
Proceedings of the International Conference on Man-Machine Systems (ICoMMS)
11 – 13 October 2009, Batu Ferringhi, Penang, MALAYSIA

4B3-1

FPGA configuration on Xilinx ML506 Development
Board Through the USB port in C/HDL

Kushal Sreedhar

Department of Electronics and Communication Engineering
RNS Institute of Technology, Channasandra, Bangalore 560061

kushalsathreya@gmail.com

Abstract- This paper gives a novel yet convenient technique of
configuring a Virtex-5 FPGA device through the Universal
Serial Bus(USB) port. The monotonous parallel port
configuration using JTAG connectors is overcome by USB-port
programming of the FPGA either in C or HDL (Hardware
Description Language). A Xilinx Development platform (ML506
Evaluation platform is considered) consisting of the Field
Programmable Gate Array (FPGA) populated with an SXT
device is initially configured to henceforth being reconfigurable
through the USB on reset/power up. The encrypted configuration
bit stream arriving at the USB port is first accessed by the on-
chip USB Controller operating preferably on a standalone mode.
The data is then loaded on to the Type-I Compact Flash (CF)
storage device (expandable to 8GB) through the System ACE
controller. The System ACE MPU port is connected to the FPGA
which allows the System ACE Controller to access the Compact
Flash Card as a generic FAT File system. The FPGA is finally
configured either in Serial/Select MAP modes through the
dedicated pins. The reason why USB method is more beneficial is
that it is more versatile, and doesn't require JTAG connectors
which are scanty. Also, in areas where FPGA programming is
done more frequently, USB method eliminates the process of
disconnecting and reconnecting the subsequent FPGA boards,
since the USB cable can be permanently connected with the
respective FPGAs. It is faster to program FPGAs in bulk, also
cheaper as the connectors are more costly than the USB cable.

Keywords- Programmable Gate Array, Compact Flash, System
ACE controller, USB host controller, Configurable Logic Block,
JTAG connector, EEPROM.

I. INTRODUCTION

Field Programmable Gate Arrays (FPGAs) are widely used
for rapid prototyping and manufacturing digital systems using
ASIC design [1, 2]. FPGAs are available commercially and
generally exist in two types: SRAM-based and segmented
channel FPGAs [3, 4]. Research in FPGAs has encompassed
many aspects such as technology mapping, routing and
placement [2, 8].

Figure 1. shows the FPGA structure which is built up of
individual blocks like memory, logic, input/output blocks etc.,
woven in a mesh of interconnecting wires. The various blocks
are connected to the wire mesh through switches. Different
wires in the mesh are also connected by switches. In modern

FPGAs, SRAMS or antifuses are used for making the switches
as they are based on the current CMOS technology.

Figure 1. Basic FPGA Structure

In the early 1990’s, interest in yield and fault tolerance by
reconfiguration has been repeated in technical literature [5, 6,
7, 11, 12].

Further, the FPGA is usually configured using a parallel
port connection which incorporates a JTAG connector which
is already provided by the manufacturer. These JTAG
connectors are quite scanty and their usage can be avoided in
applications where the JTAG port is not accessible for
providing external connections.

The objective of this paper is to propose a new methodology
for configuring and reconfiguring the FPGA. Configuration of
the FPGA is very essential to rendering it functional. This
paper adopts a methodology which is based on utilizing the
embedded USB host controller CY7C67300 provided by
CYPRESS [13]. The FPGA used is a Virtex-5 LXT device. It
is mounted on the ML506 evaluation platform populated by an
SXT device [15, 16, 17].

Proceedings of the International Conference on Man-Machine Systems (ICoMMS)
11 – 13 October 2009, Batu Ferringhi, Penang, MALAYSIA

4B3-2

This paper is organized as follows. Section II introduces the
Virtex-5 FPGA and the ML506 development board in detail.
Section III describes the different modes of configuration
made available by the manufacturer on the development board
of interest. Section IV deals with the analysis and it is
followed by Section V which throws light on the configuration
methodology. Conclusions inclusive of the future
enhancement are presented in the last section.

II. OVERVIEW AND BACKGROUND

A. Virtex-5 FPGA
Virtex-5 devices are user-programmable gate arrays with

various configurable elements and embedded cores optimized
for high-performance high-density system designs. The basic
Virtex-5 logic element, illustrated in Fig. 2, is composed
of a 6-input look-up table (LUT), a configurable flip-
flop/latch, and multiplexers to control the combinational
logic output and the registered output (flip-flop/latch
input). Additional dedicated fast carry logic is included to
perform special logic and arithmetic functions. In some slices,
the LUT can be configured as a small RAM, called a
distributed RAM or LUT RAM, or as a shift register [9]. Four
such basic logic elements are grouped to form a slice, and
two slices are grouped to form a complete CLB. has
shown in Fig. 3 [9]. Each CLB is connected by a switch
matrix to local and global programmable routing resources.
The Block Ram Modules provide 36 Kbit true dual port RAM.
These modules are cascadable to form larger memory blocks.
CMT (Clock Management Tiles) provide flexible clocking
resources for the FPGA. These blocks contain two DCM
(Digital Clock Manager) and one PLL block for clock
distribution, delay compensation,clock multiplication/division,
coarse/fine clock phase shifting, input clock jitter filtering
[12].

B. ML506 Development Board
The Xilinx ML506 development Board [15] comes with the
Virtex-5 SXT FPGA which contains extra DSP4E slices, and
can provide high transfer rates/speed-performance on the
Ethernet line. There are numerous ways of configuring the
device, some of which have not been fully developed yet. One

Proceedings of the International Conference on Man-Machine Systems (ICoMMS)
11 – 13 October 2009, Batu Ferringhi, Penang, MALAYSIA

4B3-3

such way is using the USB port for transfer of configuration
file to th FPGA. On ML506 board, this seems possible if we
carefully look at the way in which the System ACE controller
and the USB controller are interfaced. This has been described
in the following text.

B.1. System ACE Controller
This chip was developed by Xilinx for convenience in confi-
guring their FPGAs. It is also a space-efficient, pre-
engineered configuration solution for multiple FPGAs. It
uses Type-I Compact Flash storage device (expandable to 8
GB) or a Microprocessor Interface (MPU) for gathering
configuration data. It contains a built-in JTAG controller and
a JTAG test scanner for configuring the FPGA through JTAG
interface. Figure 3 shows the System ACE chip block
diagram. On ML506 board, a Compact Flash port is provided
for configuration. Additionally, the System ACE controller
also shares data and address lines with the Cypress USB
controller CY7C67300 [13].

B.2. USB Controller
This chip is present on ML506, and is used to control the
peripheral USB ports [18]. It is manufactured by Cypress
[13] for standalone USB devices, with or without a separate
microcontroller, which have recently flooded the electronics
goods market. These devices include USB pen drives, mice
and keyboards, external hard drives, bluetooth devices,
wireless devices, USB modems etc.

Figure 3. System ACE Block Diagram

Figure 4. System Interconnects

It contains a RISC CPU inside it for standalone operation, or
to reduce load on the external CPU.
It can be operated in two prominent modes: Coprocessor mode
and the Standalone mode. In the former, an external CPU
gives high level commands to the internal RISC CPU. The
interfaces can be a 16-bit parallel Host Port Interface (HPI), a
High Speed Serial Interface (HSSI) with about 2M baud rate
or a Serial Peripheral Interface (SPI), slave mode (yielding
upto 2 Mbps transfer rate). In the latter, a firmware has to be
developed for the RISC CPU. The firmware is stored in a 8/16
Kb I2C EEPROM, and the EEPROM is connected to GPIO
[30:31] pins [14] of the controller. In the following Analysis,
it is evident that USB port on the ML506 can be used for the
configuration of the Virtex-5 FPGA.

III. CONFIGURATION MODES

 The Virtex 5 FPGA is configured by loading the
cofiguration file (the bit stream) into the internal memory of
the FPGA. The internal memory is volatile, thus it has to be
configured each time on power up. The memory is in turn
connected to the antifuses inside the FPGA, and thus stores
the connection information for the various wires, logic and
memory blocks, etc. Configuration modes [16] available are:

1. Serial Configuration mode
When FPGA is in master mode, the clock is provided by the
FPGA on CCLK pin. This mode can be used for configuration
using Platform Flash PROM.
The slave mode is generally used while configuring multiple
FPGAs serially on a daisy chain. The clock is provided
externally.

Proceedings of the International Conference on Man-Machine Systems (ICoMMS)
11 – 13 October 2009, Batu Ferringhi, Penang, MALAYSIA

4B3-4

2. Select MAP Configuration
This interface provides a bidirectional 8/16/32 bit data bus to
the configuration logic. The data bus can be used for
configuration and verification of the bit stream loaded to the
configuration logic. In master mode, the FPGA CCLK pin
provides the clock, while in slave mode the CCLK pin acts as
an input pin for the external clock. This interface can be used
for configuration of a single or many devices together (parallel
daisy chain).
3. JTAG/Boundary Scan Configuration
The JTAG standard provides a means to ensure the board-
level integrity of the components and the interconnections
between them. It was developed by ‘Joint Test Action Group’
and is named after the committee. This standard provides
means of transferring data and an integrity check called
boundary scan.
4. Serial Peripheral Interface (SPI) Flash Configuration
In this mode, the FPGA configures itself from an industry-
standard attached SPI serial flash PROM.
5. Byte Peripheral Interface (BPI-up/down) Configuration
This mode is used for configuration through an industry-
standard parallel NOR flash PROM. The FPGA drives 26
address lines to acquire data from the parallel flash.

IV. ANALYSIS

The schematics provided by Xilinx for ML506 board are

given in this section. Figure 4. shows how the System ACE,
USB Controller and the FPGA are connected to each other.
CY7C67300 USB controller is perhaps configured to work in
the HPI mode, which can be deduced from the way the pins
are connected. The WR_B and RD_B signals are also
connected to the FPGA pins R9 and N8 respectively. In HPI
mode, the controller will send an interrupt on the INT pin as
soon as it gets any data from the USB. The CY7C67300 data
sheet [13] can be referred for read cycle timings and other
details of HPI mode.

The System ACE controller can be used in 2 modes
consecutively in two steps to successfully transfer the data
from the USB port to the FPGA. In the first step, it is put in
‘MPU to Compact Flash’ mode, wherein the data is first
stored in the Compact Flash. This will help, because the data
will be available every time the FPGA is restarted, provided
the configuring is done through System ACE. In the second
step, it is put in ‘Compact Flash to JTAG’ mode and reset.
This will automatically transfer the data from Compact Flash
to FPGA.

The control register in System ACE can be changed through
the MPU port. The 3 bits in this register that decide which ace
file is to be loaded are CFGAD-DRBIT[0:2]. Refer System
ACE data sheet for more details [14].
A program should be running on the PC connected through
USB to ML506, listening to identification packets. This
program should be started before giving the configuration
trigger to the FPGA. The program for configuring the FPGA
can be written either using C or a suitable Hardware

Description Language (HDL).

Figure 5. USB to Compact Flash

Figure 6. Compact Flash to JTAG chain

V. CONFIGURATION METHODOLOGY

After an in-depth analysis, we can now arrive at a step-by-step
procedure to successfully configure the FPGA through the
USB port. They are as given under:

 1. A trigger is generated, which tells the program already
running on the FPGA to load the configuration program stored
in Compact Flash. The MPU control register on the System
ACE is set so that the second ace file in CF is loaded (which is
the configuring program). Then a soft reset is given to the
System ACE, which automatically configures the FPGA with
the configuring program.
2. The USB controller chip is enabled, and some identifying
packets are sent through the USB port (data preceded by a
start packet). These packets are caught by the program running
on the PC, and it in turn starts sending the configuration bit
stream through word-long packets.
3. When a word-long packet is received at the USB port, the
controller generates an interrupt, and puts the packet on the

Proceedings of the International Conference on Man-Machine Systems (ICoMMS)
11 – 13 October 2009, Batu Ferringhi, Penang, MALAYSIA

4B3-5

HPI data port.
4. The FPGA checks for the interrupt by USB controller, and
generates the remaining five address bits needed by the
System ACE MPU buffer. This buffer is located at the
addresses 0x20 - 0x3F and can be accessed through the
register DATABUFREG [0:15], 16 bits at a time. Each time
the buffer gets full, MPBRDY pin on System ACE goes high.
When this happens, WR_B pin on the USB controller should
be set high by the FPGA to stop data acquisition. When the
buffer on System ACE is ready, MPBRDY again goes low,
and WR_B also has to be set low to start data acquisition. This
process is described in Figure 6 [14].
5. Steps 3-4 are repeated till all the data is stored. When this
happens, the stop packet will be received to the USB port, sent
by the PC. This should be followed by setting of the control
register on System ACE [14].
6. A soft reset should be given to System ACE again for
loading the newly acquired program. When this is done the
FPGA is automatically configured through JTAG chain as
seen in Figure 6.
The entire configuration process is depicted in the flow chart
given in the Figure 7.

VI. CONCLUSION

In this paper, an innovative approach for configuring the
Virtex-5 FPGA is discussed. Here, the USB port is utilized
effectively in loading the encrypted data bit stream into the
Compact Flash card which configures the FPGA on
reset/power on. This technique can be beneficial in areas
where the FPGAs are required to be reprogrammable more
frequently.
One of the most significant advantages of opting for such a
technique is its ability to support bulk programming. As more
USB ports are available when compared to the parallel ports
on the microprocessor computer system, we have the option of
programming multiple FPGA boards at the same time. For
example, if there is a Fourier Spectrometer which consists of
several identical sections, each containing an FPGA required
to perform similar operation, then there are avenues open to
program all the FPGAs simultaneously. This is indeed a cost
effective solution in terms of time. It is faster to program the
FPGAs in bulk, also cheaper as the connectors are more
costlier than the USB cables. Also, it eliminates the
cumbersome process of disconnecting and reconnecting the
successive FPGA boards, since the USB cable can be
permanently connected to the respective FPGA.
According to the current trend, there will be an increased
support for the USB controllers on future FPGA development
boards as these ports are versatile and faster. Therefore this
methodology should be adopted in configuring the FPGA
which also envisages a realistic enhancement in the
performance of the future development boards.

 N

 Y

 N

 Y

 Y

 N N WAIT

 Y

Figure 8 Flow Chart

IDLE

BIT STUFFING, DATA
ENCRYPTION, LOAD
DATA ON BUS AND

SEND TO MPU

SET MPU,
PACK THE

FIRST FRAME

DATA
TRANSFER
COMPLETE

INTERRUPT
(TRIGGER)

STORE THE DATA
RECEIVED FROM

THE MPU IN CF

LOAD A FRAME FROM CF TO
DATABUFREG (16 BITS)

SET MPBRDY
SET WR_B

MPU=RESET (DISABLE)
SYS ACE=RESET (ENABLE)

ENABLE USB CONTROLLER

ONE FRAME
RECEIVED?

FULL DATA
RECEIVED?

FPGA
CONFIGURED?

A

SYSTEM
RESET/

POWER ON

ENABLE USB
CONTROLLER

DATA SENT
TO CF

THROUGH
USB PORT

A

PACK THE
NEXT FRAME

Proceedings of the International Conference on Man-Machine Systems (ICoMMS)
11 – 13 October 2009, Batu Ferringhi, Penang, MALAYSIA

4B3-6

ACKNOWLEDGMENT

The author would like to thank the reviewers for their
insightful suggestions to make this paper better. In particular,
many thanks to Harshad Sahasrabudhe of BITS, Pilani for his
valuable inputs regarding the USB port programming and Dr.
A A Deshpande of Raman Research Institute for his guidance
and support.

REFERENCES

[1] Chan, P.K. and M.D.F. Schlag, “Architectural Tradeoffs in FPGA-based
Conputing Systems,” Proc. IEEE Workshop for Custon Comp.
Machines, pp. 152-161, 1993.

[2] Brown S., R.J. Francis, J. Rose and Z.G. Vranesic, “Field Programmable
Gate Arrays,” Kluwer Academic Publishers, Boston, Mass. 1992.

[3] Actel Corporation, FPGA Data Book and Design Guide, Sunnyvale,
1994.

[4] Xilinx Inc., Programmable Gate Array Data Book, San Jose, 1991.
[5] Hatpori, F., et all, “Introducing Redundancy in FPGAs,” Proc. IEEE

CICC, pp. 7.1, 1993.
[6] Kelly, J.L and P.A. Ivey, “A Novel Approach to Defect tolerant Design

for SRAM based FPGAs,” Proc. ACM 2nd Int. Work. On FPGAs,
Berkeley, 1994.

[7] Narasimhan, J., K. Nakajima, C.S Rim and A.T Dahbura, “Yield
Enhancement of Programmable ASIC arrays by Reconfiguration of
Circuit Placements,” IEEE Trans on CAD of ICAS, Vol. CAD13, No. 8,
pp. 976-986, 1994.

[8] Green, J., V. Rowchowdury, K. Kaptanoglu and A. El Gamal,
“Segmented Channel Routing,” Proc 27th IEEE/ACM DAC, pp. 567-572,
1990.

[9] Bradley F. Dutton and Charles E. Stroud, “Built-In Self-Test of
 Configurable Logic Blocks in Virtex-5 FPGAs,” Proc. 41st IEEE
 SSST, University of Tennessee, 2009.
[10] Virtex-5 FPGA User Guide, UG190 (v 4.2), Xilinx Inc., San Jose, CA,
 May 2008. Avaliable: www.xilinx.com.
[11] Fawcett, B.K., “Taking Advantage of Reconfigurable Logic,” Proc.
 ACM 2nd Int. Work. On FPGAs, Berkeley, 1994.
[12] Durand, S. and C. Piguet, “FPGA with Self-repair Capabilities,” Proc.

ACM 2nd Int. Work. On FPGAs, Berkeley, 1994.
[13] Cypress, CY7C67300 Data Sheet, www.cypress.com.
[14] Xilinx Inc., System ACE CompactFlash Solution Data Sheet v1.4,

www.xilinx.com.
[15] Xilinx Inc., UG437, ML505/ML506/ML507 Evalaution Platform, User

Guide.
[16] Xilinx Inc., UG191, Virtex-5 Configuration User Guide.
[17] Xilinx Inc., DS100, Virtex-5 Family Overview.
[18] Cherng-Ying Ing and Tzao-Lin Lee, “USB Device Sharing Server for

Office Environment,” Proc. IEEE APSCC, 2008.

