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Abstract-In these paper, methods for estimating the 
muscle and joint forces during push-up are discussed. 
Many simplifications/assumptions were required like 
rigid body bones, single line of action for muscles, 
planar assumption and known muscle insertion and 
origin. In general, the normalized biceps, brachialis, 
and brachioradialis forces calcaluted in this paper 
compare well with those available in the literature 
values. However, consistency of magnitude between 
both of these values suggest the simplified approach 
adopted in this analysis does provide a useful 
approximation in investigating musculoskeletal loads 
and muscle forces at the ankle joint during squatting 
exercises. 
 
 

I. INTRODUCTION 

 
The actual loads carried by joints have significant 
implications. Joint cartilage degeneration and 
capsuloligamentous laxity are often related to the 
magnitude and pattern of load transmission at the 
joint. In total joint arthroplasty, the wear and 
deformation of the articulating surfaces, the stress 
distribution in an implant, the mechanical behavior of 
the bone-implant interface, and the load-carrying 
characteristics of the remaining bone are intimately 
related to the joint load [1].  
 
In fractures, the joint and muscle loads play an 
important role in the bone union. Knowledge of the 
magnitude and manner of joint loading encountered 
by the human body is important in determining the 
possible mechanism and prevention of injury during 
occupational and sports activities. Calculating 
internal muscle and joint forces provides additional 
useful information for the design of implants, 
surgery, and rehabilitation programs. 
 

In the past two decades, numerous analytical and 
experimental techniques have been developed for 
estimating muscle and joint forces [1]. Analytically, 
the determination of muscle and joint forces involves 
two steps: 
1. The determination of intersegmental forces and 

moments at the joint based on given or measured 
kinematic and kinetic data (inverse dynamic 
problem) 

2. The partitioning of intersegmental forces and 
moments into muscle and joint constraint forces 
and moments (force distribution problem) 

 

This study will discuss these two steps (Fig. 1). 

II. METHODOLOGY 
 

A. Determination of Intersegmental Forces and 
moments 

In biomechanics, the unknown muscle and joint 
forces are commonly determined mathematically, 
because they cannot be easily measured directly. On 
the other hand, motion can be measured using 
experimental techniques. Determining the 
intersegmental forces and moments based on 
kinematic data requires solution of the inverse 
dynamic problem [2]. Derivation of the equations of 
motion can be based on either Newtonian or 
Lagrangian formulas. 

A simplified solution assumes that kinematic effects 
are negligible, allowing a "quasi-static" analysis. 
Static equilibrium is a condition in which a body is at 
rest (i.e., with no motion in relation to surrounding 
objects) and the external and internal forces and 
moments are balanced [3]. 
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Fig1. Analytic determination of the muscle and joint forces can be achieved in two steps: determination of intersegmental forces and moments 
and distribution of the forces

Both translation and rotation equilibrium need to be 
maintained for each body segment. Thus, the equations for 
static equilibrium are 

∑ F = 0                    (1) 

And 

∑ M = 0                                     (2) 

for each segment of the body.The summation of forces and 
moments includes the intersegmental force, FI , and 
intersegmental moment,  MI , and the externally applied 
force and moment on the segment distal to the joint. To 
illustrate the procedure, a simplified two-dimensional 
problem is considered. 

B. Distribution of Muscle and Joint Forces 

After calculating intersegmental resultant force, and 
moment, , we are able to determine the muscle force,  , 
joint constraint force, ., and joint constraint moment, , 
based on the concept of equilibrium, 

                                                                                    Fl = 
∑Fm + Fj                                                          (3) 

and 

                                                                              Ml=∑Mm + 
Mj                                            (4) 

Partitioning of these intersegmental resultant forces and 
moments is generally called the force distribution problem. 
Unfortunately, the number of unknown variables of muscle 
forces and joint constraint forces and moments usually 

exceeds the number of available equations. This is primarily 
because of the redundant nature of anatomic structures: 
There are multiple muscles that can execute synergistic 
functions. Mathematically, this produces an indeterminate 
problem that has no unique solution. The difference 
between the number of unknown variables and the number 
of equations represents the degree of redundancy. In order 
to resolve this indeterminate problem, the degree of 
redundancy must be reduced by either introducing 
constraint equations or by decreasing the number of 
unknown variables [4]. 

Therefore, an important consideration in muscle and joint 
force determination is accounting for the number of 
unknown variables versus constraints in the equations of 
motion. In general, this decoupling procedure is achieved 
based on the concept of degrees of freedom (DOF) of the 
joint. Human joints, which have both capsuloligamentous 
and joint articular constraints, can move freely in several 
directions of translation or rotation. The possible modes of 
joint movement represent the rotation and translational DOF 
of the joint. For example, the shoulder joint and elbow joint 
have been considered to have three and one rotational DOF, 
respectively. Therefore, the associated moment equilibrium 
equations consist of only the unknown muscle force 
variables. With the muscle force determined, the joint 
constraint forces and moments can then be determined by 
using the remaining equations of motion [5]. 

Decoupling of the constraint equations makes the procedure 
for solution easier and more comprehensible. However, 
under some conditions, it is inappropriate to use the 
decoupling procedure to solve muscle and joint forces 
independently.  

 

Kinematics of limb 
& joints 

Loading on limbs 
& joints 

Determining 
intersegmental forces & 

moments 

Geometric 
data of 
limbs & joints 

Inertial 
properties of 
limbs & joints 

Distribution of muscle & 
joint forces Physiological 

model of 
muscle 

Mechanical 
model of 



Proceedings of International Conference on Applications and Design in Mechanical Engineering (ICADME) 
11 – 13 October 2009, Batu Ferringhi, Penang, MALAYSIA 

 

11F-3 

Reduction Method 

The goal of the reduction method is to reduce the degree of 
redundancy by reducing the number of unknown forces 
until the number of unknown forces is equal to the number 
of equations. Muscles with similar functions or common 
anatomic insertions and orientations can be grouped 
together, whereas qualitative electromyographic data can be 
used to eliminate inactive muscles.This would be make the 
calculation become more easier. Although this method gives 
the joint force, the detailed behavior of individual muscles 
is lost from the solution. 

Optimization Method 

The distribution problem at a joint is, typically, an 
indeterminate problem, because the number of muscles, 
ligaments, and articular contact regions available to transmit 
force across a joint, in many cases, exceeds the minimum 
number of equations required to generate a determinate 
solution. An infinite number of possible solutions exists for 
the indeterminate equations. Determinate solutions are 
obtainable only with significant simplification of the 
functional anatomy. One method of solution without such 
simplification is that of seeking an optimum solution, that 
is, a solution that maximizes or minimizes some process or 
action [1]. 

In order to solve an optimization problem, its format must 
be specified. This is done by: 
1. defining the cost function, 
2. identifying the constraint functions, 
3. specifying the design variables, and 
4. setting the appropriate bounds for the design variables. 

However selection and justification of optimal criteria have 
been major problems. A wide variety of cost functions have 
been used with different degrees of success, and these are 
discussed briefly in the next two sections. The criteria are 
grouped according to the nature of the optimization 
method—linear or nonlinear programming. Further, these 
criteria may include single or multiple objective functions. 
That why we do not use this method for this study. 

III. RESULTS AND DISCUSSION 

A. Determination of Intersegmental Forces and Moments 

In our experiment the subject’s body weight (W) is 686N , a 
343-N weight (0.5 x mass(m) x gravity(g))is held in the 
right hand a distance of 22 cm from the elbow joint center, 
and the 11-N forearm weight(0.016 x mg) having its center 
of mass 11 cm from the elbow. The forearm weight is taken 
from anthropometric data with segment weight/total body 

weight is 0.016mg [6]. The hand is externally rotated with θ 
= 30o (Fig. 2).  

 
Fig 2. Free body diagram of forearm during push-up with 
hand externally rotated of 30o 
 
The intersegmental force can be calculated from the force 
equilibrium equations, 
 
Flx + Lx + Wx = 0                      (5) 
 

and 

Fly + Ly + Wy = 0         (6) 

where,  

Wx = W sin 30°, 

Wy= –W cos 30°, 

Lx = L sin 30°, 

Ly = –L cos 30°, 

W = 11 N, and L = 343 N, which gives FIx, and FIy to be –
177 N and 306.5 N, respectively.  

The negative sign indicates that the calculated force is in the 
negative direction of the coordinate system. 

Similarly, the intersegmental moment MIz can be calculated 
from the moment equilibrium equation, 

FI 

11cm 

W=0.5mg W=0.5mg 

22cm 
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Mlz + Ly x 22 + Wy x 11 = 0                       (7) 

giving 

Mlz = 6638.5 N.cm 

B. Reduction Method 

In push up, we assume that all of the elbow flexors are 
grouped as one muscle (Fig. 3). The moment equilibrium 
equation for flexion-extension consists of only two 
variables, the intersegmental moment, which has been 
calculated from the inverse dynamic problem, and the 
unknown muscle force. 45o and 4.4cm moment arm is 
simply taken from Murray [7] 

 

Fig. 3 Elbow flexors are grouped as one muscle with 45o of 
angle and 4.4 cm moment arm 

 

In this simplified consideration, the flexor force, FF can be 
uniquely determined from 

Mlz = 6638.5 N.cm = FF x sin 45o x 4.4cm 

hence 

FF = 2133 N 

With the muscle force determined, the joint constraint 
forces,  and  can then be determined based on the two 
force equilibrium equations, 

Fl = ∑Fm + Fj 

Flx = -177N = Fjx – FF x cos 45o 

hence 

Fjx = 1331 N 

To the right: and 

Fly = 306.5 N = Fjy + FF x sin 45o 

hence 

F jy = -1202 N 

That is, 1202 N downward 

An alternative method of reducing the degree of redundancy 
is to increase the number of constraint equations. This is 
usually accomplished by assuming a force distribution 
between muscles based on anatomic consideration of the 
muscles' physiological cross-sectional areas. 

TABLE I 
SUMMARY OF PCSA AND MOMENT ARM FOR MUSCLES [6] 

 
Muscle PCSA(cm2) Moment Arm (cm) 

Brachialis 7 3.4 
Biceps 4.6 4.6 
Brachioradialis 1.5 7.0 
                 In the 
model, three muscles (biceps, brachialis, and 
brachioradialis) are considered for this calculation (Fig. 4). 
From the figure shown, the lever arms of the biceps (BIC), 
brachialis (BRA), and brachioradialis (BRD) are 4.6 cm, 3.4 
cm, and 7.5 cm, respectively [6].  
 
 
 

 

Fig. 4 Model of three muscles (the biceps, brachialis, and 
brachioradialis) 

Muscle forces are needed to maintain the forearm in the 
position shown can be determine By equilibrium of 
moments about the elbow, 

Mlz      = 6638.5 N.cm 

= 4.6 x FBIC + 3.4 x FBRA + 7.5 x FBRD 



Proceedings of International Conference on Applications and Design in Mechanical Engineering (ICADME) 
11 – 13 October 2009, Batu Ferringhi, Penang, MALAYSIA 

 

11F-5 

Note that there is only one equation, but there are three 
unknowns. It is not possible to solve this problem, which is 
termed an indeterminate problem. That is to say, the 
equations contain more unknown values of forces in the 
anatomic structures than there are equations to describe the 
joint behavior.  

Physiologic constraints allow us to eliminate any solutions 
in which muscle forces are negative or unrealistically high. 
Still, there is an infinite number of solutions that can satisfy 
the equation, but it may be difficult or impossible to know 
which solution is the correct one.  

In order to distribute the forces in the muscles and joint to 
obtain a unique solution, we may have to introduce 
additional constraint equations. For example, based on 
physiological considerations, the muscle force might be 
assumed to be proportional to the physiological cross-
sectional areas (PCSA) of the muscles [6]: 

FBIC/FBRD = 4.6/1.5 

FBRD = 1.5 

 

and  

FBIC/FBRA = 4.6/7.0 

FBRA = 7.0 

 

Now there are three equations, which will make the problem 
uniquely solvable. 

6638.5 = 4.6FBIC+ 3.4 (7.0/4.6)FBIC + 7.5 (1.5/4.6)FBIC 

FBIC = 543 N 

 

From Lou et al.[2] the normalized muscle force during 
anterior position is 20.601 (N/kg).The normalized muscle 
force fraction of forces for each muscle can be obtained by 
assuming a force distribution between muscles based on 
anatomic consideration of the muscles' physiological cross-
sectional areas. This result are stated in Table II. 

Table II 
SUMMARY OF NORMALIZED MUSCLE FORCES 

Muscle Force 
(N) 

Normalized Muscle Force 
(N/kg) 

Muscle 
 

Calculated Calculated 
Lou et 
al.[2] 

Biceps,  543.0 7.78 7.23 
Brachialis 826.3 12.04 11.00 
Brachioradialis 177.1 2.53 2.35 
 
In general, the normalized biceps, brachialis, and 
brachioradialis forces derived in this analysis are at slightly 
difference with literature. The discrepancies between 
calculated and literature shown above are expected as the 
one from literature results (biceps, brachialis, and 
brachioradialis muscles force) are obtained from mean value 
of push-up during neutral position analysis while the 
analysis we did is during external rotation of push-up. 

These values suggest the simplified approach adopted in 
this analysis does provide a useful approximation in 
investigating musculoskeletal loads and muscle forces at the 
ankle joint during squatting exercises. 

CONCLUSION 
 
Solving for muscle forces and joint reaction forces for even 
quite simple tasks is relatively complex. Many 
simplifications/assumptions were required like rigid body 
bones, single line of action for muscles, planar assumption 
and known muscle insertion and origin 
The slightly difference result achieved compare to literature 
suggest the simplified approach adopted in this analysis 
does provide a useful approximation in investigating 
musculoskeletal loads and muscle forces at the ankle joint 
during squatting exercise
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