

IMPROVEMENT OF THE PHOTOVOLTAIC OUTPUT PERFORMANCE USING HYBRID by origin tected to vow v 14r **ACTIVE AND PASSIVE COOLING SYSTEM**

othis item is protection of the contract of th

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

School of Electrical System Engineering UNIVERSITI MALAYSIA PERLIS

2017

UNIVERSITI MALAYSIA PERLIS

	T	
	L	DECLARATION OF <u>THESIS</u>
Author's full name	:	LEOW WAI ZHE
Date of birth	:	27 FEBRUARY 1990
Title	:	IMPROVEMENT OF THE PHOTOVOLTAIC OUTPUT PERFORMANCE USING HYBRID ACTIVE AND PASSIVE COOLING SYSTEM
Academic Session	:	2014-2015
I hereby declare that	the thesi	is becomes the property of Universiti Malaysia Perlis (UniMAP)
and to be placed at th	e library	y of UniMAP. This thesis is classified as:
CONFIDENT	TIAL	{Contains confidential information under the Official Secret
		Act 1972}
RESTRICTE	D	{Contains restricted information as specified by the
	~ ~	organization where research was done}
OPEN ACCE	SS	I agree that my thesis is to be made immediately available as
	•	hard copy or on-line open access (full text)
I, the author, give per	rmissior	n to the UniMAP to reproduce this thesis in whole or in part for
the purpose of resear	ch or ac	cademic exchange only (except during a period of years, if
so requested above).		
0		Certified by:
SIGNATURE		SIGNATURE OF SUPERVISOR
	7-08-552	
(NEW IC NO. /	/ PASSI	PORT NO.) NAME OF SUPERVISOR
Date:		Date:

ACKNOWLEDGEMENT

First of all, I would like to express my deepest gratitude to my supervisor, Dr. Mohd Irwan Bin Yusoff for his unwavering support, comprehensive advice and mentorship throughout this project. His understanding, patience and valuable advice have been the keys to the success of this study. And also, a special thanks goes to my co-supervisors, Dr. Muhammad Irwanto Bin Misrun and Associate Prof. Dr. Muzamir Bin Isa for their supervision during this study.

I would like to extend my thanks to my family members, especially my beloved mother, Tan Mee Nai and my father, Leow Ah Lek because of their understanding and spiritually encouragement to pursue my study. Without their support, I would have not been able to concentrate on my study and endure some tough times over the years.

I would like to thank my teamwork's partner, Amelia Binti Abd Razak for her kind help, patience and valuable advice. I must also acknowledge my graduate friends, Syafinar Binti Ramli, Nur Zhafarina Binti Mohd Odli, Nur Syafiqah Binti Zhubir and Ng Yi Hao for keeps supporting me on this journey. In addition, thanks to all members of Centre of Excellence for Renewable Energy (CERE) who have contributed to my studies. I am very grateful to the Universiti Malaysia Perlis for its support and the award of a scholarship towards the achievement of this study.

othisitem

TABLE OF CONTENTS

	PAGE
THESIS DECLARATION	i
ACKNOWLEDGEMENT	ii
TABLE OF CONTENTS	111
LIST OF TABELS	X
LIST OF FIGURES	xii
LIST OF ABBREVIATIONS	xix
LIST OF SYMBOLS	xxi
ABSTRAK	xxiv
ABSTRACT	XXV
LIST OF TABELS LIST OF FIGURES LIST OF ABBREVIATIONS LIST OF SYMBOLS ABSTRAK ABSTRACT CHAPTER 1 INTRODUCTION 1.1 Background of the Study 1.2 Problem Statement 1.3 Research Objectives	
1.1 Background of the Study	1
1.2 Problem Statement	3
1.3 Research Objectives	5
1.4 Scope of the Research	6
1.5 Contributions of Research	7
1.6 Thesis Organization	8

CHAPTER 2 LITERATURE REVIEW

2.1	Introduction	10
2.2	Effect of Environmental Factors on the PV Panel Performance	12
	2.2.1 Effect of Solar Irradiance	12

	2.2.2	Effect of Ambient Temperature	14
	2.2.3	Effect of Wind Speed	15
	2.2.4	Effect of Dust	16
	2.2.5	Effect of PV Panel Operating Temperature	17
2.3	Heat T	ransfer	19
	2.3.1	Conduction Heat Transfer	20
	2.3.2	Convection Heat Transfer	21
	2.3.3	Convection Heat Transfer Radiation Heat Transfer Ing Medium Gas Cooling Medium Liquid Cooling Medium	23
2.4	Coolin	ng Medium	25
	2.4.1	Gas Cooling Medium	26
	2.4.2	Liquid Cooling Medium	27
	2.4.3	Phase Change Material Cooling Medium	28
2.5	Literat	ure Review of Simulation and Experiment Cooling System	30
	2.5.1	Simulation Method of Cooling System	30
	2.5.2	Experimental Method of Cooling System	33
		2.5.2.1 Air Cooling System	34
		2.5.2.2 Water Cooling System	37
	1 miles	2.5.2.3 Phase Change Material Cooling System	40
2.6	Summ	ary	42

CHAPTER 3 RESEARCH METHODOLOGY

3.1	Introdu	action	43
3.2	Data D	Description of Site Location	46
	3.2.1	Site Description	46
	3.2.2	Weather Data Collections	47

3.3	Simu	lation Setup for PV Panel under Different Weather Conditions	49
	3.3.1	Solar Irradiance Setup	53
	3.3.2	Ambient Temperature Setup	54
	3.3.3	Wind Speed Setup	54
3.4	Simu	lation Setup for PV Panels without and with Cooling Systems	55
	3.4.1	PV Panel without Cooling System	56
	3.4.2	Calculation of the Required Airflow of DC Fan Installed for PV Panel	57
	3.4.3	PV Panel with DC Fan Cooling System	60
		3.4.3.1 Number of DC Fan Installed Setup	64
		3.4.3.2 Different Material of Metal Sheet Setup	66
		3.4.3.3 DC Fans Mounting Position Setup	67
	3.4.4	PV Panel with DC Water Pump Cooling System	69
		3.4.4.1 Inlet Water Velocity Setup	72
		3.4.4.2 Inlet Water Temperature Setup	72
	3.4.5	PV Panel with Paraffin Wax Cooling System	73
	3.4.6	PV Panel with Hybrid DC Water Pump and Paraffin Wax Cooling System	77
	3.4.7	PV Panel with Hybrid DC Water Pump and DC Fan Cooling System	80
3.5	Expe	rimental Setup of PV Panel for Outdoor Measurement	83
	3.5.1	Experimental Setup for PV Panel under Different Weather Conditions	84
		3.5.1.1 Dust Measurement Setup	85
		3.5.1.2 Wind Measurement Setup	86
	3.5.2	Automatic Controller System Design for Cooling System	87
	3.5.3	Experimental Setup for Different Numbers of DC Fan Installed in the DC Fan Cooling System	90

	3.5.3.1	Determinant of the Required Airflow of DC Fan by Calculation	90
	3.5.3.2	Determinant of the Number of DC Fan Installed by Experiment	90
3.5.4	-	nental Setup for Different Water Tank Storage in DC Pump Cooling System	93
3.5.5	-	nental Setup for PV Panels with Various Types of System	96
	3.5.5.1	Experimental Setup for PV Panel with DC Fan Cooling System	98
	3.5.5.2	Experimental Setup for PV Panel with DO Water Pump Cooling System	99
	3.5.5.3	Experimental Setup for PV Panel with Paraffin Wax Cooling System	99
	3.5.5.4	Experimental Setup for PV Panel with Hybrid DC Water Pump and Paraffin Wax Cooling System	101
	3.5.5.5	Experimental Setup for PV Panel with Hybrid DC Water Pump and DC Fan Cooling System	102
Summ	ary	protected a company a protected a company a protected a company a comp	103

CHAPTER 4 RESULTS AND DISCUSSIONS

3.6

4.1	Introdu	iction	104
4.2	The W	eathers Data Collection in CERE, Kangar, Perlis, Malaysia	104
	64.2.1	Average Daily Solar Irradiance in the Year 2014	105
	4.2.2	Average Daily Ambient Temperature in the Year 2014	106
	4.2.3	Average Daily Wind Speed in the Year 2014	107
	4.2.4	The Selected Day of Solar Irradiance, Ambient Temperature and Wind Speed for 2014	109
4.3		tion Results of the PV Panel Thermal Behaviour under ent Weathers Condition	110
	4.3.1	The effect of Solar Irradiance on PV Panel's Performance	110

	4.3.2	The effect Performation	et of Ambient Temperature on PV Panel's nce	113
	4.3.3	The effec	t of Wind Speed on PV Panel's Performance	114
4.4		ntion Resu th Cooling	lts for Thermal Behaviour of the PV Panel without systems	118
	4.4.1	Thermal	Behaviour of PV Panel without Cooling System	118
	4.4.2	Thermal	Behaviour of PV Panel with DC Fan Cooling System	120
		4.4.2.1	Determinant of the Number of DC Fan Installed	120
		4.4.2.2	Effect of Different Metal Sheet on the PV Panel's Performance	123
		4.4.2.3	Effect of DC Fans Mounting Position on the PV Panel's Performance	125
	4.4.3	Thermal System	Behaviour of PV Panel with DC Water Pump Cooling	127
		4.4.3.1	Effect of Inlet Water Velocity on the PV Panel's Performance	127
		4.4.3.2	Effect of Inlet Water Temperature on the PV Panel's Performance	130
	4.4.4	Thermal System	Behaviour of PV Panel with Paraffin Wax Cooling	133
	4.4.5		Behaviour of PV Panel with Hybrid DC Water Pump affin Wax Cooling System	135
	4.4.6		Behaviour of PV Panel with Hybrid DC Water Pump Fan Cooling System	137
4.5	Experi	mental Re	sults of PV Panel for Outdoor Measurement	139
	4.5.1	Experin Conditio	nental Results of PV Panel under Different Weather	139
		4.5.1.1	Effect of Dust on PV Panel's Performance	139
		4.5.1.2	Effect of Wind on PV Panel's Performance	143
	4.5.2	-	nental Results for Different Numbers of DC Fan I in DC Fan Cooling System	147

	4.5.3	-	nental Results for Different Water Tank Storage in DC Pump Cooling System	152
	4.5.4	-	nental Results for Various Types of Cooling System on Panel Performance	158
		4.5.4.1	Performance of PV Panel with DC Fan Cooling System	159
		4.5.4.2	Performance of PV Panel with DC Water Pump Cooling System	165
		4.5.4.3	Performance of PV Panel with Paraffin Wax Cooling System	171
		4.5.4.4	Performance of PV Panel with Hybrid DC Water Pump and Paraffin Wax Cooling System	177
		4.5.4.5	Performance of PV Panel with Hybrid DC Water Pump and DC Fan Cooling System	182
	4.5.5		ion of Cooling System Efficiency based on Simulation, ental and Economical Results	188
		4.5.5.1	Comparison of the Simulation Results for Various Types of Cooling System	188
		4.5.5.2	Comparison of the Experimental Results for Various Types of Cooling System	190
		4.5.5.3	Economic Aspects for Various Types of Cooling System based on Experimental Results	198
4.6	Summ	nary		205
		2		
СНАР	FER 5	CONCLU	USIONS AND RECOMMENDATION	
5.1	Concl	usion		206
5.2	Recon	nmendatio	on and Future Work	208
REFEI	RENCF	ES		210

APPENDIX A List of Publications **APPENDIX B** List of Awards

APPENDIX C	Specification of Selected PV Panel (SNM-100P)	226
APPENDIX D	Calculation of the Required Air Flow for Simulation Method	227
APPENDIX E	Calculation of the Required Air Flow for Experimental Method	229
APPENDIX F	Specification of DC Fan	231
APPENDIX G	Specification of DC Water Pump	232
APPENDIX H	Calculation of Maximum Output Power Corrected for PV Panels	233
APPENDIX I	Payback Period of 1 kW of PV Application System	235

r ication Syste othis teenis protected by original constraints

LIST OF TABLES

NO.		PAGE
2.1	Typical values of convection heat transfer coefficients	23
2.2	Physical constants of different cooling medium	26
2.3	Summarized the previous simulation method of the cooling system	32
2.4	Summarized the previous experimental method of the air cooling system	35
2.5	Summarized the previous experimental method of the water cooling system	38
2.6	Summarized the previous experimental method of the phase change material cooling system	41
3.1	The specification of the DAVIS Vantage Pro2 weather station	48
3.2	Material properties of each layer in a PV panel	50
3.3	Coefficients of convective heat transfer for varying wind speed	55
3.4	Material properties each layer of PV panel	61
3.5	Thermo-physical properties for Rubitherm 35	75
3.6	The operation of automatic controller system to switch ON or OFF the cooling system	89
4.1	Performance improvement of PV panels with different numbers of DC fan	122
4.2	Output power improvement of PV panels with different numbers of DC fan	151
4.3	Comparison of the output performance between proposed DC fan cooling system prototypes and previous researchers	164
4.4	Comparison of the output performance between proposed DC water pump cooling system prototypes and previous researchers	170
4.5	Comparison of the output performance between proposed paraffin wax cooling system prototypes and previous researchers	176
4.6	Comparison of the output performance between proposed hybrid methods of cooling system prototypes and previous researchers	187

4.7	The average operating temperature of PV panels reduction by using various types of cooling system	189
4.8	The average improvement performance of PV panels by using various types of cooling system	195
4.9	The average net output power improvement of PV panels by using various types of cooling system	197
4.10	Installation costs for each of the cooling systems and the cost of the automatic controller system	199
4.11	Installation cost of 1 kW of PV application system	201
4.12	Payback period of 1 kW of PV application system	203
4.13	Summarised the results of simulation, experimental and economical	204

erineria and

LIST OF FIGURES

NO.		PAGE
2.1	Supply of renewable energy consumption in Malaysia, 2012	11
2.2	Effect of solar irradiance on the I-V curve	13
2.3	Conduction, convection and radioactive heat loss from the PV panel	20
2.4	The classification of PCM	28
2.5	The classification of PCM The phase change of a PCM General flowchart of research methodology	29
3.1	General flowchart of research methodology	44
3.2	CERE in Kangar, Perlis, Malaysia	46
3.3	DAVIS Vantage Pro2 Weather Station consists of (a) Integrated Sensor Suite (ISS) and (b) Console	48
3.4	PV panel created by using CATIA	51
3.5	PV panel was meshing using ANSYS	52
3.6	Four units of LM35 temperature sensors attached to the surface of PV panel	53
3.7	PV panel without cooling system model	56
3.8	Steps of determining required airflow of DC fan in DC fan cooling system	59
3.9	Sketch geometry model of the PV panel with DC fan cooling system	61
3.10	Airflow circulation for the DC fan cooling system	62
3.11	LM35 temperature sensors attached at backside of geometry model	63
3.12	Different numbers of DC fans have been arranged in good proportion on the surface of the metal sheet	65
3.13	DC fan cooling system with different material of metal sheet	67
3.14	Four different positions of the DC fans	68
3.15	Sketch of the geometry model of PV panel with DC water pump cooling system	70

3.16	LM35 temperature sensors attached at surface of PV panel with DC water cooling system	71
3.17	Sketch of the geometry model of PV panel with paraffin wax cooling system	74
3.18	LM35 temperature sensors attached at surface of PV panel with paraffin wax cooling system	76
3.19	Sketch of the geometry model of PV panel with hybrid DC water pump and paraffin wax cooling system	78
3.20	LM35 temperature sensors attached at surface of PV panel with hybrid DC water pump and paraffin wax cooling system	79
3.21	Sketch of the geometry model of PV panel with hybrid DC water pump and DC fan cooling system	81
3.22	LM35 temperature sensors attached at surface of PV panel with hybrid DC water pump and DC fan cooling system	82
3.23	Schematic diagram of the experimental setup	83
3.24	(a) PV panel covered by heavy layer of dust accumulation and (b) PV panel with clean surface	85
3.25	Experimental setup for (a) PV panel without wind and (b) PV panel with wind	86
3.26	Operation of the automatic controller system	88
3.27	Prototype of the automatic controller system	88
3.28	Different numbers of DC fan have been installed in the experimental setup	91
3.29	The construction of the DC fan cooling system	92
3.30	PV panels with different amount of water tank storage	94
3.31	Water is sprayed using nozzles mounted on the upper side of the PV panel	95
3.32	(a-b) Six units of PV panels without and with different cooling systems	97
3.33	Two units of DC fan attached at the backside of PV panel	98
3.34	PV panel with DC water pump cooling system	99
3.35	PV panel with paraffin wax cooling system	100

3.36	PV panel with hybrid DC water pump and paraffin wax cooling system	101
3.37	PV panel with hybrid DC water pump and DC fan cooling system	102
4.1	Average daily solar irradiance during the year 2014	105
4.2	Average PSHs during the year 2014	106
4.3	Average daily ambient temperature during the year 2014	107
4.4	Average daily wind speed during the year 2014	108
4.5	Weather conditions versus time throughout 14 th March 2014	109
4.6	PV panel operating temperature versus time under different solar irradiance	111
4.7	Effect of solar irradiance on temperature distribution of the PV panel	112
4.8	PV panel operating temperature versus time under different ambient temperature	113
4.9	Effect of ambient temperature on temperature distribution of the PV panel	115
4.10	PV panel operating temperature versus time under different wind speed	116
4.11	Effect of wind speed on temperature distribution of the PV panel	117
4.12	Operating temperature of PV panel without cooling system versus time	118
4.13	Thermal image of the PV panel without cooling system	119
4.14	Operating temperatures of PV panels with variation numbers of DC fan	120
4.15	Thermal images of PV panels with different numbers of DC fan	121
4.16	Operating temperature of PV panels with DC fan cooling system (aluminum sheet and zinc sheet) versus time	123
4.17	Thermal images of the PV panels with DC fan cooling system (aluminum sheet and zinc sheet)	124
4.18	Operating temperature of PV panels with different positions of DC fans	125
4.19	Thermal images of PV panels with different positions of DC fans	126

4.20	Operating temperature of PV panels under different inlet water velocity	127
4.21	Outlet water temperature at different inlet water velocity	128
4.22	Thermal images of PV panels with different inlet water velocity	129
4.23	Operating temperature of PV panels under different inlet water temperature	130
4.24	Outlet water temperature at various inlet water temperature	131
4.25	Thermal images of PV panels with different inlet water temperature	132
4.26	Operating temperature of PV panels without and with paraffin wax cooling system	133
4.27	Thermal image of the PV panel with paraffin wax cooling system	134
4.28	Operating temperature of PV panels without and with hybrid DC water pump and paraffin wax cooling system	135
4.29	Thermal image of the PV panel with hybrid DC water pump and paraffin wax cooling system	136
4.30	Operating temperature of PV panels without and with hybrid DC water pump and DC fan cooling system	137
4.31	Thermal image of the PV panel with hybrid DC water pump and DC fan cooling system	138
4.32	Solar irradiance and ambient temperature versus time	139
4.33	Operating temperature of PV panels without and with dust	140
4.34	Thermal images of PV panels without and with dust	141
4.35	Output power of PV panels without and with dust	142
4.36	Weather conditions versus time throughout the test day	143
4.37	Operating temperature of PV panels without and with wind throughout test day	144
4.38	Thermal images of PV panels (a) without wind and (b) with wind	145
4.39	Output power of PV panels without and with wind	146
4.40	Weather conditions versus time on 11 th January 2016	147
4.41	Operating temperature of PV panels without and with different numbers of DC fan	148

4.42	Thermal images of PV panels with different numbers of DC fan	149
4.43	Output power of PV panels without and with different numbers of DC fan	150
4.44	Weather conditions versus time on 18 th February 2016	153
4.45	Operating temperature of PV panels with different water tank storage	154
4.46	Thermal images of PV panels with different water tank storage	155
4.47	Inlet water temperature at different water tank storage	156
4.48	Outlet water temperature at different water tank storage	156
4.49	Output power of PV panels with different water tank storage	157
4.50	Solar irradiance and ambient temperature versus time	158
4.51	Operating temperature of PV panels without and with DC fan cooling system	159
4.52	Thermal images of PV panels without and with DC fan cooling system	160
4.53	Output voltage of PV panels without and with DC fan cooling system	161
4.54	Output current of PV panels without and with DC fan cooling system	162
4.55	Output power of PV panels without and with DC fan cooling system	163
4.56	Operating temperature of PV panels without and with DC water pump cooling system	165
4.57 🕜	Thermal images of PV panels without and with DC water pump cooling system	166
4.58	Output voltage of PV panels without and with DC water pump cooling system	167
4.59	Output current of PV panels without and with DC water pump cooling system	168
4.60	Output power of PV panels without and with DC water pump cooling system	169
4.61	Operating temperatures of PV panels without and with paraffin wax cooling system	171

4.62	Thermal images of PV panels without and with paraffin wax cooling system	172
4.63	Output voltage of PV panels without and with paraffin wax cooling system	173
4.64	Output current of PV panels without and with paraffin wax cooling system	174
4.65	Output power of PV panels without and with paraffin wax cooling system	175
4.66	Operating temperature of PV panels without and with hybrid DC water pump and paraffin wax cooling system	177
4.67	Thermal images of PV panels without and with hybrid DC water pump and paraffin wax cooling system	178
4.68	Output voltage of PV panels without and with hybrid DC water pump and paraffin wax cooling system	179
4.69	Output current of PV panels without and with hybrid DC water pump and paraffin wax cooling system	180
4.70	Output power of PV panels without and with hybrid DC water pump and paraffin wax cooling system	181
4.71	Operating temperature of PV panels without and with hybrid DC water pump and DC fan cooling system	182
4.72	Thermal images of PV panels without and with hybrid DC water pump and DC fan cooling system	183
4.73	Output voltage of PV panels without and with hybrid DC water pump and DC fan cooling system	184
4.74	Output current of PV panels without and with hybrid DC water pump and DC fan cooling system	185
4.75	Output power of PV panels without and with hybrid DC water pump and DC fan cooling system	186
4.76	Operating temperature of PV panels without and with various types of cooling system	189
4.77(a)	Thermal images of PV panels without and with cooling systems	191
4.77(b)	Operating temperature of the PV panels without and with cooling systems	192
4.77(c)	Output voltage of the PV panels without and with cooling systems	192
4.77(d)	Output current of the PV panels without and with cooling systems	193

othis tern is protected by original copyright

LIST OF ABBREVIATIONS

1-D	One-dimensional
2-D	Two-dimensional
3-D	Three-dimensional
AC	Alternating Current
ADC	Analog-to-Digital Converter
Avg.	Average Building-integrated Photovoltaic
BIPV	Building-integrated Photovoltaic
CAD	Computer-Aided Design
CATIA	Computer Aided Three-dimensional Interactive Application
CERE	Centre of Excellence for Renewable Energy
CFD	Computational Fluid Dynamic
CFM	Cubic Feet Meter
DC	Direct Current
EVA	Ethylene Vinyl Acetate
FiT HCPV	Feed-in Tariff
HCPV	High-Concentration Photovoltaic
IEC	International Electrotechnical Commission
E	East
Ν	North
NIL	Not In List
ISS	Integrated Sensor Suite
LCD	Liquid Crystal Display
MAT	Maximum Allowable Temperature
Max	Maximum

Min	Minimum
OpenFOAM	Open Source Field Operation and Manipulation
РСМ	Phase Change Material
PN	P-type and N-type
PSH	Peak Sun Hour
PV	Photovoltaic
PV/T	Hybrid Photovoltaic/Thermal
PVC	Hybrid Photovoltaic/Thermal Polyvinyl Chloride Ringgit Malaysia Solar Energy Centre
RM	Ringgit Malaysia
SEC	Solar Energy Centre
STC	Standard Test Condition
UniMAP	Universiti Malaysia Perlis
othistemis	Universiti Malaysia Perlis

LIST OF SYMBOLS

W	Watt
kWh/m ²	Kilowatt hour per metre square
kWh	Kilowatt hour
MW	Megawatt
GW	Gigawatt
W/m^2	Watt per metre square
I-V	Current and voltage
kW	Watt per metre square Current and voltage Kilowatt Surface area of the PV panel Meter square Millmeters per hour
Α	Surface area of the PV panel
m ²	Meter square
mm/hr	Millmeters per hour
m/s	Metre per second
Q	Heat transfer rate
K	Thermal conductivity
W/(m ·℃)	Watts per meter-degree Celsius
$W/(m \cdot C)$ C/m T_H	Degree Celsius per meter
	Temperature of hot surface
	Temperature of the cold surface
ΔT	Difference between hot and cold temperature
Δx	Thickness of the panel
h	Coefficient of convective heat transfer
T_S	Operating temperature of PV panel surface
T_{f}	Temperature of fluid
ν	Wind speed
μm	Micrometre

Р	PV panel produced as heat
σ	Stefan-Boltzmann
3	Emissivity
T_{PV}	Operating temperature of PV panel
T _{amb}	Ambient temperature
J/kg °C	Joule/Kilogram-degree Celsius
kg/m ³	Kilogram per cubic meter
m^2/s	Metre squared per second
cm	Centimetre
m	Metre
C	Metre squared per second Centimetre Metre Degree Celsius
% / °C	Percentage per degree Celsius
%	Percentage
Q_{conv}	Amount of convection heat transfer
<i>ṁ</i>	Mass flow rate
C _P	Specific heat capacity
T _{film}	Film temperature
p tot	Density
p P _{maxcorrected}	Corrected output power of the PV panels according to the temperature coefficient
$P_{max_{stc}}$	Maximum output power under STC
γ	Maximum output power temperature coefficient
L/h	Liter/hour
kg/l	Kilogram per liter
V	Voltage
А	Current
kJ/kg	Kilojoule per kilogram

kJ/kg ℃	Kilojoule per kilogram degree Celsius
kW	Kilowatt
eV	Electron volts
η	Refractive index

othis item is protected by original copyright