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Wm Mechanical power output W 

Wsh Width of wind shadow  m 

Wt Turbine power output W 

Wwind Kinetic power produce by wind turbine W 

Yk Dissipation of (k)  

Yω Dissipation of (ω)  
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xviii 
 

LIST OF NOMENCLATURE 

 

β Angular position between turbine blades  Deg. 

  Angular position for the first blade  Deg. 

Ʈ Mass-averaged viscous stress tensor  

θ Angle between frames Deg. 

λ Tip speed ratio  

  

𝜇𝑡
 

𝜔 

Kinetic viscosity 

Turbulent eddy viscosity  

Specific turbulent dissipation rate      

N.s/m2 

N.s/m2 

  
Density    kg/m3 

ωt Angular speed of the  rotating turbine    rad/s  

  
Over all wind turbine efficiency   

𝛼ₒ Initial angular position for the second blade Deg. 

𝛼1
 

𝜎𝑘
 

𝜎𝜔
 

 

Angular position for the second blade  

Model constant 

Model consta 

Deg. 
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Model dan Simulasi Untuk  Reka Bentuk Turbin Angin Paksi Menegak 

ABSTRAK 

Ekonomi global semasa mencadangkan penggunaan tenaga sumber-sumber yang boleh 

diperbaharui seperti suria, angin dan biomass untuk menghasilkan kuasa yang diperlukan. 

Tenaga boleh diperbaharui ialah tenaga alternatif yang bersih, tidak toksik, dan mudah 

didapati. Teknologi berkaitan tenaga angin telah menyaksikan pertumbuhan yang pesat 

di seluruh dunia. Turbin angin adalah peranti tipikal yang menukar tenaga kinetik angin 

ke elektrik. Penyelidikan lalu telah membuktikan bahawa turbin angin paksi menegak 

(VAWT) menghasilkan kuasa yang lebih tinggi daripada turbin angin paksi mendatar 

(HAWT). Dalam kajian ini, turbin angin paksi menegak, VVAWT dengan dua rotor yang 

berbeza (tiga atau empat bilah), yang mempunyai bilah-bilah alih, akan dikaji prestasinya. 

Model akan dibangunkan daripada bahan ringan dan setiap aspek kira untuk memastikan 

bilah-bilah ini dapat menahan kelajuan tiupan angin. Di samping itu, saiznya ditetapkan 

mengikut dimensi terowong angin kelajuan rendah yang terdapat di Universiti Malaysia 

Perlis. Eksperimen dan simulasi dijalankan bagi plat rata untuk mendapatkan pekali seret 

dan dibandingkan dengan keputusan yang terdapat dalam kajian. Eksperimen dan 

simulasi dijalankan untuk model bilah tunggal (dengan bilah-bilah tertutup dan terbuka) 

dan dua bilah (dengan bilah-bilah terbuka sahaja) yang mempunyai sudut berbeza antara 

bilah-bilah ini untuk mewakili turbin tiga dan empat bilah. Kajian simulasi tiga dimensi 

dijalankan untuk meramal ciri-ciri aerodinamik bagi model semasa, menggunakan 

perisian komersil Dinamik Bendalir Komputeran (CFD) - SolidWork2013, GAMBIT dan 

FLUENT. Dalam tegasan ricih pengangkutan (SST), model pergolakan k-ω adalah lebih 

baik daripada model pergolakan lain, seperti yang disarankan oleh beberapa penyelidik. 

Medan aliran disimulasi pada kelajuan masuk yang tetap. Model matematik dihasilkan 

untuk mengira keluasan kesan bayang-bayang bilah-bilah turbin ini di bawah kesan 

bayangan angin supaya diketahui pekali seret untuk tiga dan empat bilah VVAWT yang 

digunakan untuk pengiraan tork dan kuasa turbin. Untuk tujuan pengiraan tork di bawah 

kesan bayang-bayang angin, eksperimen dan penyiasatan simulasi dijalankan bagi tiga 

dan empat bilah VVAWT di kedudukan sudut bilah tetap pada kelajuan aliran udara 

huluan yang berbeza. Eksperimen juga dijalankan bagi tiga dan empat bilah yang 

menggunakan transmisi gear dan penjana elektrik untuk mendapatkan output kuasa 

penjana elektrik. Keputusan ujian digunakan untuk mengesahkan keputusan simulasi dan 

matematik. Keputusan dibentangkan dalam bentuk pekali seret, bilangan revolusi per 

minit (RPM). Adalah didapati bahawa nilai bagi turbin empat bilah adalah lebih tinggi 

daripada turbin tiga bilah bagi halaju aliran udara huluan yang sama. Keputusan juga 

diberikan dalam bentuk kuasa pekali CP dan petua λ nisbah kelajuan. Bagi model turbin 

tiga bilah dengan bilah-bilah yang terbuka, CP maksimum adalah 0.121 pada 20.6 m/s 

halaju huluan dan pada λ bersamaan 0.2511. Manakala bagi model turbin empat bilah 

dengan bilah-bilah terbuka, CP maksimum adalah 0.237 iaitu 20.6 m/s halaju huluan dan 

pada λ bersamaan 0.2663. Adalah didapati bahawa turbin empat bilah VVAWT adalah 

51% lebih cekap berbanding dengan turbin tiga bilah VVAWT. 
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Modeling and Numerical Simulation for the Vane Designs Vertical Axis Wind 

Turbine 

 

ABSTRACT 

The present global energy economy suggests the use of renewable sources such as solar, 

wind and biomass to produce the required power. Renewable energy is an alternative 

energy, which is a clean, nontoxic energy source that is available in abundance. 

Technology related to wind energy has seen a rapid growth worldwide. Wind turbines are 

typical devices that convert the kinetic energy of wind into electricity. Researches in the 

past have proved that Vertical Axis Wind Turbines (VAWTs) produce higher power than 

the Horizontal Axis Wind Turbines (HAWTs). In the present work the Vane type Vertical 

Axis Wind Turbine, VVAWT, with two different rotors (three and four blades) having 

movable vanes are investigated in terms of performance. The models are made of light 

material and every care is taken to ensure that the blades withstand high wind velocities. 

The sizes of the blades are constrained by the dimensions of the low speed wind tunnel 

available at University Malaysia Perlis. Experimental and numerical works are carried 

out for a flat plate to obtain its coefficient of drag, and the results are compared to the 

results available in the literature. Then, experimental and numerical investigations are 

carried out for three- and four-blade VVAWT at fixed blade angular positions and for 

different upstream air flow velocities. The three dimensional numerical investigations are 

carried out to predict the aerodynamics characteristic of the current models, using 

commercially available computational fluid dynamic (CFD) software - SolidWork2013, 

GAMBIT and FLUENT. The Shear Stress Transport (SST), k-ω turbulence model is used, 

which is better than other turbulence models available, as suggested by some researchers. 

The flow field is simulated numerically at a fixed inlet velocity. Mathematical models are 

developed to calculate the shadow area of the turbine blades under the effect of wind 

shadow to gauge the coefficient of drag for three- and four-blade VVAWT. These are 

then used in the calculation of torque and the power of the turbine. For torque calculations 

under wind shadow effect, experimental and numerical works are carried out for models 

of single blade (with closed and open vanes) and two blades (with open vanes only) 

having different angles between the blades to represent three- and four-blade VVAWT. 

Experimental works are also carried out for three and four blades using transmission gear 

and electrical generator to measure the electrical generator power output. Experimental 

results are used to validate numerical and mathematical results. The results are presented 

in the form of a drag coefficient, torque and the number of revolutions per minute (RPM). 

It is found that the values for the four-blade turbine are higher than that of three-blade 

turbine for the same upstream air flow velocities. The results are also presented in the 

form of power coefficient CP and tip speed ratio λ. It is found that for the three-blade 

turbine model with open vanes, the maximum CP is 0.121 at 20.6 m/s upstream air flow 

velocity and at λ equal to 0.2511. For the four-blade turbine model with open vanes, the 

maximum CP is 0.237 at 20.6 m/s upstream air flow velocity and at λ equal to 0.2663. It 

is found that the four- blade VVAWT is 51 % more efficient than the three-blade 

VVAWT. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Background 

 

The basic necessities for sustaining economic development for fast growing 

population in any country are energy and water. It is expected that by 2050, energy 

demand may double or even triple because of the global population growth and the 

expansion of developing countries' economies. Therefore, finding sufficient supplies of 

clean and sustainable energy for the future is the global society’s most daunting challenge 

for the twenty-first century. It is expected that the future will be a mix of energy 

technologies with renewable sources such as solar, wind and biomass playing an 

increasingly important role in the new global energy economy (Foster, et al., 2009). The 

exploration of all aspects of energy production and consumption, including energy 

efficiency and clean energy, is urgently required.  

Since approximately 200 years ago, the world has begun dependence on fossil 

fuels. The fossil fuel era expanded with the discovery of oil. Due to high demand of 

energy, more fossil fuels such as coal are burnt, resulting in CO2 emission into the 

atmosphere. The global climate has somewhat changed because of the emission of CO2 

into the atmosphere. This is normally referred to as global warming. Developed nations 

solve this problem by investing heavily in renewable energy sources. As it is, there are 

only a few non-renewable energy sources in the world, and the energy from these sources 

drain very fast due to rapidly growing demands. Alternative energy in the form of 
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renewable energy has to be found in order to address the energy issues of the future. The 

world hopes for a sustainable future, and hence a renewable energy revolution is needed. 

A sustainable future belongs to sources of clean energy and to those who prepare for it 

right now.  

 

1.2 Renewable Energy 

 

Energy can be divided into two types, namely non-renewable energy and 

renewable energy. Non-renewable energy does not regenerate itself at a sufficient rate for 

sustainable economic extraction in the human timescale. Examples of the sources of this 

type of energy include petroleum, natural gasoline, coal and nuclear energy. 

Unfortunately, these carry many issues. For example, harnessing nuclear energy is highly 

risky, while traditional fossil fuels are very quickly depleting. The world needs to find 

substitutes for these energy sources, which should be pollution free and abundantly 

available. Therefore, the attention concentrated on non-renewable energy sources has 

now shifted to renewable energy sources, particularly efficient renewable energy sources.  

Renewable energy is energy that comes from sources that are naturally renewing 

itself on a human timescale. Examples of renewable energy are wind energy, solar energy, 

tidal energy, geothermal energy, gravitational energy and biomass energy. Renewable 

energy is an alternative energy that is clean, nontoxic and abundantly available in nature. 

The strategy of many nations is to supply energy from renewable sources, especially when 

there are numerous environmental sustainability concerns that must be addressed 

appropriately (Johnson, 2006). 

There are many advantages of using renewable energy, such as sustainability  

(cannot  be  depleted),  ubiquity (found  everywhere  across  the  world  in  contrast  to  
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fossil  fuels  and  minerals), generally non-polluting and carbon free. Non-renewable 

energy sources can be acquired from almost all over the world, which is in contrast to 

fossil fuels and minerals. Non-renewable energy is also environmental friendly as it does 

not contaminate its surroundings. For wind energy, it does not need water in the 

production of electricity, and this gives much advantage in dry areas across the world, 

such as at the southwest and most of the west of the United States of America (Nelson & 

Starcher, 2015). 

However, there are also disadvantages of renewable energy, including its 

variability, low density, and generally higher initial cost. To add, renewable energy 

sources may cause visual pollution, odor (from biomass), perceived avian issues (for wind 

plants), and large land requirements (for solar plants) (Foster et al., 2009).  

  

1.3 Wind Energy 

 

Wind energy has been utilized for at least 3000 years for sailing ships, milling 

grains and pumping water. Wind is produced because of the uneven solar heating of the 

earth’s land and sea surfaces. The first vertical axis windmill in 644 AD had sails 

connected to a vertical shaft connected to a grinding stone for milling purposes. In the 

middle ages, the post-mill was first invented in Europe, and this was independent from 

the vertical-axis wind wheels of the Orient. 

Among all available renewable energy sources, wind energy has the advantage of 

being available in abundance, clean, and inexhaustible. It has no contribution to global 

warming, and it requires less installation and maintenance cost for power generation 

(Foster et al., 2009). With the first oil price shock in the early 1970s, interest in wind 

power reemerged. Providing electrical energy from the wind has now become important 
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