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ABSTRACT

This paper represents the basic and circular vibration isolator in High Frequencies using
Malaysian natural rubber. Rubber material is chosen because it has very high damping to
ensure the sufficient dissipation of vibration energy from the seismic wave. They are two
methods involve in this paper, which are lumped parameter and wave propagation
techniques. The lumped parameter system is developed to represent the baseline model of
laminated rubber-metal spring. Wave propagation model is developed using non-
dispersive rod. The mathematical modeling of laminated rubber-metal spring has been
developed based on the internal resonance, lumped parameter and finite rod model,
respectively. For a conclusion, the mathematical modeling of a prediction of basic and
circular vibration isolator can be as a tool to predict the new trial-error method for
developing new compounding of the vibration isolator in future, respectively.

Keywords: Laminated rubber-metal spring, vibration isolator, Malaysian natural rubber,
internal resonance, transmissibility

1. INTRODUCTION

Currently, there are over 3500 articles discussing the role of the vibration isolators in
dissipating energy, by considering various combinations of restoring and damping forces
applied on the system. Harrison had developed an exact solution for vibratory response called
symmetric system, which consisted of coulomb and viscous damping [1]. Both damping’s were
subjected to a harmonic motion. Then, Ruzicka and Derby created and analysed the extensive
results for vibration isolator systems due to linear stiffness [2]. Based on these two studies, the
magnitude of stiffness required in designing the new vibration isolators had been found and
transmissibility force could be predicted by referring to the resonant amplitudes. Hundal and
Parnes (1979) conducted an experiment by using the same system subjected to base excitation
in 1979.
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Then, in 1990, Nayfah developed passive mechanical vibration isolator consisting of discrete
mass, stiffness, and damping elements [3]. This system was similar to lumped parameter system
and it was discovered that the effectiveness of the vibration isolators was when subjected to a
harmonic excitation in certain frequency ranges. The resonances of the isolator were similar
compared to the previous researches and the level of transmitted force was further reduced [4].
The new design of vibration isolators is needed to increase the performance of the isolator by
shifting the resonance frequency, thus increases the effectiveness of the isolator. But the
problem is come when the vibration isolator need to performance in high frequencies.

To do so, this paper aim to develop and modify the existing vibration isolator which is create by
conventional lumped parameter system to new system, namely as discrete lumped parameter
system. Based on this new system, it hopes can be used to design new vibration isolator that can
perform better and good response in higher frequencies phenomenon.

2. MODELLING OF DISCRETE LUMPED PARAMETER SYSTEM

The development of the discrete lumped parameter system which is adopted from the
conventional lumped parameter system. Additionally, the intention is to break the isolator into
discrete springs and masses to take into account the effect of inertial mass. The distributed mass
is assumed to have total mass equivalent to the mass of the isolator, and the stiffness value is
according to the height of the isolator and based on the value of the overall stiffness from the
isolator. The excitation force eF , transmitted force tF and, finally, displacement u were used in
this system [5-7].

The benchmarking to develop the discrete lumped parameter system is taken from the
distributed parameter isolator model. Figure 1 shows the modified distributed parameter
isolator compared to the discrete lumped parameter system.

(a) (b)

Figure 1. Discrete lumped parameter systems
(a) distributed parameter isolator and (b) discrete lumped parameter system.
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The equation of motion for the discrete lumped parameter system can be given as

11 kuuMFe   (1)

and

1kuFt  (2)

In harmonic motion, both equations of motion in Eqs. (1) and (2) become

11
2 kUMUFe   (3)

and

1kUFt  (4)

where, U is the complex amplitude,  is the frequency, eF is excitation force and tF is
transmitted force.

By referring back to Eq. (3.38), the general transmissibility equation is

e

t
r F

F
T  (5)

By inserting Eqs. (3) and (4) into (5), the transmissibility equation for the single-degree-of-
freedom for the discrete lumped parameter system can be given as

11
2

1

kUMU
kU

Tr 



(6)

By comparing Eq. (3.112) with the transmissibility equations for the single-degree-of-freedom
for impedance and stiffness for the LR-MS model.

Therefore, the previous steps to derive the discrete lumped parameter system can be used in
developing the higher-degree-of-freedom of the system in this section.

2.1 Multi-Degree-of-Freedom

In this section, the multi-degree-of-freedom of the discrete lumped parameter system is
discussed, and the aim is to develop the internal resonance behaviour to be the same as inside
the distributed parameter isolator system. For the two-degree-of-freedom discrete lumped
parameter system, the rubber was divided into two spring elements. However, additionally, the
total value of stiffness remained the same as the stiffness value in the single-degree-of-freedom
system and also the mass of the rubber remains the same. Figure 2 illustrates the schematic
diagram for the two-degree-of-freedom discrete lumped parameter system.

The equations of motion for the systems can be derived as

211 22
ukukuMFe   (7)
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122 22
0 ukukum   (8)

and

22
ukFt  (9)

Figure 2. Two-degree-of-freedom discrete lumped parameter system.

In harmonic motion, Eqs. (7) to (9) become

211
2

22
UkUkMUFe   (10)

122
2

22
0 UkUkmU   (11)

and

22
UkFt  (12)

By simplifying Eqs. (10) and (11), the new equations are given by

21
2

22
UkUMkFe 






   (13)

and

12
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By taking 2U as a reference for 1U , therefore Eq. (14) can be written and then simplified as

2
2

1
22 Um
k

U 





   (15)

Then, to solve Eq. (3.119), Eq. (3.121) is used, and, finally, the new equation becomes

22
22

2
22

2
UkUm

k
MkFe 






 





   (16)

By again taking the transmissibility equation for the two-degree-of-freedom discrete lumped
parameter into the isolator, is given by

22
22

2

2
22

2

2

UkUm
k

Mk

Uk

F
F

T
e

t
r







 





 




(17)

For the three-degree-of-freedom discrete lumped parameter system, the stiffness value was
divided into three parts of spring element and the mass of the rubber was divided into two.
However, the total mass was equivalent to the total mass of the two-degree-of-freedom discrete
lumped parameter system. Figure 3 shows the schematic diagram of the system. Then, the
equation of motion of this system can be given as

Figure 3. Three-degree-of-freedom discrete lumped parameter system.
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233 33
2

2
0 ukukum   (20)

and

33
ukFt  (21)

For harmonic motion, then Eqs. (18) to (21) become

211
2

33
UkUkMUFe   (22)

3122
2

333
2

2
0 UkUkUkUm   (23)

233
2

33
2

2
0 UkUkUm   (24)

and

33
UkFt  (25)

By simplifying Eqs. (22) to (24), the equations are written as

21
2

33
UkUMkFe 






   (26)

312
2

3323
20 UkUkUmk







   (27)

and

23
2

323
20 UkUmk







   (28)

By taking 3U as a reference of 2U , therefore, the new equation can be derived as

3
2

2 32 U
k
mU 





   (29)

On the other hand, from Eq. (27), 2U and 1U can be written as a reference for 3U . After
rearranging the equation, finally, it can be given as

1
2

2
22

3 2
32 UkUmkkU 






   (30)

By substituting Eq. (30) into Eq. (29), the equation can be written as
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1
222

2

2

2
32321

U
mkk

k
m
kU







 





 





(31)

Then, by inserting Eq. (29) into Eq. (31), the equation is become

1
222

2

23
2

2
32321

32 U
mkk

k
m
kU

k
m







 





 









 


 (32)

By simplifying Eq. (32), it can be written as

2

222
3

2

1
2
3232132

k

mkk
k
mU

k
m

U
















 





 






 




(33)

Then, by substituting Eqs. (29) and (33) into Eq. (26), the equation is become

3
2

2

222
3

2

2 32
3

2
3232132

3
U

k
mk

k

mkk
k
mU

k
m

MkFe 





 

















 





 






 







  


 (34)

By simplifying Eq. (34), the equation of excitation force becomes

33
22

3
32

3
UkUm

k
MkFe 






 





   (35)

Therefore, the transmissibility equation of the three-degree-of-freedom discrete lumped
parameter system can be written as

33
22

3

3
32

3

3

UkUm
k

Mk

Uk

F
F

T
e

t
r







 





 




(36)

Then, by dividing into three parts of the rubber mass, and dividing the stiffness into four parts
of spring elements, the system is represented as four-degree-of-freedom discrete lumped
parameter system. However, the total value for stiffness and mass of rubber remained
equivalent compared to the previous system. Figure 4 shows the schematic diagram of the
system. The equations of motion for the system are written below.

211 44
ukukuMFe   (37)

3122 444
2

3
0 ukukukum   (38)

4233 444
2

3
0 ukukukum   (39)
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344 44
2

3
0 ukukum   (40)

and

44
ukFt  (41)

Figure 4. Four-degree-of-freedom discrete lumped parameter system.

Then, in harmonic motion, the equations of motion become

211
2

44
UkUkMUF e   (42)
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2
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2

3
0 UkUkUkUm   (43)

4233
2

444
2

3
0 UkUkUkUm   (44)

344
2

44
2

3
0 UkUkUm   (45)

and

44
UkFt  (46)
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21
2

44
UkUMkFe 






   (47)

312
2

4434
20 UkUkUmk







   (48)

423
2

4434
20 UkUkUmk







   (49)

and

34
2

434
20 UkUmk







   (50)

From Eq. (49), 3U and 4U can be written as a reference for 2U . Therefore, by rearranging the
equation, it then becomes

4
2

3
22

2 3
42 UkUkmkU 






   (51)

By rearranging Eq. (49), and letting 3U be a reference value of 4U , finally, the equation can be
expressed as

3
2

4

34
2

1
4

Umk
kU























(52)

By substituting Eq. (52) into Eq. (51), it gives

3
2

23
22

2

34
2

1
43

42 U
mk

kkUkmkU













































 


 (53)

By inserting Eq. (53) into Eq. (49), then the equation becomes

43
2

23
22

3
2

4
34

2
1

43
42

434
20 UkU

mk
kkUkmkkUmk















































 






 


 (54)

By rearranging Eq. (51), the equation becomes

kmk

UkUU

3
42 22

4
2

2
3




 (55)

By inserting Eq. (55) into Eq. (54), the equation can be written as
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4
22

4
2

2

2
2

22

4
2

222

22

4
2

22

4
3

42
34

2
1

4
...

...

3
423

42
4

3
4234

20

Uk

kmk

UkU
mk

kk

kmk

UkUkmkk

kmk

UkUmk













































































































 














































 









(56)

By dividing Eq. (56) into small group, there are become




























 

kmk

UkUmkG

3
4234

21
22

4
2

22


 (57)




























 

kmk

UkUkmkkG

3
423

42
4

2
22

4
2

222


 (58)






























































kmk

UkU
mk

kkG

3
42

34
2

1
4

3
22

4
2

2

2
2


(59)

and

44
4 UkG  (60)

By substituting Eq. (55) into Eq. (48), the equation can be expressed as





























 

kmk

UkUkUkUmk

3
424434

20
22

4
2

2
12

2


 (61)

By simplifying Eq. (61), the equation is become
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



















































kmk

mk

Uk

kmk

Uk

U

3
168

1
34

2

4
3

168

22

2

1
22

4
3

2






(62)

By inserting Eq. (62) into Eqs. (60) to (59), the equations are becoming














































































 

kmk
Uk

kmk

mk

Uk

kmk

Uk

mkG

3
42

1

3
168

1
34

2

4
3

168

34
21

22
4

2

22

2

1
22

4
3

2








 (63)














































































 

kmk
Uk

kmk

mk

Uk

kmk

Uk

kmkkG

3
42

1

3
168

1
34

2

4
3

168

3
42

4
2

22
4

2

22

2

1
22

4
3

22








 (64)

and
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(65)

By simplified the Eqs. (63) to (65), and then inserting the simplifying group into Eq. (3.162), and
finally transferring the equation into Eq. (47), the excitation force equation is become
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Finally, the transmissibility equation for four-degree-of-freedom discrete lumped parameter
system can be written as follows
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By observing Eqs. (15), (16), (17) and (67), it can be seen that there is a relationship regarding
the pattern of the transmissibility equation for two-degree-of-freedom discrete lumped
parameter system and onwards. However, it is very hard to derive the discrete lumped
parameter system by dividing the mass of rubber at higher number. The general equation of
discrete lumped parameter system for higher-degree-of-freedom can be represented as
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(68)

where N is a number of degree-of-freedom of discrete lumped parameter system.

The working mass M used in this system has the same weight as the previous working mass
used in the LR-MS model and also in the conventional lumped parameter system. Additionally,
the stiffness value for the discrete lumped parameter system was obtained from the stiffness
value of the non-dispersive finite rod. This value is taken because it needs to give the same
stiffness value between the LR-MS model and discrete lumped parameter system, particularly.

All of the transmissibility equations for the discrete lumped parameter system are used again,
and then the transmissibility results are plotted, and, finally, they are compared with the
conventional lumped parameter system and additionally with the LR-MS model results.

3. RESULTS AND DISCUSSION

3.1 Multi-Degree-of-Freedom

Figure 5 shows the comparison results between the single-degree-of-freedom conventional
lumped parameter system and the discrete lumped parameter system, particularly. The natural
frequency for each graph remained at 10 Hz because used the same properties, and the graphs
went below unity. The roll-off rate for the discrete lumped parameter system was recorded at
20 dB per decade, and it was similar to the roll-off rate that was captured in the conventional
lumped parameter system and shown in Figure 6.

Additionally, the comparison results between the discrete lumped parameter system and the
LR-MS model for the single-degree-of-freedom system are illustrated in Figure 6. In contrast,
both results indicate that the natural frequency was placed at approximately 10 Hz. The second
peak (internal resonance start) for the LR-MS model was obtained; however, in the single-
degree-of-freedom discrete lumped parameter system, the second peak did not appear. This
happened because it only has one mass, called working mass [8-9]. This mass only occurs when
the excitation force excites the system, and, finally, the working mass influenced the natural
frequency result.
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Figure 5. Result for single-degree-of-freedom
( : conventional and ----: discrete lumped parameter system).
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Figure 6. Comparison results for LR-0MS
(---: LR-0MS model and : single-degree-of-freedom discrete lumped parameter system).

Figure 7 shows the comparison results between the two-degree-of-freedom discrete lumped
parameter system and the LR-1MS model. The first natural frequency for both graphs remained
at 10 Hz; however, the second natural frequency did not. The second natural frequency for the
discrete lumped parameter system is 150 Hz away from the location of the second natural
frequency of the LR-1MS model. The result for the three-degree-of-freedom discrete lumped
parameter system is shown in Figure 8, with a comparison between it and the LR-2MS model.
The first natural frequency remains at 10 Hz, but the second and third natural frequencies of the
discrete lumped parameter system went far away from the location of the second and third
natural frequencies of the LR-2MS model. However, the position of the second natural frequency
of the discrete lumped parameter system is lower than compared to its position in the previous
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system (by adding a single metal plate to the discrete lumped parameter system), and the
decrease is recorded at 42 Hz.

Then, for the four-degree-of-freedom discrete lumped parameter system, the transmissibility
equation can be referred to at Eq. (61). Figure 9 shows the comparison results between the
discrete lumped parameter system with three metal plates and the LR-3MS model. Like the
previous system, the first natural frequency is located at 10 Hz, but, the second, third and fourth
natural frequencies are located at different positions, but the positions decreased by up to 60 Hz
for the second natural frequency and 23 Hz for the third natural frequency, particularly, when
comparing the results in Figure 6. By using this pattern, it is believed that, by increasing the
number of metal plates [10-11], the second natural frequency, etc., in the lumped parameter
systemwill be located near to the second natural frequency, etc., of the LR-MS system.
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Figure 7. Comparison results for LR-1MS
(---: LR-1MS model and : two-degree-of-freedom discrete lumped parameter system).
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Figure 9. Comparison results for LR-3MS
(---: LR-3MS model and : four-degree-of-freedom discrete lumped parameter system).

3.2 Higher-Degree-of-Freedom

The numerical software was used to derive the excitation force of the discrete lumped
parameter system when dividing higher number of original rubber mass. Figures 10 to 12 show
the results when dividing the mass of rubber into eight parts. The natural frequency for each
graph remained at 10 Hz, and then the graphs went below unity. However, at 900 Hz, the graph
of the discrete lumped parameter system increased and was close to unity, where the peaks
were obtained at 1380 Hz, and, finally, it refrained until the end of the graph. Additionally, this
only occurred at high frequencies. The roll-off rate for the discrete lumped parameter system
was recorded at 20 dB per decade, and it was similar to the roll-off rate that was captured in the
conventional lumped parameter system. In addition, in the discrete lumped parameter system,
this second natural frequency also can be recognized as a first peak of the internal resonance,
and it will be used as an indicator to investigate the vibration performance in future.
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Figure 3.10. Result for Dividing Rubber Mass into 8 parts (Conventional)
(---: conventional and : discrete lumped parameter system).
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A discussion then followed to investigate the wave effect in both systems. It explored several
characteristic lines in the transmissibility results. Additionally, the crossing point also appeared
when both results were plotted in the same graph. Theoretically, all of these characteristic
points were discussed in detail, and Figure 12 shows the characteristics for the discrete lumped
parameter system (dividing rubber mass into eight parts) and LR-MS model.
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Figure 11. Result for dividing rubber mass into 8 parts
(---: LR-MS model and : discrete lumped parameter system).
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Figure 12. Characteristic lines for dividing rubber mass into 8 parts
(---: LR-MS model and : discrete lumped parameter system).

By dividing it into 12 parts, the first and second natural frequencies of the discrete lumped
parameter system are positioned near to the natural frequencies of the LR-1MS model. Figure
13 shows the comparison graph for both systems. Additionally, a third peak appeared, and it
was positioned at the middle of the internal resonance positioning of the LR-1MS model. It is
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believed that it is an internal resonance peak of the discrete lumped parameter system. Then,
Figure 14 shows the characteristic lines of the system.
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Figure 13. Result for dividing rubber mass into 12 parts
(---: LR-1MS model and : discrete lumped parameter system).
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Figure 14. Characteristic lines for dividing rubber mass into 12 parts
(---: LR-1MS model and : discrete lumped parameter system).

This graph pattern was continued by increasing up to 16 parts inside the discrete lumped
parameter system. All of the natural frequencies in this system which are positioned near to the
natural frequencies have been recorded at the LR-2MS model. Then, a fourth peak appeared,
and the positioning is the same as in the previous system, which is located at the centre of the
internal resonance of the LR-2MS model. The result is shown in Figure 15 and then Figure 16
shows the characteristic lines, particularly.

The results after dividing the rubber mass into 20 parts are shown in Figures 17 and 18. Finally,
Figures 19 to 21 show the results when dividing the rubber mass into 32, 41 and 68 parts. The
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first natural frequency for all graphs remained at 10 Hz. For division into 41 parts, the second
natural frequency positioning is near to that of the LR-1MS model, and then, for division into 68
parts, the second and third natural frequencies are located near to those in the LR-2MS model.
Based on the results, it can be seen that the internal resonance peaks for the discrete lumped
parameter system have appeared at high frequencies.

Additionally, the internal resonance peak at the discrete lumped parameter system was greater
for the LR-MS model. This occurred because, in the discrete lumped parameter system, only the
stiffness was taken into account to analyse the transmissibility, and also zero damping was
presumed. According to the sliding point (the graph went far from unity) in the isolation region,
the discrete lumped parameter system was going far away from unity due to frequency
increases. Therefore, the LR-MS model was the better model to investigate the performance of
the vibration isolator, but, on the other hand, the discrete lumped parameter can be used as a
reference point to compare the results in future.
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Figure 15. Result for dividing rubber mass into 16 parts
(---: LR-2MS model and : discrete lumped parameter system).
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Figure 17. Result for Dividing Rubber Mass into 20 Parts
(---: LR-3MS Model and : Discrete Lumped Parameter System).
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Figure 18. Characteristic lines for dividing rubber mass into 20 parts
(---: LR-3MS model and : discrete lumped parameter system).
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Figure 19. Result for dividing rubber mass into 32 parts
(---: LR-MS model and : discrete lumped parameter system).
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Figure 20. Result for dividing rubber mass into 41 parts
(---: LR-1MS model and : discrete lumped parameter system).
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Figure 11. Result for dividing rubber mass into 68 parts
(---: LR-2MS model and : discrete lumped parameter system).

4. CONCLUSION

In this paper, it was discussed the mathematical modelling of passive discrete lumped
parameter system using Standard Malaysian Rubber Constant Viscosity. It means, the passive
vibration isolation performance has been investigated by using basic lumped parameter and
then modified it into discrete lumped parameter system. In conventional lumped parameter
system, the vibration isolator basically was presumed to be a massless isolator. Then, in high
frequencies, the relation showed that the system gives accurate results regarding the isolator
performance. The discrete lumped parameter system model was introduced at higher
frequencies. Then, by comparing the previous isolator performance, and it shown better.
Besides, the trend also similar to conventional model.

In addition, there are two techniques have been used which are lumped parameter system and
wave propagation. The lumped parameters system basically focused on the baseline model of
the vibration isolator which called as LR-MS in this study. Then, the wave propagation model
has been developed using non-dispersive rod and it was elaborated well in this paper. The
mathematical modelling which is a prediction tool hope it can have helped to predict the new
methodology using trial-error method in future for developing new compounding of vibration
isolator.
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