 0U is the displacement at the middle of vibration isolator.

By considering the equilibrium of element of length, L , then the next assumption is made which
is

dx
dFL e

xy 
2

 (29)

where xy is the shear stress at the vibration isolator bonded with metal plate.

By using the constitutive relation, and then by utilizing the assumption and adopting Eq. (29), a
new equation can be addressed by

 
dx
dF

G
LxU e
8

2

0 (30)

where G is the shear modulus of the vibration isolator.

Then, by taking the dilatational constitutive relationship in Eq. (3.27), the new assumption can
be made and the equation can be written by

 222

2 12121
L
GF

KL
G

dx
dF

xdx
Fd

e
ee (31)

where K is bulk modulus and  is compressive strain and boundary condition is 0eF at the
free surface.

Based on these assumptions, advanced research to study the individual errors had been carried
out by Koh and Kelly methods (Constantinou et al., 1992). Additionally, the prediction solutions
obtained are used to verify the validity of incompressible materials, and it is accepted because
the validity is reasonable and it can be used in designing vibration isolator (Sun and Zhang,
2013; Sun et al., 2014).

4.4 Assumptions of the Circular Vibration Isolators

The prediction solutions for a circular vibration isolator have been recently discussed in
previous section. In this section, it discusses specifically on circular vibration isolators
assumption. It is very important and useful for presentation and discussion in the next section
in order to derive the laminated rubber-metal spring model. Basically, the prediction solution of
circular vibration isolator can be written as [15].
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where 0I is the modified Bessel function, and  248 KGS f , where fS is the shape factor,
and it can be defined as the loaded cross-sectional area divided by the area free to bulge, or in
mathematical expression it can be given as LDS f 4 .

By using the above equations, the shear stress at the bonded interface is derived with the
maximum value of the shear strain,  , and the expression is given by

 
 


0

1

4 I
I

GS
K

 (33)

where 1I is the modified Bessel function of order one.

If the value of  is too small and nearly to incompressible material, the expression in Eq. (33)
can be rewritten as

 






K
GSS 3366 (34)

All of these equations have been verified by BS5400. In fact, the correlation of this assumptions
have been verified with the specification in BE 1/76 and it is shown in Figure 3.16.
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Figure 3.16. The correlation of the assumptions verified in BE 1/76 [15].

5. CONCLUSION

The aims of this paper is to develop the prediction tool for the basic and circular vibration
isolator in high frequencies using the Malaysian natural rubber. At the end of the study, the aim

Maximum shear strain in bonded vibration
isolator in circular shape
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is achieved, which is the prediction tools is developed well. There are two techniques have been
used which are lumped parameter system and wave propagation. The lumped parameters
system basically focused on the baseline model of the vibration isolator which called as LR-MS
in this study. Then, the wave propagation model has been developed using non-dispersive rod
and it was elaborated well in this paper. The mathematical modelling which is a prediction tool
hope it can have helped to predict the new methodology using trial-error method in future for
developing new compounding of vibration isolator.
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