

EFFECT OF KAPOK HUSK CONTENT AND CHEMICAL TREATMENT ON PROPERTIES OF LINEAR LOW DENSITY POLYETHYLENE ECO-COMPOSITES

NURUL FATIN SYAZWANI BINTI ARSHAD (1430411330)

A thesis submitted in fulfilment of the requirements for the degree of Master of Science in Materials Engineering

> School of Materials Engineering UNIVERSITI MALAYSIA PERLIS

> > 2016

UNIVERSITI MALAYSIAPERLIS

	D	ECLARATION	OF THESIS
Author's full name	:	NURUL FATIN	SYAZWANI BINTI ARSHAD
Date of birth	:	13 SEPTEMBER	2 1990
Title	:	CHEMICAL TR	POK HUSK CONTENT AND EATMENT ON PROPERTIES OF DENSITY POLYETHYLENE ECO-
Academic Session	:	2014/2015	
I hereby declare that	the the	sis becomes the p	roperty of Universiti Malaysia
Perlis (UniMAP) and	to be	placed at the libra	ary of UniMAP. This thesis is
classified as:			
CONFIDENT	IAL	(Contains confid Secret Act1972) ³	ential information under the Official
RESTRICTE	D		ted information as specified by the ere research was done)*
OPENACCE	ss	I agree that immediately av access (full text)	my thesis is to be made ailable as hardcopy or on-line open
I, the author, give per	rmissio	n the UniMAP to	reproduce this thesis in whole or in
			schange only (except during a period
of years, if so	reques	ted above).	
\bigcirc			Certified by:
SIGNA	TURE		SIGNATURE OF SUPERVISOR
900913	-14-586	5	DR. LIM BEE YING
(NEW IC NO.	/ PASS	PORT NO.)	NAME OF SUPERVISOR
Date:			Date:

NOTES: * If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with period and reasonsfor confidentially orrestriction.

ACKNOWLEDGEMENT

Praise to Allah s.w.t for giving me a chance and strength in completing my master programmed. Firstly, I would like to acknowledge to the School of Materials Engineering department for allowed me to learn and gain knowledge during my postgraduate studies. Sincere thanks to all of them who gave their hand during my researched project.

I would like to express my special heartfelt gratitude and appreciation to my kind and supportive supervisor, Dr. Lim Bee Ying for her helps and support. Also, thank you to my late lecturer, Assoc. Prof. Dr. Ir Salmah Husseinsyah for her guidance and generous support. All of her scientific advices as well as her understanding in every phase of this research would be appreciate. Thanks also to her patience and encouragement to lead me on the right way. Without their help, I could not successfully finish my research.

Thank you to my beloved parents, Arshad bin Mohd Yasin and Rusidah Abd Rasid for their continuously supports and love during the progress of my studies. Not to forget my only one brother, Muhammad Farid bin Arshad, thank you so much. This thesis could not have happened without the love and consistent encouragement from all of them.

Appreciation also goes to all of my friends for supporting me during my research and useful helps and information to get through along this project completion.

I would like to expand my appreciation to all Universiti Malaysia Perlis's staff and technicians especially from School of Materials Engineering for their help from time to time during this project. Once again I would like to thanks to all for the supports and guidance offered to me along this project.

TABLE OF CONTENTS

		PAGE
TH	ESIS DECLARATION	i
ACI	KNOWLEDGEMENT	ii
TAI	BLE OF CONTENTS	iii
LIS	ST OF TABLES	vii
LIS	ST OF FIGURES	ix
LIS	ST OF SYMBOLS	R ³ xiii
LIS	ST OF ABREVIATIONS	xiv
LIS	ST OF NOMENCLATURE	xvi
ABS	STRAK	xvii
ABS	ST OF TABLES ST OF FIGURES ST OF SYMBOLS ST OF ABREVIATIONS ST OF NOMENCLATURE STRAK STRACT	xviii
СН	IAPTER 1 INTRODUCTION	1
1.1	Research Background	1
1.2	Problem Statement	4
1.3	Objectives of Study	5
1.4	Scope of Study	6
CH	IAPTER 2 LITERATURE REVIEW	7
2.1	Polymer Eco-Composites	7
2.2	Polymer Matrix	10
2.3	Thermoplastics	11
2.4	Polyethylene	14

	2.4.1	Linear low density polyethylene and its eco-composites	16
2.5	Filler		19
	2.5.1	Natural filler	21
	2.5.2	Kapok husk	26
2.6	Matrix-I	Filler Interaction	29
2.7	Chemica	al Treatment	31
	2.7.1	Citric Acid	34
	2.7.2	Methacrylic Acid	36
	2.7.3	Sodium Dodecyl Sulfate	38
	2.7.4	Methacrylic Acid Sodium Dodecyl Sulfate Lactic Acid	40
CHAI	PTER 3 R	RESEARCH METHODOLOGY	43
3.1	Material	s	43
	3.1.1	Linear Low Density Polyethylene	43
	3.1.2	Kapok Husk	43
	3.1.3	Chemical Treatment	43
	•	31.3.1 Preparation of KH Filler treatment	45
3.2	Preparat	ion of LLDPE/KH eco-composites	45
(3.2.1	Compounding of LLDPE/KH eco-composites with different filler loading	45
	3.2.2	Compression Moulding	46
3.3	Characte	erization of LLDPE/KH eco-composites	47
	3.3.1	Tensile Test	47
	3.3.2	Morphological Study	47
	3.3.3	Thermal Gravimetric Analysis (TGA)	47

	3.3.4	Differential Scanning Calorimetric (DSC)	48
	3.3.5	Fourier Transform Infrared (FTIR) study	48
	3.3.6	Water Absorption Test	49
CHA	APTER 4	RESULTS AND DISCUSSION	50
4.1	Effect compo	of Filler Content on Properties of LLDPE/KH Eco- osites	50
	4.1.1	Tensile properties	50
	4.1.2	Morphological Study	53
	4.1.3	Tensile properties Morphological Study Thermogravimetric Analysis (TGA)	55
	4.1.4	Differential Scanning Calorimetry (DSC)	58
	4.1.5	Water Absorption	60
4.2		of Methacrylic Acid (MAA) on Properties of LLDPE/KH omposites.	61
	4.2.1	Fourier Transform Infrared Spectroscopy	61
	4.2.2	Tensile properties	62
	4.2.3	Morphological Study	65
	4.2.4	Thermogravimetric Analysis (TGA)	67
	4.2.5	Differential Scanning Calorimetry (DSC)	70
	4.2.6	Water Absorption	71
4.3	Effect	of Citric Acid on Properties of LLDPE/KH Eco-composites	73
	4.3.1	Fourier Transform Infrared Spectroscopy	73
	4.3.2	Tensile properties	74
	4.3.3	Morphological Study	77
	4.3.4	Thermogravimetric Analysis	79
	4.3.5	Differential Scanning Calorimetry	82

	4.3.6	Water Absorption	83
4.4	Effect compo	of Lactic Acid on Properties of LLDPE/KH Eco- osites	85
	4.4.1	Fourier Transform Infrared Spectroscopy	85
	4.4.2	Tensile properties	86
	4.4.3	Morphological Study	89
	4.4.4	Thermogravimetric Analysis	91
	4.4.5	Differential Scanning Calorimetry	93
	4.4.6	Differential Scanning Calorimetry Water Absorption	95
4.5		of Sodium Dodecyl Sulfate on Properties of LLDPE/KH omposites	96
	4.5.1	Fourier Transform Infrared Spectroscopy	96
	4.5.2	Tensile properties	97
	4.5.3	Morphological Study	100
	4.5.4	Thermogravimetric Analysis	102
	4.5.5	Differential Scanning Calorimetry	104
	4.5.6	Water Absorption	106
		. terli	
CHA	APTER 5	CONCLUSION AND RECOMMENDATIONS	107
5.1	Conclu	sion	107
5.2	Recom	mendations for Future Study	108
REF	FERENCE	ES	109
APPENDIX A			124
APP	PENDIX B	}	125

LIST OF TABLES

NO.		PAGE
2.1	Particle morphology of fillers	20
2.2	Chemical families of filler for plastics	20
3.1	Properties of Methacrylic Acid	44
3.2	Properties of Citric Acid	44
3.3	Properties of Sodium Dodecyl Sulfate	44
3.4	Properties of Lactic Acid	44
3.5	Formulation of untreated and treated LLDPE/KH eco-composites with different filler loading	46
4.1	Summarized data from TGA curves of LLDPE/KH eco-composites	56
4.2	Summarized data from TGA and DTG of LLDPE/KH eco-composites	58
4.3	DSC data of neat LLDPE and LLDPE/KH eco-composites	59
4.4	Percentages weight loss of the untreated and treated LLDPE/KH eco- composites by using MAA at different temperature.	68
4.5	Summarized data from TGA and DTG of untreated and treated LLDPE/KH eco-composites with MAA	69
4.6	DSC data of untreated and treated LLDPE/KH eco-composites with MAA	71
4.7	Percentages weight loss of the untreated and treated LLDPE/KH eco- composites by using CA.	80
4.8	Summarized data from TGA and DTG of untreated and treated LLDPE/KH eco-composites withCA	81
4.9	DSC data of untreated and treated LLDPE/KH eco-composites with CA.	83
4.10	Percentages weight loss of the untreated and treated LLDPE/KH eco- composites by using LA.	92
4.11	Summarized data from TGA and DTG of untreated and treated LLDPE/KH eco-composites with LA	93
4.12	DSC data of untreated and treated LLDPE/KH eco-composites with LA	94

4.13	Percentages weight loss of the untreated and treated LLDPE/KH eco- composites by using SDS.	103
4.14	Summarized data from TGA and DTG of untreated and treated LLDPE/KH eco-composites	104
4.15	DSC data of untreated and treated LLDPE/KH eco-composites with SDS.	105

othis item is protected by original copyright

LIST OF FIGURES

NO.		PAGE
2.1	Classification of eco-composites	9
2.2	Application of polymer eco-composites in 2002-2.28 x 10 ⁹ lb	10
2.3	Amorphous vs crystalline thermoplastics	12
2.4	Pyramid of excellent for some thermoplastics families	14
2.5	Pyramid of excellent for some thermoplastics families Chemical structure of polyethylene (PE) Different branching of polyethylene Classification of natural fillers Chemical structure of cellulose	15
2.6	Different branching of polyethylene	17
2.7	Classification of natural fillers	23
2.8	Chemical structure of cellulose	24
2.9	Chemical structure of hemicellulose	25
2.10	Chemical structure of lignin	26
2.11	Kapok husk	27
2.12	Chemical structure of citric acid	34
2.13	Chemical structure of MAA	37
2.14	Chemical structure of SDS	38
2.15	Chemical structure of L-lActic acid and D-lactic acid	42
3.1 (Preparation of filler treatment	45
4.1	Effect of filler content on tensile strength of LLDPE/KH eco-composites	51
4.2	Scanning electron micrograph of kapok husk at 400x magnification	51
4.3	Effect of filler content on elongation at break of LLDPE/KH eco- composites	52
4.4	Effect of filler content on modulus of elasticity of LLDPE/KH eco- composites	53
4.5	Scanning electron micrograph of tensile fracture surface of neat LLDPE	54

4.6	Scanning electron micrograph of tensile fracture surface of LLDPE/KH eco-composites at 20 php	54
4.7	Scanning electron micrograph of tensile fracture surface of LLDPE/KH eco-composites at 40 php	55
4.8	TGA curves of untreated LLDPE/KH eco-composites at different KH content	56
4.9	DTG curves of untreated LLDPE/KH eco-composites at different KH content	58
4.10	DSC curves of neat LLDPE and LLDPE/KH eco-composites at different KH content	59
4.11	The percentage of water absorption against time of LLDPE/KH eco- composites at different KH content	60
4.12	FTIR spectra for untreated and treated KH with MAA	62
4.13	Schematic reaction of KH and MAA	62
4.14	The effect of KH content on tensile strength of untreated and treated LLDPE/KH eco-composites with MAA	63
4.15	The effect of KH content on elongation at break of untreated and treated LLDPE/KH eco-composites with MAA	64
4.16	The effect of KH content on modulus elasticity of untreated and treated LLDPE/KH eco-composites with MAA	65
4.17	SEM micrograph of tensile fracture surface of treated LLDPE/KH eco- composites with MAA at 20 php KH	66
4.18	SEM micrograph of tensile fracture surface of treated LLDPE/KH eco- composites with MAA at 40 php KH	66
4.19	TGA curves of untreated and treated LLDPE/KH eco-composites with MAA at different KH content	67
4.20	DTG curves of untreated and treated LLDPE/KH eco-composites with MAA at different KH content	69
4.21	DSC curves of neat LLDPE, untreated and treated LLDPE/KH eco- composites with MAA at different KH content	71
4.22	The percentage of water absorption against time of untreated and treated LLDPE/KH eco-composites with MAA at different KH content	72
4.23	FTIR spectra for untreated and treated KH with CA	73

4.24	Schematic reaction of KH and CA	74
4.25	The effect of KH content on tensile strentgh of untreated and treated LLDPE/KH eco-composites with CA	75
4.26	The effect of KH content on elongation at break of untreated and treated LLDPE/KH eco-composites with CA	76
4.27	The effect of KH content on modulus of elasticity of untreated and treated LLDPE/KH eco-composites with CA	77
4.28	SEM micrograph of tensile fracture surface of treated LLDPE/KH eco- composites with CA at 20 php KH	78
4.29	SEM micrograph of tensile fracture surface of treated LLDPE/KH eco- composites with CA at 40 php KH	78
4.30	TGA curves of untreated and treated LLDPE/KH eco-composites with CA at different KH content	79
4.31	DTG curves of untreated and treated LLDPE/KH eco-composites with CA at different KH content	81
4.32	DSC curves of neat LLDPE, untreated and treated LLDPE/KH eco- composites with CA at different KH content	82
4.33	The percentage of water absorption against time of untreated and treated LLDPE/KH eco-composites with CA at different filler content	84
4.34	FTIR spectra for untreated and treated KH with LA	95
4.35	Schematic reaction of KH and LA	86
4.36	The effect of KH content on tensile strentgh of untreated and treated LLDPE/KH eco-composites with LA	87
4.37	The effect of KH content on elongation at break of untreated and treated LLDPE/KH eco-composites with LA	88
4.38	The effect of KH content on modulus of elasticity of untreated and treated LLDPE/KH eco-composites with LA	89
4.39	SEM micrograph of tensile fracture surface of treated LLDPE/KH eco- composites with LA at 20 php KH	90
4.40	SEM micrograph of tensile fracture surface of treated LLDPE/KH eco- composites with LA at 40 php KH	90
4.41	TGA curves of untreated and treated LLDPE/KH eco-composites with LA at different KH content	91

4.42	DTG curves of untreated and treated LLDPE/KH eco-composites with LA at different KH content	93
4.43	DSC curves of neat LLDPE, untreated and treated LLDPE/KH eco- composites with LA at different KH content.	94
4.44	The percentage of water absorption against time of untreated and treated LLDPE/KH eco-composites with LA at different KH content	95
4.45	FTIR spectra for untreated and treated KH with SDS	96
4.46	Schematic reaction of KH and SDS	97
4.47	The effect of KH content on tensile strength of untreated and treated LLDPE/KH eco-composites with SDS	98
4.48	The effect of KH content on elongation at break of untreated and treated LLDPE/KH eco-composites with SDS	99
4.49	The effect of KH content on modulus of elasticity of untreated and treated LLDPE/KH eco-composites with SDS	100
4.50	SEM micrograph of tensile fracture surface of treated LLDPE/KH eco- composites with SDS at 20 php KH.	101
4.51	SEM micrograph of tensile fracture surface of treated LLDPE/KH eco- composites with SDS at 40 php KH.	101
4.52	TGA curves of untreated and treated LLDPE/KH eco-composites with SDS at different KH content	102
4.53	DTG curves of untreated and treated LLDPE/KH eco-composites with SDS at different KH content	104
4.54	DSC curves of neat LLDPE, untreated and treated LLDPE/KH eco- composites with SDS at different KH content	105
4.55	The percentage of water absorption against time of untreated and treated LLDPE/KH eco-composites with SDS at different KH content	106

LIST OF SYMBOL

- °C Degree Celcius
- Heat of fushion for 100% crystalline LLDPE ⊿H°_f
- $\Delta H_{\rm f}$ Heat of fushion for LLDPE
- % Percentage
- Micrometer μm
- ted by original copyright cm⁻¹ Reciprocal Wavelength (wavenumber)
- cm^3 Centimetre cubic
- Xc Degree of crystallinity
- Weight percentage wt%
- lb pound
- MPa Mega pascal
- Revolutions per minute rpm
- Percentage of water absorption M_{t}
- Original dry weight Wo
- After immersed weight W_{f}
- Decomposition temperature at maximum rate T_{dmax}
- Tm Melting Temperature

LIST OF ABREVIATIONS

LLDPE	Linear Low Density Polyethylene
КН	Kapok Husk
SEM	Scanning Electron Microscope
FTIR	Fourier Transform Infrared
TGA	Thermogravimetric Analysis
DSC	Differential Scanning Calorimetric
DTG	Differential Scanning Calorimetric Derivative Thermogravimetric Polypropylene Polyethylene Low Density Polyethylene
РР	Polypropylene
PE	Polyethylene
LDPE	Low Density Polyethylene
PLA	Poly Lactic Acid
PHA	Polyhydroxyalkanoate
PVS	Poly (vinyl sulfate)
ABS	Acrylonitrile butadiene styrene
PKS	Palm Kernel Shell
php	Part per hundred polymer
TPCS	Thermoplastic cassava starch composites
HDPE	High density polyethylene
RPF	Rambutan Peel Flour
ASTM	American Society for Testing Materials
rPP	Recycle Polypropylene
SA	Stearic Acid
UP	Unsaturated Polyester

Nypa Fruticans
Methyl Metacrylate Acid
Recycle Low Density Polyetyhylene
Polyethylene Acrylic Acid
Rice Husk
Ultimate compressive strentgh
Wood Flour
Wood Flour Vinyltrimethoxysilane Dicumyl Peroxide Citric Acid Modified Pea Starch
Dicumyl Peroxide
Citric Acid
Citric Acid Modified Pea Starch
Citric acid Modified Rice Starch
Methacrylic Acid
Poly (Methyl Methacrylate)
Cocoa Pod Husk
Oil Palm Empty Fruit Bunch
Regenerated Cellulose
Sodium Dodecyl Sulfate
Coconut Shell Powder
Lactic Acid
Alpha Hydroxy Acid
Elasteriospermum tapos seed shell

LIST OF NOMENCLATURES

С Carbon

Carbonyl С=О

- С=С Ethylene (IUPAC name: Ethene)
- C-O-C Ether

orthis tern is protected by original copyright

Kesan Sekam Kekabu dan Rawatan Kimia Terhadap Sifat-sifat Eko-Komposit Linear Polietilina Berketumpatan Rendah

ABSTRAK

Penggunaan sekam kekabu (SK) sebagai isian di dalam linear polietilina berketumpatan rendah (LPEKR) telah dikaji. Kesan kandungan SK dan rawatan kimia terhadap sifatsifat tensil, morfologi, terma, dan serapan air eko-komposit LPEKR/SK telah dikaji. Eko-komposit LPEKR/SK telah disediakan dengan menggunakan Brabender Plasticoder EC-Plus pada suhu 160°C dengan kelajuan rotor 50 rpm. Empat jenis rawatan kimia telah digunakan iaitu asid metakrilik (AMA), asid sitrik (AS), asid laktik (AL), dan sodium dodecyl sulfat (SDS). Keputusan menunjukkan penambahan SK ke dalam eko-komposit LPEKR telah mengurangkan kekuatan tensil, pemanjangan pada takat putus dan penghabluran. Walau bagaimanapun, modulus elastisiti dan serapan air dalam eko-komposit telah meningkat dengan peningkatan kandungan SK. Kehadiran SK telah menurunkan kestabilan terma LPEKR/SK eko-komposites berbanding LPEKR sendiri. Walau bagaimanapun, peningkatan SK meningkatkan kestabilan terma. Kajian morfologi terhadap eko-komposit telah menunjukkan interaksi yang lemah di antara pengisi SK dan matrik LPEKR. Kesan rawatan kimia terhadap SK telah meningkatkan sifat-sifat tensil dan terma dalam eko-komposit. Kekuatan tensil dan elastisiti modulus LPEKR/SK eko-komposit yang telah dirawat dengan AMA, AS, AL, dan SDS adalah lebih tinggi berbanding dengan eko-komposit yang tidak dirawat. Penghabluran dan kestabilan terma dalam eko-komposit LPEKR/SK yang telah dirawat juga adalah lebih baik berbanding eko-komposit yang tidak dirawat. Eko-komposit yang telah dirawat menunjukkan rintangan air yang lebih baik dari eko-komposit yang tidak dirawat. Interaksi yang lebih baik antara pengisi-matrik telah dibuktikan melalui kajian imbasan mikroskop elektron (IME). Analisa FTIR spektra menunjukkan perubahan kepada kumpulan berfungsi di dalam SK yang telah dirawat. Daripada keseluruhan jenis rawatan kimia, eko-komposit yang dirawat oleh AMA menunjukkan kekuatan tensil, modulus elastisiti, kestabilan terma, dan penghabluran yang paling tinggi berbanding dengan jenis rawatan yang lain.

Effect of Kapok Husk content and Chemical Treatment on Properties of Linear Low Density Polyethylene Eco-Composites

ABSTRACT

The utilization of kapok husk (KH) as filler in linear low density polyethylene (LLDPE) was studied. The effect of KH content and chemical treatments on tensile properties, morphology, thermal properties and water absorption of LLDPE/KH eco-composites were investigated. The LLDPE/KH eco-composites were prepared by using Brabender Plasticorder EC-Plus at temperature 160 °C and rotor speed 50 rpm. The four types of chemical treatments used were methacrylic acid (MAA), citric acid (CA), lactic acid (LA) and sodium dodecyl sulfate (SDS). The results indicated that the addition of KH in LLDPE eco-composites had decreased the tensile strength, elongation at break and crystallinity of the eco-composites. However, the modulus of elasticity and water absorption of eco-composites increased with increasing of KH content. Presence of KH has lowered the thermal stability of LLDPE/KH eco-composites compare to neat LLDPE. However, the increment of KH content improved the thermal stability. The morphological studies of eco-composites exhibited poor interfacial interaction between KH filler and LLDPE matrix. The effect chemical treatment of KH had increased the tensile and thermal properties of eco-composites. The tensile strength and modulus of elasticity of treated LLDPE/KH eco-composites with MAA, CA, LA, and SDS were higher than untreated eco-composites. The crystallinity and thermal stability of treated LLDPE/KH eco-composites were also improved compared to untreated eco-composites. The treated eco-composites had better water resistance than untreated eco-composites. The better filler-matrix interaction has been proven by scanning electron microscope (SEM).Spectra FTIR analysis showed the changes of functional group of treated KH. From various chemical treatments, the treated eco-composites with MAA showed the highest tensile strength, modulus of elasticity, thermal stability, and degree of crystallinity compared to others treated eco-composites. othisitem

CHAPTER 1

INTRODUCTION

1.1 Research Background

Polymer eco-composites have been concerned an expanding studied in the course of recent decades for both industrial applications and fundamental research (Thomas et al., 2014; Petchwattana et al., 2013). Recently, a remarkable interest towards eco-composites has been attracted due to increasing environmental consciousness and demands of governmental authorities. The terms "eco-composites" are subjects to eco-friendly natural filler filled polymer matrix (Gaceva et al., 2007). The complex combination between polymer matrices and eco-friendly natural filler is usually made up for enhancement of properties of the products. Moreover, polymer eco-composites are more economic and environmentally friendly compare to a raw polymer matrix. Expanding in environmental awareness all throughout the globe has constrained the researchers to create new green materials that enhance the environmental quality of products (Gupta & Gupta, 2007; Chun et al., 2015b). In addition, several commercial programs towards momentum of eco-composites have been done such as the expanding worldwide natural and social worry, consumption of petroleum assets, and new ecological controls (Bagoeva et al., 2007).

Polymer matrix is basically inert to microorganisms or the chemicals in an environment (Kahar et al., 2012; Prachayawarakorn et al., 2010). Due to this, to eliminate a high volume of polymer waste may take a long time to degrade which prompted to natural issues. A developing effort has merged the polymer researchers to expand ecological materials lately by the addition of natural filler (Luo et al., 2014)

instead of synthetic fillers (Hamid et al., 2015; Chun et al., 2014; Sébastien et al., 2015). Towards the unstable economic worldwide nowadays, customers definitely preferred a high quality product beneficial with a low cost. Finding addition materials for plastic could involve lower cost by using natural filler as reinforcement to the polymer eco-composites (Nitayaphat et al., 2009). They have been consolidated in polymer matrices with the major objective of giving improvement in properties and a decrease in cost of the final products (Leaversuch., 2002). These also prevent the waste of potentially useful materials and reduced the consumption of raw polymer matrix with addition of natural filler (Choi et al., 2006; Ashori et al., 2009; Ashori et al., 2010).

The plastic industries are a key enables of innovation of many products and technologies in other sectors of the economy such as engineering, medicine, automobile, sports, domestic, packaging, etc (Nwanonenyi et al., 2013). This is because of their simplicity of handling and low energy consumption during fabrication and their inertness, which makes them appropriate to be utilized as a part of all fields (De Carvalho et al., 2002). Moreover, the unique characteristics of plastics also allowed them to make a strong contribution to a more environmentally sustainable and resources efficient in worldwide (Qaiss et al., 2014; Malha et al., 2013). The increasing demand for plastics industries is expected to be one of the key factors driving the expansion of plastics market (Petchwattana & Covavisaruch., 2014; Manikantan et al., 2012). Linear low density polyethylene (LLDPE) matrix is one of a polymer with numerous applications, for example, film applications (e.g. stretch cling film, silage film), plastic bags, liquid paper board coatings, wire and cable, injection moulding parts and pipes (Geng et al., 2006). Generally, linear low density polyethylene is versatile polymer among polyethylene. It is a vital commercial polymer which is generally utilized for various applications as a part of current innovation. LLDPE has greater mechanical properties which have higher tensile strength, impact and puncture resistance (Hemati et al., 2011; Nestore et al., 2012; Kontou & Niaounakis., 2006). Meanwhile, Nwanonenyi et al., (2013) has reported that LLDPE has very flexible, elongates under stress, and has better environmental stress cracking resistance properties.

Some researchers have been reported that the addition of hemp as natural filler in LLDPE eco-composites (Nestore et al., 2013) improved the tensile strength and flexural strength of the eco-composites. This is expected since natural fillers are one of the most prospective materials which have been used to improve the properties of the polymer eco-composites (Pérez et al., 2012; Wang et al., 2008; Fauzani et al., 2014; Moayad & Khalaf., 2015) instead of biodegradable (Kaith & Kaur, 2011), low toxicity, low manufacture costs, low disposal costs and renewability (Puppi et al., 2010). Natural filler proposed a number of advantages over synthetic fillers in various technical applications (Nacher et al., 2007; Yarysheva et al., 2007). It is mainly due to their renewable origin, lightweight, moderately high specific strength, no health hazards, and more economic (Pervaiz et al., 2003). Probably, the most attractive properties the utilization of natural filler filled polymer matrix is the ecological effect, arising out from the fact that these natural fillers can be effortlessly degrade toward the end of their life cycle (Kahar et al., 2012; Prachayawarakorn et al., 2010).

Natural fillers, depending upon the source, are classified into three types which are animal, plant and mineral. Many natural plant types of filler found in Malaysia are obtained from crop residues and by products of the agricultural industry such as empty fruit bunch (Rozman et al., 2003), coconut shell powder (Chun et al., 2013a) and cocoa pod husk (Chun et al., 2014). Kapok is one of the abundance natural filler in Malaysia which has heavily cultivated to obtain kapok cotton for pillow and mattress productions. In the meantime, a numerous of kapok husk has disposed as a by-products. Contribution to a waste management and to overcome the environmental problem, kapok husk has been utilized as new natural fillers in polymer eco-composites field. Kapok husk has been reported contain high number of cellulose compositions which expected to improve the eco-composites properties (Kobayashi et al., 1977).

Along with these properties, lignocellulosic fillers also have a few drawbacks. Lignocellulosic of natural fillers are prone to absorb moisture in the environment, which affects the properties of eco-composites. The main disadvantage of natural fillers is their hydrophilic natures, which lower the compatibility with hydrophobic polymeric matrices during eco-composites fabrication (Boujmal et al., 2014; Salleh et al., 2014). However, there is an effort to develop the nature properties of these natural fillers which is chemical treatment. A number of chemical treatments can be done to obtain good properties by improving the compatibility between the polymer matrices and natural filler such as silane treatment (Singha and Takur, 2009), alkaline treatment (Farahani et al., 2012) and esterification (Salmah et al., 2011). Filler treatment is important in natural filler based eco-composites as well as to improve the wetability, dispersion, and fillermatrix interaction. Chemical treatment is performed to overcome the incompatibility between hydrophilic lignocellulosic filler and hydrophobic polymer matrix. The strong interfacial bonding between polymer matrix and natural filler obtained by chemical treatment will improve the physical, mechanical, and thermal properties of the composites system (Essabir et al., 2013).

1.2 Problem Statement

Many previous researchers have reported on the development of linear low density polyethylene (LLDPE) with natural fillers eco-composites. However, the utilization of LLDPE with kapok husk filler eco-composites has not been reported. In this project, kapok husk (KH) has been used as filler in LLDPE matrix. In order to cut cost usage of neat LLDPE polymer matrix, using of local KH filler can enhance the value of agriculture waste materials which are abundant in Malaysia. The KH could have promising future as new filler in polymer eco-composites not because of their low cost, low density, environmental friendliness and good mechanical properties but also in a context of valorising abundant and unexploited in Malaysian resources.

However, the main problem of LLDPE/KH eco-composites is their incompatibility between hydrophobic LLDPE and hydrophilic KH. Thus, the chemical treatments were used to improve the interfacial interaction between both materials and also reduced the hydrophilicity of natural fillers itself. In this study the different types of organic compound were used such as citric acid, lactic acid, methacrylic acid, and ectediby sodium dodecyl sulfate.

1.3 **Objectives of Study**

The objectives of this study are:

- 1. To study the effect of kapok husk (KH) filler content on tensile properties, morphological study, water absorption test, and thermal properties of LLDPE/KH eco-composites.
- 2. To investigate the effect of organic acids chemical treatments such as citric acid, lactic acid and methacrylic acid on properties of LLDPE/KH ecocomposites.
- 3. To study the effect of sodium dodecyl sulfate on properties of LLDPE/KH eco-composites.