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Abstract-  Brain Machine Interface (BMI) provides a digital link 
between the brain and a device such as a computer, robot or 
wheelchair. This paper presents a BMI design using Neuro-Fuzzy 
classifiers for controlling a wheelchair using EEG signals. EEG 
signals during motor imagery (MI) of left and right hand move-
ments are recorded noninvasively at the sensorimotor cortex. 
Four mental task signals are analyzed and classified to design a 
four class BMI. The proposed classifier has an average classifica-
tion performance of 97%. 
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I.INTRODUCTION 

 
   The brain uses the neuromuscular channels to communi-
cate and control its external environment, however many dis-
orders can disrupt these channels. Motor neuron disorders 
impair the neural pathways and completely paralyses the pa-
tient. This disorder affects nearly ten million people around 
the world. Sometimes the only option for restoring communi-
cative functions to these patients is through a BMI. When 
biological communications channels are damaged, rehabilita-
tion can be provided by digitally linking the brain to an elec-
tronic device.  Electroencephalogram (EEG) and related me-
thods, which have relatively short time constants, are found to 
be suitable in most environments and they also require rela-
tively simple and inexpensive equipment. Through training, 
subjects can learn to control their brain activity in a predeter-
mined fashion that is classified by a pattern recognition algo-
rithm [1]. 
   Studies show that imagination of movement activates 
similar cortical areas and shares similar temporal characteris-
tics as the execution of the same movement [2].  
   Since motor imagery (MI) results in somatotopically or-
ganized activation patterns, mental imaginings of different 
movements can be an efficient strategy to operate a BMI. The 
challenge is to detect the imaginary-related changes in ongo-
ing non-averaged EEG recordings. 
   MI is the most common methodology employed by major-
ity BMI researchers. This can be attributed primarily to the 
purely cognitive nature of these methods as opposed to the 
requirement of stimulus in the P300 and evoked EEG- poten-
tial methods. MI can modify the neuronal activity in the pri-
mary sensorimotor areas in a very similar way as observable 
with real executive movements [3]. With proper training and 

motivation, majority of the subjects can learn to control the 
intensities of specific frequency bands, which can be used as a 
communication or control signal [4].   
    The processing of the EEG within the motor imagery still 
shows open directions; most studies have relied on subjective 
evaluation and not objective confirmation of task performance. 
MI is a dynamic state in which a subject mentally simulates a 
given action [4]. In this paper we  investigate the usability of 
neuro-fuzzy classifiers for designing  a four-class  BMI for 
driving a wheelchair, the four states are relax, forward , left 
and right. The proposed classifier is tested with two features 
sets the conventional band power features and parseval fea-
tures sets. The four MI tasks for the BMI are designed to drive 
a wheelchair in the forward direction, left and right turning 
and finally to stop the wheelchair. Our design approach is dif-
ferent from other BMI designs [5] where foot movement is 
used for forward movement; we propose only left and right 
hand movements for imagining the four states. 
    Chapter 2 provides background information on MI, 
chapter 3 discusses the data configuration, Neuro-Fuzzy clas-
sifier is explained in chapter 4 and results and conclusion are 
presented in chapter 5. 
  

II.BACKGROUND 
 
   MI has been the basis of many brain-to-machine commu-
nication studies.  An increase in cerebral blood flow has 
mainly been located in the supplementary motor area during 
imagination of sequential finger movements, a detailed review 
of MI and direct brain-computer communication is presented 
by Pfurtscheller and Neuper [3]. Cososchi et al [4] present a 
self organizing fuzzy neural network based time series predic-
tion that performs feature extraction for MI signals. Methods 
based on power spectral density has always been a popular 
method for frequency based extracting and classifying EEG 
signals. However the power spectrum was not able to extract 
the distinguishing features.  
    Extraction of autoregressive (AR) coefficients [6, 7] from 
the c3 and c4 electrode signals is used in the classification. The 
results of AR based classification reveal that the method is not 
suitable as features for the data set used because the majority of 
AR analysis assumes the input data is linear and stationery. A 
time-frequency synthesis approach to accommodate individual 
difference and using the spatial patterns derived from the EEG 
rhythmic components as feature descriptors have been pro-



Proceedings of the International Conference on Man-Machine Systems (ICoMMS) 
11 – 13 October 2009, Batu Ferringhi, Penang, MALAYSIA 

 

5B1-2 

posed in [8]. 
    Auto-organizing fuzzy neural networks to classify MI 
signals are proposed in [4]. The network adapts itself to each 
individual’s EEG signals so that very little subject knowledge 
or parameter selection is required. The proposed method has a 
maximum classification accuracy of 82.68%. The authors state 
that the proposed method is suitable for online adaptation be-
cause it can automatically add neurons to accommodate to the 
variations in the EEG data.  
   

III. DATA CONFIGRATION 
 
A. Motor Imagery Paradigm 
    In the synchronous experiments, the paradigm for the 
discrimination of the four mental states, the experimental task 
is to determine either left hand or right hand movement de-
pending on the visual stimulus presented on a monitor. Subject 
is seated in a comfortable chair; the room is not acoustic proof 
but represents a normal room environment with less noise 
similar to home environments where patients are expected to 
use a wheelchair. The subject fixates on a computer 100 cm in 
front of him. During the recordings the subjects are instructed 
not to move and to keep their hands relaxed. The subject per-
forms four MI tasks namely, relax, forward, left and right, the 
relax task is the baseline measurement task, for forward, left 
and right tasks an arrow appears on the monitor. Data is col-
lected for two sessions, each session has five trials per task, 
and each trial lasts for 10s. 
 
MI Task 1 – Relax 
   The subject is asked not to perform any specific task, but 
to relax as much as possible and think of nothing in particular. 
This task is considered the baseline task and used as a stop 
control measure of the EEG. 
 
MI Task 2 – Forward 
   The subject is requested to fixate on the monitor showing 
an up arrow, the subjects were requested to imagine moving 
both arms in a forward direction and the subject is requested 
to hold the thought for ten seconds.  
 
Task 3 – Left  
   The subject is requested to fixate on the monitor showing a 
left arrow, the subjects were requested to imagine moving his 
left hand in the direction of the arrow, and the subject is re-
quested to hold the thought for ten seconds.  
 
Task 4 – Right  
   The subject is  requested to fixate on the monitor show-
ing a right arrow, the subject are requested to imagine moving 
his right hand in the direction of the arrow, and the subject is 
requested to hold the thought for ten seconds.  
 
B.  Acquisition of EEG Data 
    In the EEG experiments 10 volunteer subjects participated. 
An ADI EEG Power Lab amplifier is used in this study. EEG is 

recorded using two gold plated cup electrodes placed at the C3 
and C4 locations on the sensorimotor cortex area as per the 
international 10 -20 electrode placement system [9]. The EEG 
signals are amplified and sampled at 200 Hz. At the time of data 
recording the subjects are free from illness or medication, none 
of the subjects had previous experience with meditation.  
     The raw EEG signals are preprocessed using a band pass 
Chebyshev filter with a pass band of 0.5 Hz to 99 Hz. The 
filtered signals are segmented into 0.5s segments with an 
overlap of 0.25s. Figure 1 to 4 shows the motor imagery signals 
for the four tasks. 
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Fig. 1 MI signal for relax task 
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Fig.2 MI signal for forward task 
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Fig. 3 MI signal for left task 
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Fig.4 MI signal for right task 

 
C. Band power features 
     The EEG is composed of different types of oscillatory 
activities whereby the oscillations in the mu and beta bands are 
particularly important to discriminate between different brain 
states during visual and motor imagery. One possibility to 
select parameters from the ongoing EEG is to estimate the short 
time band power for mu and beta bands. Power of five bands (8 
Hz -10 Hz) (10 Hz -12 Hz) (13 Hz -15 Hz) (16 Hz -18Hz) (19 
Hz -30 Hz) is estimated from each EEG segment. 195 features 
are extracted from each 10s EEG task signal. 
 
D. Parseval Energy Features 

The second feature set is also obtained from the 0.5s EEG 
segments, by extracting the energy density spectrum features 
using the Parseval theorem [10]. The theorem states that 
the consumptive energy of discrete signal is equal to the 
square sum of the spectrum coefficients of the Fourier 
transform in the frequency domain. 39 features are ex-
tracted from a single task signal. 

The two features sets are normalized using a binary nor-
malization algorithm [11] and are used as input for the Neu-
ro-Fuzzy classifier. Figures 5 to 8 show the spectral distribu-

tion of the EEG signal segment for the four tasks. The event 
related desynchronization is clearly visible in the 8 Hz to 30 
Hz band range; the amplitude at the 50 Hz frequency indicates 
the noise due to power lines. 
 

IV. NEURO-FUZZY CLASSIFIER 
  
   A fuzzy inference system is a model that maps input char-
acteristics to input membership functions, input membership 
function to rules, rules to a set of output characteristics, output 
characteristics to output membership functions, and the output 
membership function to a single-valued output or a decision 
associated with the output. Where membership functions are 
chosen arbitrarily and the rule structure is essentially prede-
termined by the user's interpretation of the characteristics of 
the variables in the model. 
   In some modeling situations, one cannot discern what the 
membership functions should look like simply from looking at 
data. Rather than choosing the parameters associated with a 
given membership function arbitrarily, these parameters could 
be chosen so as to tailor the membership functions to the in-
put/output data in order to account for these types of variations 
in the data values. In such cases, a neuro-fuzzy learning tech-
nique can be used. 
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Fig. 5 Spectral distribution of the EEG signal for relax task 
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Fig. 6 Spectral distribution of the EEG signal for forward task 
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Fig. 7 Spectral distribution of the EEG signal for left task 
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Fig. 8 Spectral distribution of the EEG signal for right task 

 
     The neuro-fuzzy learning method works similarly to 
that of neural networks. This learning technique provides a 
method for the fuzzy modeling procedure to learn information 
about a data set. Using a given input/output data set, a fuzzy 
inference system is constructed whose membership function 

parameters are adjusted using either a back propagation algo-
rithm. This adjustment allows the fuzzy system to learn from 
the data that are modeled. 
     The parameters associated with the membership func-
tions changes through the learning process. The computation 
of these parameters (or their adjustment) is facilitated by a 
gradient vector. This gradient vector provides a measure of 
how well the fuzzy inference system is modeling the in-
put/output data for a given set of parameters [12]. When the 
gradient vector is obtained, any of several optimization rou-
tines can be applied in order to adjust the parameters to reduce 
some error measure. This error measure is usually defined by 
the sum of the squared difference between actual and desired 
outputs.  
 

V. RESULTS AND CONCLUSION 
 
    Two classifier models for the two feature sets are mod-
eled for each subject. The Neuro-Fuzzy classifier is trained 
with 80% data and tested with 100% data. The performances 
of the Neuro-Fuzzy models for each of the subjects are evalu-
ated for 10 training rounds. The classification performances of 
the proposed Neuro-Fuzzy classifiers are shown in Table 1 for 
all ten subjects. The average classification performance for ten 
training rounds is shown for both the feature sets. The average 
performance of the classifier for band power features is 
93.25%, while for the parseval features the performance is 
97%. Figure 9 shows the membership functions for an input 
signal, Figure 10 and 11 shows the plot of the output data and 
output versus target data plots respectively. 
      From the results it is observed that the proposed Neu-
ro-Fuzzy classifier provides good classification of the motor 
imagery EEG signals for a four class BMI. Maximum classi-
fication of 100% was observed for some subjects. The per-
formance of the parseval features is observed to be better in 
comparison with band power features. Average classification 
efficiency of 97% is achievable from EEG data collected from 
only 10 trials. Artifacts were not removed from the EEG signal 
which shows the robustness of the proposed algorithm. 
 

TABLE I  
CLASSIFICATION PERFORMANCE OF HE NEURO-FUZZY  

CLASSIFIER FOR 10 SUBJECTS 

Classification Accuracy % 
Subject 

Band Power Features Parseval Features 

1 97.5 97.5 
2 82.5 95 
3 92.5 97.5 
4 97.5 95 
5 87.5 100 
6 97.5 100 
7 97.5 100 
8 90 97.5 
9 90 97.5 

10 100 90 
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Fig.9 Membership function plot for input1 for subject1 
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Fig.10. Plot of the output data for subject 1 
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Fig.11. Plot of the output versus target for subject1 

   The results of the proposed Neuro-Fuzzy classifier are 
comparatively higher to [13] based on classification of mental 
tasks using a fuzzy classifier which has a maximum average 
classification accuracy of 85%. 

Classification can be improved by training the subject to 
control the EEG signals. The output of the Neuro-Fuzzy clas-
sifier can be translated to control the movement of a wheelchair 
which is the focus of our future research. However many issues 
need to be investigated before the practical utility of the method 
can be established. Features used in this work were obtained 
from 0.5s window data, shorter time window has to be con-
sidered and analyzed before the method can be tested for real 
time scenarios. EEG signals have potential applicability be-

yond the restoration of lost movement and rehabilitation in 
paraplegics and would enable normal individuals to have direct 
brain control of external devices in their daily lives. 
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