

EFFECTS OF FILLER CONTENT AND VARIOUS COUPLING AGENTS ON PROPERTIES OF POLYPROPYLENE/COCOA POD HUSK BIOCOMPOSITES

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

School of Materials Engineering UNIVERSITI MALAYSIA PERLIS

2015

UNIVERSITI MALAYSIA PERLIS

	DECLARATION OF THESIS					
Author's full name :	KOAY SEONG CHUN					
Date of birth :	15 TH JULY 1985					
Title :	EFFECTS OF FILLER CONTENT AND VARIOUS COUPLING AGENTS ON PROPERTIES OF POLYPROPYLENE/COCOA POD HUSK BIOCOMPOSITES.					
Academic Session :	2013					
I hereby declare that the thesi placed at the library of UniMAF	s becomes the property of Universiti Malaysia Perlis (UniMAP) and to be P. This thesis is classified as :					
	(Contains confidential information under the Official Secret Act 1972)*					
	(Contains restricted information as specified by the organization where research was done)*					
✓ OPEN ACCESS	I agree that my thesis is to be made immediately available as hard copy or on-line open access (full text)					
I, the author, give permission to research or academic exchang	o the UniMAP to reproduce this thesis in whole or in part for the purpose of ge only (except during a period of years, if so requested above).					
. tem	Certified by:					
SIGNATURE	SIGNATURE OF SUPERVISOR					
850715-07-50	067 ASSOC. PROF. DR.IR. SALMAH HUSSEINSYAH					
(NEW IC NO. / PASSF	PORT NO.) NAME OF SUPERVISOR					
Date :	Date :					

NOTES : * If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentially or restriction.

ACKNOWLEDGEMENT

Foremost, I cordially appreciate to my main supervisor, Associate Professor Ir. Dr. Salmah Husseinsyah for her supervision, support, and guidance for the success of my Ph.D work. I would also like to express my sincere gratitude to my co-supervisor, Dr. Hakimah Osman for the intellectual support and advice in my research study.

The great thankful for Dean of School of Materials Engineering, Dr Khairel Rafezi Ahmad. I would also thank to all staffs at School of Materials Engineering for assisting throughout my laboratory works. My sincere appreciation to Universiti Malaysia Perlis for providing me chance to study, gain knowledge and experience along my Ph.D study.

I would especially thank to my parents, my father, Mr Koay Chin Hee, and my mother, Mrs Tan Thooi Koon for unconditional care, support and love. I am greatly indebted to my partner, Miss Chan Ming Yeng, for support, encouragement and accompany me along the journey of my Ph.D study. I also want to extend my gratitude to my best friends, Dr Heah Cheng Yong and Dr Liew Yun Ming for their support, encouragement and friendship.

Lastly, I want to acknowledge the program of MyBrain15 by Ministry of Higher Education Malaysia for providing the scholarship for my Ph.D study. I also grateful to Dr. Alias from Cocoa Research & Development Centre (Hilir Perak), Malaysia Cocoa Board for supplying the cocoa pod husk for this research.

~Koay Seong Chun~

CONTENTS

	PAGE
THESIS DECLARATION	i
ACKNOWLEDGEMENT	ii
CONTENTS	iii
LIST OF FIGURES	ix
LIST OF TABLES	xvii
LIST OF ABBREVIATIONS	XX
LIST OF SYMBOLS	xxii
ABSTRAK	XXV
ABSTRACT	xxvi
Ct ^{OC}	
CHAPTER 1: INTRODUCTION	
1.1 Research Background	1
1.2 Problem Statement	6
1.3 Research Objectives	7
1.4 Scopes of Study	8
1.5 Thesis Outline	8

CHAPTER 2: LITERATURE REVIEW

2.1	Composites	10
	2.1.1 Polymer Biocomposites	11
2.2	Matrix	12

	2.2.1 Polypropylene	13
2.3	Filler	14
	2.3.1 Particle Filled Polymer Composites	17
	2.3.2 Natural Filler	18
	2.3.3 Cocoa Pod Husk	23
2.4	Interface of Filler and Matrix	25
2.5	Properties of Natural Filler Filled Thermoplastic Biocomposites	30
2.6	Thermal Properties of Thermoplastic Biocomposites	35
2.7	Modification of Natural Filler	41
	2.7.1 Maleated Polymer	42
	2.7.2 Esterification	46
	2.7.3 Silane Coupling Agent	48
	2.7.4 Fatty Acid and Its Derivative	52
2.8	Quantitative Evaluation of Interfacial Adhesion	57
2.9	Polymer Rheology	58
	2.9.1 Rheological Instrument	64
	2.9.1.1 Torque Rheometer	65
	2.9.2 Rheology of Natural Filler Filled Thermoplastic Composites	66
2.10	Summary of Literature Review	69

CHAPTER 3: RESEARCH METHODOLOGY

3.1	Materials	71
3.2	Preparation of Green Coupling Agent	72
3.3	Filler Modification	73

3.4	Prepare and C	ration of PP/CPH Biocomposites with Different Filler Content hemical Modification	73
3.5	Testin	g and Characterization of PP/CPH Biocomposites	76
	3.5.1	Tensile Testing	76
		3.5.1.1 Analysis Expression of Parameter B	76
	3.5.2	Morphological Analysis	77
	3.5.3	Water Absorption Test	77
		3.5.3.1 Kinetic of Water Absorption	78
	3.5.4	Processing Torque Measurement	78
	3.5.5	Processing Rheology	79
	3.5.6	Differential Scanning Calorimetry (DSC) Analysis	81
	3.5.7	Thermogravimetric Analysis (TGA)	82
	3.5.8	Fourier Transform Infra-Red (FTIR) Analysis	82
		eteo	
CHA	PTER	4: RESULTS AND DISCUSSION	
<i>I</i> 1	Effoct	of Filler Content on Properties of PD/CDU Discomposites	02

4.1	Effect	of Filler Content on Properties of PP/CPH Biocomposites	83
	4.1.1	Processing Torque	83
	4.1.2	Tensile Properties	86
(4.1.3	Morphological Properties	91
	4.1.4	Water Absorption	93
	4.1.5	Thermal Analysis	98
		4.1.5.1 Differential Scanning Calorimetry (DSC) Analysis	98
		4.1.5.2 Thermogravimetric Analysis (TGA)	99
	4.1.6	Rheology Processing	102
4.2	Effect Bioco	of Green Coupling Agent (GCA) on Properties of PP/CPH mposites	108

	4.2.1	Processing Torque	108
	4.2.2	Tensile Properties	110
	4.2.3	Morphological Properties	120
	4.2.4	Water Absorption	123
	4.2.5	Thermal Analysis	126
		4.2.5.1 Differential Scanning Calorimetry (DSC) Analysis	126
		4.2.5.2 Thermogravimetric Analysis (TGA)	128
	4.2.6	Fourier Transform Infra-Red (FTIR) Analysis	131
	4.2.7	Rheology Processing	134
4.3	Effect Bioco	of Maleated Polypropylene (MAPP) on Properties of PP/CPH mposites	139
	4.3.1	Processing Torque	139
	4.3.2	Tensile Properties	140
	4.3.3	Morphological Properties	145
	4.3.4	Water Absorption	147
	4.3.5	Thermal Analysis	150
		4.3.5.1 Differential Scanning Calorimetry (DSC) Analysis	150
	• . (4.3.5.2 Thermogravimetric Analysis (TGA)	152
(4.3.6	Fourier Transform Infra-Red (FTIR) Analysis	154
	4.3.7	Rheology Processing	156
4.4	Effect Bioco	of Methacrylic Acid (MAA) on Properties of PP/CPH mposites	161
	4.4.1	Processing Torque	161
	4.4.2	Tensile Properties	163
	4.4.3	Morphological Properties	166
	4.4.4	Water Absorption	168

	4.4.5	Thermal Analysis	171
		4.4.5.1 Differential Scanning Calorimetry (DSC) Analysis	171
		4.4.5.2 Thermogravimetric Analysis (TGA)	172
	4.4.6	Fourier Transform Infra-Red (FTIR) Analysis	174
4.5	Effect PP/CF	of 3-Mercaptopropyltrimethoxysilane (MPS) on Properties of PH Biocomposites	176
	4.5.1	Processing Torque	176
	4.5.2	Tensile Properties	178
	4.5.3	Morphological Properties	183
	4.5.4	Water Absorption	184
	4.5.5	Thermal Analysis	188
		4.5.5.1 Differential Scanning Calorimetry (DSC) Analysis	188
		4.5.5.2 Thermogravimetric Analysis (TGA)	189
	4.5.6	Fourier Transform Infra-Red (FTIR) Analysis	192
4.6	Effect Bioco	of Sodium Dodecyl Sulphate (SDS) on Properties of PP/CPH mposites	194
	4.6.1	Processing Torque	194
	4.6.2	Tensile Properties	196
	4.6.3	Morphological Properties	200
	4.6.4	Water Absorption	202
	4.6.5	Thermal Analysis	205
		4.6.5.1 Differential Scanning Calorimetry (DSC) Analysis	205
		4.6.5.2 Thermogravimetric Analysis (TGA)	205
	4.6.6	Fourier Transform Infra-Red (FTIR) Analysis	209
4.7	Comp Coupl	arison on Properties of Modified PP/CPH with Various ling Agents	211

4.7.1	Processing Torque	211
4.7.2	Tensile Properties	212
4.7.3	Water Absorption	213
4.7.4	Thermal Analysis	214
4.7.5	Rheology Properties	216

CHAPTER 5: CONCLUSION AND RECOMMENDATIONS 5.1 Conclusion 217 5.2 Recommendation for Future Works 218 REFERENCES 220 LIST OF PUBLICATIONS AND AWARDS 1237 APPENDIX 239

LIST OF FIGURES

NO.		PAGE
2.1	A classification of various composites category	11
2.2	Structure of polypropylene	14
2.3	Classification of fillers in polymer compounds	15
2.4	Stress concentration effect on composite material containing a) small particle and b) large particle filler	16
2.5	Classification of natural filler or fiber	18
2.6	Structure of cellulose	20
2.7	Schematic diagram of hydrogen bonding in natural filler	20
2.8	Structure of hemicellulose.	21
2.9	Different type of phenolic precursors from in lignin	22
2.10	Structure of lignin	23
2.11	Cocoa pod contains cocoa pulp and bean at the inside and the outer layer is the husk	25
2.12	(a) Contact angle (Θ) and surface energy (γ) for a drop of liquid on a solid surface; (b) $\Theta = 0^{\circ}$ correspond to complete wetting; (c) $\Theta = 180^{\circ}$ correspond to no wetting	27
2.13	Schematic diagram of (a) composites with a good mechanical bonding and (b) composites with poor mechanical bonding due poor wetting of filler by polymer matrix which unable to penetrate the asperities on filler surface	28
2.14	Schematic diagrams of (a) chemical bonding (A and B represent compatible chemical groups) and (b) chemical bonding as presence of silane as coupling agent	29
2.15	Schematic diagram of electrostatic bonding	30
2.16	Schematic diagram of interdiffusion bonding	30
2.17	Schematic diagram of different type of hybrid crystalline structure	36
2.18	Schematic reaction between maleated polypropylene and natural filler	43

2.19	Schematic reaction of wood fiber-maleated polymer interaction between the wood fiber and thermoplastic matrix.	44
2.20	Schematic reaction of coconut shell with acrylic acid.	47
2.21	Schematic reaction of coconut shell with maleic acid.	47
2.22	Schematic reaction of silane coupling agent with filler.	50
2.23	Schematic reaction between cellulose fiber and fatty acid chloride.	54
2.24	(i) Formation of dodecyl sulfonic acid and (ii) schematic reaction between coconut shell and dodecyl sulfonic acid.	55
2.25	Schematic reaction between COCA and palm kernel shell	57
2.26	Shear strain of a cube	59
2.27	Shear strain of the top plate is moved to the right by distance X	60
2.28	Simple steady shear of a fluid between stationary plate and moving plate at velocity <i>V</i>	61
2.29	Various type of time independent fluids	62
2.30	Variety of rheological instrument for filled polymer composites	65
2.31	Schematic diagram of the Brabender torque rheometer	66
3.1	Schematic reaction of green coupling agent based on virgin coconut oil or palm oil.	73
4.1	Torque versus time curves of neat PP and PP/CPH biocomposites with different filler content.	85
4.2	Stabilization torque of PP/CPH biocomposites with different filler content.	85
4.3	Effect of filler content on tensile strength of PP/CPH biocomposites.	88
4.4	SEM micrograph of CPH	88
4.5	Effect of filler content on elongation at break of PP/CPH biocomposites.	89
4.6	Effect of filler content on Young's modulus of PP/CPH biocomposites	91
4.7	SEM micrograph of tensile fracture surface of neat PP.	92
4.8	SEM micrograph of tensile fracture surface of PP/CPH biocomposites at 20 phr filler content.	92
4.9	SEM micrograph of tensile fracture surface of PP/CPH biocomposites at 40 phr filler content.	93

4.10	Water absorption versus time curves of $(*)$ neat PP and PP/CPH biocomposites at (\blacksquare) 10 phr, (\diamondsuit) 20 phr, (\blacktriangle) 30 phr, and (\bullet) 40 phr of filler content.	95
4.11	Plot of log M_t/M_s versus log time t of PP/CPH biocomposites with different filler content.	97
4.12	Plot of M_t/M_s versus $t^{0.5}$ of PP/CPH biocomposites with different filler content.	97
4.13	DSC thermograms of neat PP and PP/CPH with different filler content.	99
4.14	TGA thermograms of neat PP and PP/CPH with different filler content.	101
4.15	DTG thermograms of neat PP and PP/CPH with different filler content.	102
4.16	Plot of log torque versus log speed of neat PP and PP/CPH biocomposites with different filler content.	103
4.17	Plot of log shear stress versus log shear rate of neat PP and PP/CPH biocomposites with different filler content.	104
4.18	Plot of log viscosity versus log shear rate of neat PP and PP/CPH biocomposites with different filler content.	106
4.19	Plot of log viscosity versus reciprocal absolute temperature of neat PP and PP/CPH biocomposites with different filler content.	107
4.20	Torque versus time curves of neat PP, unmodified and modified PP/CPH biocomposites with GCA-C or GCA-P.	108
4.21	Effect of GCA-C or GCA-P on stabilization torque of PP/CPH biocomposites.	109
4.22	The improvement of filler dispersion after filler modification using GCA	110
4.23	Effect of various GCA content on tensile strength of PP/CPH biocomposites.	111
4.24	The different surface coverage of GCA and wettability of matrix on CPH surface at various GCA content.	112
4.25	Effect of various GCA content on elongation at break of PP/CPH biocomposites.	113
4.26	Effect of various GCA content on Young's modulus of PP/CPH biocomposites.	114
4.27	Effect of filler content on tensile strength of unmodified and modified PP/CPH biocomposites with GCA.	116

4.28	Effect of filler content on elongation at break of unmodified and modified PP/CPH biocomposites with GCA.	117
4.29	Effect of filler content on Young's modulus of unmodified and modified PP/CPH biocomposites with GCA.	118
4.30	Reduced tensile strength of unmodified and modified PP/CPH biocomposites with GCA-C or GCA-P.	119
4.31	Proposed different orientation of (a) GCA-C and (b) GCA-P on CPH surface.	120
4.32	SEM micrograph of tensile fracture surface of modified PP/CPH biocomposites with GCA-C at 20 phr filler content.	121
4.33	SEM micrograph of tensile fracture surface of modified PP/CPH biocomposites with GCA-C at 40 phr filler content.	121
4.34	SEM micrograph of tensile fracture surface of modified PP/CPH biocomposites with GCA-P at 20 phr filler content.	122
4.35	SEM micrograph of tensile fracture surface of modified PP/CPH biocomposites with GCA-P at 40 phr filler content.	122
4.36	Water absorption versus time curves of neat PP (*), unmodified PP/CPH biocomposites at (\blacklozenge) 20 phr and (\bullet) 40 phr of filler content; modified PP/CPH biocomposites with GCA-C (\blacktriangle) 20 phr and (\blacksquare) 40 phr of filler content; and modified PP/CPH biocomposites with GCA-P (+) 20 phr and (\times) 40 phr of filler content.	124
4.37	Log M_t/M_s versus log time t of unmodified and modified PP/CPH biocomposites with GCA-C or GCA-P.	125
4.38	M_t/M_s versus $t^{0.5}$ of unmodified and modified PP/CPH biocomposites with GCA-C or GCA-P.	126
4.39	DSC thermograms of neat PP, unmodified and modified PP/CPH biocomposites with GCA-C or GCA-P at 20 phr of filler content.	127
4.40	TGA thermograms of neat PP, unmodified and modified PP/CPH biocomposites with GCA-C or GCA-P at 20 phr of filler content.	129
4.41	DTG thermograms of neat PP, unmodified and modified PP/CPH biocomposites with GCA-C or GCA-P.	129
4.42	FTIR spectrums of (a) neat CPH; modified CPH with (b) 3 wt% of GCA-C, and modified CPH with (c) 3 wt% of GCA-P.	132
4.43	Schematic reaction between CPH and GCA.	133
4.44	Log torque versus log speed of unmodified and modified PP/CPH biocomposites with GCA-C.	135

4.45	Log shear stress versus log shear rate of unmodified and modified PP/CPH biocomposites with GCA-C.	136
4.46	Log viscosity versus log shear rate of unmodified and modified PP/CPH biocomposites with GCA-C.	137
4.47	Log viscosity versus reciprocal absolute temperature of unmodified and modified PP/CPH biocomposites with GCA.	138
4.48	Torque versus time curves of neat PP, unmodified and modified PP/CPH biocomposites with MAPP.	139
4.49	Effect of filler content on stabilization torque of unmodified and modified PP/CPH biocomposites with MAPP.	140
4.50	Effect of filler content on tensile strength of unmodified and modified PP/CPH biocomposites with MAPP.	141
4.51	Effect of filler content on elongation at break of unmodified and modified PP/CPH biocomposites with MAPP.	143
4.52	Effect of filler content on Young's modulus of unmodified and modified PP/CPH biocomposites with MAPP.	144
4.53	Reduced tensile strength of unmodified and modified PP/CPH biocomposites with MAPP.	146
4.54	SEM micrograph of tensile fracture surface of modified PP/CPH biocomposites with MAPP at 20 phr filler content.	146
4.55	SEM micrograph of tensile fracture surface of modified PP/CPH biocomposites with MAPP at 40 phr filler content.	145
4.56	Water absorption versus time curves of neat PP ($*$), unmodified PP/CPH biocomposites at (\blacklozenge) 20 phr, and (\bullet) 40 phr of filler content; and modified PP/CPH with MAPP at (\blacktriangle) 20 phr and (\blacksquare) 40 phr of filler content.	147
4.57	Log M_t/M_s versus log time t of unmodified and modified PP/CPH biocomposites with MAPP.	149
4.58	M_t/M_s versus $t^{0.5}$ of unmodified and modified PP/CPH biocomposites with MAPP.	150
4.59	DSC thermograms of neat PP, unmodified and modified PP/CPH biocomposites with MAPP at 20 phr of filler content.	151
4.60	TGA thermograms of neat PP, unmodified and modified PP/CPH biocomposites with MAPP.	153
4.61	DTG thermograms of neat PP, unmodified and modified PP/CPH biocomposites with MAPP.	153

4.62	FTIR spectrums of (a) neat PP, (b) unmodified PP/CPH, and (c) modified PP/CPH with MAPP.	155
4.63	Schematic reaction between CPH and MAPP.	156
4.64	Log torque versus log speed of unmodified and modified PP/CPH biocomposites with MAPP.	157
4.65	Log shear stress versus log shear rate of unmodified and modified PP/CPH biocomposites with MAPP.	158
4.66	Log viscosity versus log shear rate of unmodified and modified PP/CPH biocomposites with MAPP.	160
4.67	Log viscosity versus reciprocal absolute temperature of unmodified and modified PP/CPH biocomposites with MAPP.	161
4.68	Torque versus time curves of neat PP, unmodified and modified PP/CPH biocomposites with MAA.	162
4.69	Effect of filler content on stabilization torque of unmodified and modified PP/CPH biocomposites with MAA.	162
4.70	Effect of filler content on tensile strength of unmodified and modified PP/CPH biocomposites with MAA.	163
4.71	Effect of filler content on elongation at break of unmodified and modified PP/CPH biocomposites with MAA.	164
4.72	Effect of filler content on Young's modulus of unmodified and modified PP/CPH biocomposites with MAA.	165
4.73	Reduced tensile strength of unmodified and modified PP/CPH biocomposites with MAA.	166
4.74	SEM micrograph of tensile fracture surface of modified PP/CPH biocomposites with MAA at 20 phr filler content.	167
4.75	SEM micrograph of tensile fracture surface of modified PP/CPH biocomposites with MAA at 40 phr filler content.	167
4.76	Water absorption versus time curves of neat PP ($*$), unmodified PP/CPH biocomposites at (\blacklozenge) 20 phr, and (\bullet) 40 phr of filler content; and modified PP/CPH with MAA at (\blacktriangle) 20 phr and (\blacksquare) 40 phr of filler content.	168
4.77	Log M_t/M_s versus log time t of unmodified and modified PP/CPH biocomposites with MAA.	170
4.78	M_t/M_s versus $t^{0.5}$ of unmodified and modified PP/CPH biocomposites with MAA.	170
4.79	DSC thermograms of neat PP, unmodified and modified PP/CPH biocomposites with MAA.	171

4.80	TGA thermograms of neat PP, unmodified and modified PP/CPH biocomposites with MAA.	173
4.81	DTG thermograms of neat PP, unmodified and modified PP/CPH biocomposites with MAA.	173
4.82	FTIR spectrums of (a) unmodified CPH and (b) modified CPH with MAA	175
4.83	Schematic reaction between CPH and MAA.	175
4.84	Torque versus time curves of neat PP, unmodified and modified PP/CPH biocomposites with MPS	177
4.85	Effect of filler content on stabilization torque of unmodified and modified PP/CPH biocomposites with MPS.	177
4.86	Effect of filler content on tensile strength of unmodified and modified PP/CPH biocomposites with MPS.	179
4.87	Effect of filler content on elongation at break of unmodified and modified PP/CPH biocomposites with MPS.	180
4.88	Effect of filler content on Young's modulus of unmodified and modified PP/CPH biocomposites with MPS.	181
4.89	Reduced tensile strength of unmodified and modified PP/CPH biocomposites with MPS.	182
4.90	SEM micrograph of tensile fracture surface of modified PP/CPH biocomposites with MPS at 20 phr filler content.	183
4.91	SEM micrograph of tensile fracture surface of modified PP/CPH biocomposites with MPS at 40 phr filler content.	184
4.92	Water absorption versus time curves of neat PP ($*$), unmodified PP/CPH biocomposites at (\blacklozenge) 20 phr, and (\bullet) 40 phr of filler content; and modified PP/CPH with MPS at (\blacktriangle) 20 phr and (\blacksquare) 40 phr of filler content.	185
4.93	Log M _t /M _s versus log time t of unmodified and modified PP/CPH biocomposites with MPS.	187
4.94	M_t/M_s versus $t^{0.5}$ of unmodified and modified PP/CPH biocomposites with MPS.	187
4.95	DSC thermograms of neat PP, unmodified and modified PP/CPH biocomposites with MPS.	189
4.96	TGA thermograms of neat PP, unmodified and modified PP/CPH biocomposites with MPS.	191
4.97	DTG thermograms of neat PP, unmodified and modified PP/CPH biocomposites with MPS.	191

4.98	FTIR spectrums of (a) unmodified CPH and (b) modified CPH with MPS	193
4.99	Schematic reaction between CPH and MPS.	194
4.100	Torque versus time curve of neat PP, unmodified and modified PP/CPH biocomposites with SDS.	195
4.101	Effect of filler content on stabilization torque of unmodified and modified PP/CPH biocomposites with SDS.	196
4.102	Effect of filler content on tensile strength of unmodified and modified PP/CPH biocomposites with SDS.	197
4.103	Effect of filler content on elongation at break of unmodified and modified PP/CPH biocomposites with SDS.	198
4.104	Effect of filler content on Young's modulus of unmodified and modified PP/CPH biocomposites with SDS.	199
4.105	Reduced tensile strength of unmodified and modified PP/CPH biocomposites with SDS.	200
4.106	SEM micrograph of tensile fracture surface of modified PP/CPH biocomposites with SDS at 20 phr filler content.	201
4.107	SEM micrograph of tensile fracture surface of modified PP/CPH biocomposites with SDS at 40 phr filler content.	201
4.108	Water absorption versus time curves of neat PP ($*$), unmodified PP/CPH biocomposites at (\blacklozenge) 20 phr, and (\bullet) 40 phr of filler content; and modified PP/CPH with SDS at (\blacktriangle) 20 phr and (\blacksquare) 40 phr of filler content.	202
4.109	Log M_t/M_s versus log time t of unmodified and modified PP/CPH with SDS.	204
4.110	M_t/M_s versus log t ^{0.5} of unmodified and modified PP/CPH with SDS.	204
4.11	DSC thermograms of neat PP, unmodified and modified PP/CPH biocomposites with SDS.	206
4.112	TGA thermograms of neat PP, unmodified and modified PP/CPH biocomposites with SDS.	207
4.113	DTG thermograms of neat PP, unmodified and modified PP/CPH biocomposites with SDS.	208
4.114	FTIR spectrums of (a) unmodified CPH and (b) modified CPH with SDS.	210
4.115	Schematic reaction between CPH and SDS.	210

LIST OF TABLES

NO.		PAGE
2.1	Chemical composition of cocoa pod husk	25
3.1	Properties of polypropylene grade SM340.	71
3.2	Fatty acid content of virgin coconut oil and palm oil.	72
3.3	Formulation of PP/CPH biocomposites with different filler content	75
3.4	Formulation of modified PP/CPH biocomposites with different green coupling agent content	75
3.5	Formulation of modified PP/CPH biocomposites with 3% green coupling agent content and different filler content.	75
3.6	Formulation of modified PP/CPH biocomposites with commercial coupling agent and chemical	75
3.7	Processing parameter of experiment for rheology study.	79
4.1	Water absorption constants and diffusion coefficient of PP/CPH biocomposites with different filler content	95
4.2	DSC data of neat PP and PP/CPH with different filler content.	99
4.3	TGA data of neat PP, PP/CPH biocomposites with different filler content.	101
4.4	Power law index (n) and activation energy (E_a) of neat PP and PP/CPH biocomposites with different filler content.	105
4.5	Water absorption constants and diffusion coefficient of unmodified and modified PP/CPH biocomposites with GCA-C or GCA-P.	124
4.6	DSC data of neat PP, unmodified and modified PP/CPH biocomposites with GCA-C or GCA-P.	128
4.7	TGA data of neat PP, unmodified and modified PP/CPH biocomposites with GCA-C or GCA-P.	130
4.8	The major spectra of modified CPH with CGA-C or GCA-P.	134
4.9	Power law index (n) and activation energy (E_a) of unmodified and modified PP/CPH biocomposites with GCA-C.	137
4.10	Water absorption constants and diffusion coefficient of unmodified and modified PP/CPH biocomposites with MAPP.	148

4.11	DSC data of neat PP, unmodified and modified PP/CPH biocomposites with MAPP.	152
4.12	TGA data of neat PP, unmodified and modified PP/CPH biocomposites with MAPP.	154
4.13	The major spectra of modified PP/CPH biocomposites with MAPP.	156
4.14	Power law index (n) and activation energy (E_a) of unmodified and modified PP/CPH biocomposites with MAPP	159
4.15	Water absorption constants and diffusion coefficient of unmodified and modified PP/CPH biocomposites with MAA.	169
4.16	DSC data of neat PP, unmodified and modified PP/CPH biocomposites with MAA.	172
4.17	TGA data of neat PP, unmodified and modified PP/CPH biocomposites with MAA.	174
4.18	The major spectra of modified CPH with MAA.	176
4.19	Water absorption constants and diffusion coefficient of unmodified and modified PP/CPH biocomposites with MPS.	186
4.20	DSC data of neat PP, unmodified and modified PP/CPH biocomposites with MPS.	189
4.21	TGA data of neat PP, unmodified and modified PP/CPH biocomposites with MPS.	192
4.22	The major spectra of modified CPH with MPS.	193
4.23	Water absorption constants and diffusion coefficient of unmodified and modified PP/CPH biocomposites with SDS.	203
4.24	DSC data of neat PP, unmodified and modified PP/CPH biocomposites with SDS.	206
4.25	TGA data of neat PP, unmodified and modified PP/CPH biocomposites with SDS.	208
4.26	The major spectra of modified CPH with SDS.	209
4.27	Average percentage change on stabilization torque of modified PP/CPH biocomposites with different coupling agents.	212
4.28	Parameter B and average percentage change on tensile properties of modified PP/CPH biocomposites with different coupling agents.	213
4.29	Average percentage change on water absorption and diffusion coefficient (D) of modified PP/CPH biocomposites with different coupling agents.	214

- 4.30 Average percentage change on X_c and X_{pp} of modified PP/CPH biocomposites with different coupling agents. 215
- 4.31 Average percentage change on $T_{d5\%}$, T_{dmax} and char residue of modified PP/CPH biocomposites with different coupling agents. 215
- 4.32 Average percentage change on viscosity and activation energy of modified PP/CPH biocomposites with GCA-C and MAPP. 216

othis tern is protected by original copyright

LIST OF ABBREVIATIONS

	3-APE	3-aminopropyltriethoxylsilane
	ASTM	American society for testing and materials
	CaCO3	Calcium carbonate
	CO_2	Carbon dioxide
	COCA	Coconut oil coupling agent
	СРН	Cocoa pod husk
	DP	Degree of polymerization
	DSC	Differential scanning calorimetry
	DTG	Derivative thermogravimetry analysis
	FTIR	Fourier transform infrared spectroscopy
	GCA	Green Coupling Agent
	GCA-C	Green coupling agent from virgin coconut oil
	GCA-P	Green coupling agent from palm oil
	HDPE	High density polyethylene
	LDPE 5	Low density polyethylene
	MAA	Methacrylic acid
	MAPE	Maleated polyethylene
	MAPP	Maleated polypropylene
\bigcirc	MPS	3-mercaptopropyltrimethoxysilane
	RPM	rotation per minute
	NaOH	Sodium hydroxide
	OPEFB	Oil palm empty fruit bunch
	PBS	Polybutylene succinate
	PE	Polyethylene
	PLA	Polylactic acid
	РР	Polypropylene

PS	Polystyrene
PVC	Polyvinylchloride
SDS	Sodium dodecyl sulfate
SEBS	Styrene ethylene butylene styrene
SEM	Scanning electron microscopy
TGA	Thermogravimetry analysis
UV	Ultra violet
VTS	Vinylethoxysilane
WPC	Wood plastic composites

othis item is protected by original copyright

LIST OF SYMBOLS

	γ	Surface energy
	σ	Stress
	η	viscosity
	λ	Relative elongation
	τ	Shear stress
	γ	Shear rate
	ΔH_{m}	Enthalpy of melting
	$\gamma_{\rm LV}$	Specific surface energy of liquid/vapour
	$\gamma_{ m SL}$	Specific surface energy of liquid/solid
	γsv	Specific surface energy of solid/vapour
	μm	Micrometer
	А	Area of sample
	В	Parameter expresses the load bearing capacity of filler that corresponding to the effect of interfacial adhesion
	С	Constant depended on mixer geometry
	D S	Diffusion coefficient
	E _a	Activation energy
	Ecc	Elastic modulus of composites
©	$\mathbf{E}_{\mathbf{f}}$	Elastic modulus of filler
	E _m	Elastic modulus of matrix
	F	Force
	g	Gram
	GPa	Giga Pascal
	H or h	Distance between shearing surface
	kN	Kilo Newton
	L	Length at the failure point
	L_0	Original length

	Μ	Measured torque
	min	Minute
	mm	Millimeter
	MPa	Mega Pascal
	M_s	moisture content at saturated point
	M_t	moisture content at specific time
	п	Power law index
	n	Strain hardening exponent of polymer matrix
	θ	Contact angle
	°C	Degree Celsius
	R _e	radius of outer cylinder
	R _i	radius of inner cylinder
	R _m	average radius of cylinder
	t	Time
	Tc	Temperature of crystallization
	Td5%	Degradation temperature at 5% of weight loss
	T _{d50%}	Degradation temperature at 50% of weight loss
	T _{dmax}	Degradation temperature at maximum rate
	Tg	Glass transition temperature
	Tm	Melting temperature
X	P	Velocity
\bigcirc	$V_{\rm f}$	Volume of filler
	V_{m}	Volume of matrix
	W_d	Original dried weight of sample
	W_{fpp}	Weight fraction of polypropylene matrix
	W_n	Weight of sample after exposure
	W_t	Water absorption at time
	wt%	Weight percentage
	X or x	Amount of shear displacement