

Microwave Sintered of 10Hydroxyapatite-Yttria Stabilized Zirconia-AluminaBioceramics Composites for atio. by original **Biomedical Applications**

NurLiyanaBintiMohdRosli sitemis

(1130510716)

A thesis submitted in fulfillment of the requirements for the degree of Master of Science in Manufacturing Engineering

> **School of Manufacturing Engineering UNIVERSITI MALAYSIA PERLIS**

> > 2015

		UNIVER	RSITIMALAYS	APERLIS
Dateofbirth :: 13 August 1987 Title :: Microwave Sintered of 10Hydroxyapatite-Yttria Stabilized Zirconia AluminaBioceramics Composites for Biomedical Applications AcademicSession : 2012/2013 IherebydeclarethatthethesisbecomesthepropertyofUniversitiMalaysiaPerlis (UniMAP)andtobeplacedatthelibraryofUniMAP.Thisthesisisclassifiedas:		DEC	LARATION OF T	HESIS
Title Microwave Sintered of 10Hydroxyapatite-Yttria Stabilized Zirconi. AluminaBioceramics Composites for Biomedical Applications AcademicSession : 2012/2013 IherebydeclarethatthethesisbecomesthepropertyofUniversitiMalaysiaPerlis (UniMAP)andtobeplacedatthelibraryofUniMAP.Thisthesisisclassifiedas: CONFIDENTIAL (ContainsconfidentialinformationundertheOfficialSecretAct1972)* RESTRICTED (Containsrestrictedinformation as specified bythe organization whereresearchwasdone)* OPENACCESS I agreethat mythesis is to be made immediately availableas hardcopyoron-lineopenaccess(fulltext) I,theauthor,givepermissiontotheUniMAPtoreproducethisthesisinwholeorinpartforthepurposeofrese horacademicexchange only(exceptduringaperiodofyears,ifsorequestedabove) Certified by: SIGNATURE SIGNATUREOFSUPERVISOR 870813-43-5634 Dr. NurMaizatulShimaBintiAdzali (NEW ICNO/ PASSPORTNO.) (NAMEOFSUPERVISOR)	Author'sfull name	: NurLiya	naBintiMohdRosli	
AluminaBioceramics Composites for Biomedical Applications AcademicSession : 2012/2013 IherebydeclarethatthethesisbecomesthepropertyofUniversitiMalaysiaPerlis (UniMAP) andtobeplacedatthelibraryofUniMAP. Thisthesisisclassifiedas: Image: Confidential (Containsconfidential information under the Official Secret Act 1972)* RESTRICTED (Containsconfidential information under the Official Secret Act 1972)* Image: Confidential (Containsconfidential information as specified by the organization where research wasdone)* Image: Confidential (Contains estricted information as specified by the organization where research wasdone)* Image: Confidential (Contains estricted information as specified by the organization where research wasdone)* Image: Confidential (Contains estricted information as specified by the organization where research wasdone)* Image: Confidential (Contains estricted information as specified by the organization where research wasdone)* Image: Confidential (Contains estricted information as specified by the organization where research wasdone)* Image: Confidential (Contains estricted information as specified by the organization where research wasdone)* Image: Confidential (Contains estricted information as specified by the organization where research wasdone)* Image: Confidential (Contains estricted information (Contains estricte	Dateofbirth	: 13 Augu	ıst 1987	
IherebydeclarethatthethesisbecomesthepropertyofUniversitiMalaysiaPerlis (UniMAP)andtobeplacedatthelibraryofUniMAP.Thisthesisisclassifiedas: CONFIDENTIAL (ContainsconfidentialinformationundertheOfficialSecretAct1972)* RESTRICTED (Containsrestrictedinformation as specified bythe organization whereresearchwasdone)* OPENACCESS I agreethat mythesis is to be made immediately availableas hardcopyoron-lineopenaccess(fulltext) I,theauthor,givepermissiontotheUniMAPtoreproducethisthesisinwholeorinpartforthepurposeofrese horacademicexchange only(exceptduringaperiodofyears,ifsorequestedabove) Certified by: SIGNATURE SIGNATURE SIGNATURE SIGNATURE MaizatulShimaBintiAdzali (NEW ICNO./ PASSPORTNO.)	Title			
(UniMAP)andtobeplacedatthelibraryofUniMAP.Thisthesisisclassifiedas: CONFIDENTIAL (ContainsconfidentialinformationundertheOfficialSecretAct1972)* RESTRICTED (Containsrestrictedinformation as specified bythe organization whereresearchwasdone)* OPENACCESS I agreethat mythesis is to be made immediately availableas hardcopyoron-lineopenaccess(fulltext) I,theauthor,givepermissiontotheUniMAPtoreproducethisthesisinwholeorinpartforthepurposeofrese horacademicexchange only(exceptduringaperiodofyears,ifsorequestedabove) SIGNATURE SIGNATUREOFSUPERVISOR 870813-45-5634 Dr. NurMaizatulShimaBintiAdzali (NEW ICNO./ PASSPORTNO.) (NAMEOFSUPERVISOR)	AcademicSession	: 2012/20	13	
RESTRICTED (Containsrestrictedinformation as specified bythe organization whereresearchwasdone)* OPENACCESS I agreethat mythesis is to be made immediately availableas hardcopyoron-lineopenaccess(fulltext) I,theauthor,givepermissiontotheUniWAPtoreproducethisthesisinwholeorinpartforthepurposeofrese horacademicexchange only(exceptduringaperiodofyears,ifsorequestedabove) Certified by: SIGNATURE SIGNATUREOFSUPERVISOR 870813-43-5634 Dr. NurMaizatulShimaBintiAdzali (NEW ICNO./ PASSPORTNO.) (NAMEOFSUPERVISOR)				al Co
whereresearchwasdone)* OPENACCESS I agreethat mythesis is to be made immediately availableas hardcopyoron-lineopenaccess(fulltext) I,theauthor,givepermissiontotheUniMAPtoreproducethisthesisinwholeorinpartforthepurposeofrese horacademicexchange only(exceptduringaperiodofyears,ifsorequestedabove) Certified by: SIGNATURE SIGNATURE SIGNATUREOFSUPERVISOR 870813-43-5634 Dr. NurMaizatulShimaBintiAdzali (NEW ICNO./ PASSPORTNO.) (NAMEOFSUPERVISOR)	CONFIDEN	TIAL (Contain	sconfidentialinforma	tionundertheOfficialSecretAct1972)*
hardcopyoron-lineopenaccess(fulltext) I,theauthor,givepermissiontotheUniMAPtoreproducethisthesisinwholeorinpartforthepurposeofrese horacademicexchange only(exceptduringaperiodofyears,ifsorequestedabove) Certified by: SIGNATURE SIGNATURE SIGNATURE SIGNATURE SIGNATURE SIGNATURE SIGNATURE SIGNATURE Certified by: 0 NurMaizatulShimaBintiAdzali (NEW ICNO./ PASSPORTNO.) (NAMEOFSUPERVISOR)	RESTRICT			on as specified bythe organization
horacademicexchange only(exceptduringaperiodofyears,ifsorequestedabove) Certified by: SIGNATURE SIGNATUREOFSUPERVISOR 870813-43-5634 Dr. NurMaizatulShimaBintiAdzali (NEW ICNO./ PASSPORTNO.) (NAMEOFSUPERVISOR)	OPENACCE	5		
SIGNATURE SIGNATUREOFSUPERVISOR 870813-43-5634 Dr. NurMaizatulShimaBintiAdzali (NEW ICNO./ PASSPORTNO.) (NAMEOFSUPERVISOR)	• •			
870813-43-5634 Dr. NurMaizatulShimaBintiAdzali (NEW ICNO./ PASSPORTNO.) (NAMEOFSUPERVISOR)				
(NEW ICNO./ PASSPORTNO.) (NAMEOFSUPERVISOR)	SIGNATURE	SIGNA	TUREOFSUPERVIS	OR
	870813-43-5634		Dr. NurMaizatul	ShimaBintiAdzali
Date : Date :	(NEW ICNC	./ PASSPORTNO.)	(NAMEOFSUPERVISOR)
	Date :		ſ	Date :

ACKNOWLEDGEMENT

In the name of Allah S.W.T and praise to Allah, the Most Merciful and may His blessing be upon the prophet Muhammad S.A.W.

Alhamdulilah, all praises to Allah for the strength and His blessing in completing this thesis. My sincere thanks to my main supervisor Dr. NurMaizatulShima, had done her best in encouraging, supporting, understanding and sharing her knowledge and extensive experience to accomplish this research. A special appreciation also goes to Dr. KhairulAzwan Bin Ismail as my co-supervisor, for his helpful guidance and encouragement during the whole study. My appreciations were extended to Mr. Wan Abdul RahmanAssyahid, Dr. Lee Chang Chuan and Mr. MohdZamzuri Mohammad Zain for their valuable discussions, opinions and suggestions throughout this research.

I would like to acknowledge University Malaysia Perlis (UniMAP) for giving me the opportunity to further my study with scholarship, and special thanks to the School of Manufacturing Engineering by providing excellent facilities and equipment. This gratitude also goes to all staff of School of Manufacturing Engineering, especially to En. Mohd.JasminShaari, En. MazlanMohamadHusin and Pn. Marina Marzukiwho had helped me a lot during my lab work.

I am extremely grateful for my mother's understanding, unconditional supports and her prayers with endless love throughout my journey to complete my study. Thanks to siblings and friends for their moral support and for always be by my side during these tough years. Thanks to all who have contributed in the success of this study. May Allah bless us with happiness. This thesis is specially dedicated to my beloved Almarhum "Abah&Angah". Thank you very much.

NUR LIYANA BINTI MOHD ROSLI 2015

orthis item is protected by original copyright

TABLE OF CONTENTS

	PAGE
THESIS DECLARATION	i
ACKNOWLEDGEMENT	ii
TABLE OF CONTENTS	iv
LIST OF FIGURES	ix
LIST OF FIGURES LIST OF TABLES LIST OF ABBREVIATIONS LIST OF SYMBOLS ABSTRAK ABSTRACT CHAPTER 1 : INTRODUCTION	xii
LIST OF ABBREVIATIONS	xiii
LIST OF SYMBOLS	XV
ABSTRAK	xvi
ABSTRACT	xvii
CCCCC CCC	
CHAPTER 1 : INTRODUCTION	
1.1 Research Background	1
1.2 Problem Statement	6
1.3 Research Goal and Objectives	7
1.4 Research Scope and Limitation	8
1.5 Outline of Thesis	9
CHAPTER 2 : LITERATURE REVIEW	
2.1 Bioceramics	10

2.2	Classification	of Bioceramics	for Hard Ti	ssue Replacement	12
	014001110401011	01 210001	101 11010 11		

2.2.1 Bioinert	13
2.2.2 Bioactive	14
2.2.3 Bioresorbable	15
2.3 Basic Requirement for Bone Implants	15
2.3.1 Mechanical Properties Requirement	18
2.3.2 Biocompatibility	19
2.3.2 Biocompatibility 2.4 Mechanical Properties of Bioceramics 2.4.1 Zirconia 2.4.2 Hydroxyapatite 2.4.3 Alumina 2.5 Bioceramics Composites 2.5.1 Hydroxyapatite Composites	20
2.4.1 Zirconia	21
2.4.2 Hydroxyapatite	22
2.4.3 Alumina	25
2.5 Bioceramics Composites	26
2.5.1 Hydroxyapatite Composites	26
2.5.2 Hydroxyapatite Reinforced ZrO ₂ -Al ₂ O ₃ Composites	27
2.5.3 Hydroxyapatite Reinforced ZrO ₂ Composites	27
2.5.4 Hydroxyapatite Reinforced Bioglass Composites	28
2.5.5 Hydroxyapatite Reinforced Tetragonal-ZrO ₂ Composites	29
2.5.6 Hydroxyapatite Reinforced Metal Composites	30
2.6 Bioceramics Composites Processing by Powder Processing	31
2.7 Sintering	31
2.8 Microwave Sintering	32
2.8.1 Microwave Heating Mechanism	33

2.8.2 Microwave - Material Interactions	35
2.8.3 Characteristics of Microwave Heating	36
2.8.4 Microwave Processing of Ceramics	37
2.8.5 Advantages of Using Microwave Energy in Heating Materials	39
2.8.6 Challenges and difficulties of Using Microwave Energy in Heating	
Materials	41
2.9 Review on the Research Activities of Ceramics Processing	42
2.9.1 Sintering Techniques	42
2.9.2 Microwave Sintering	43
2.10 In-Vitro Biocompatibility Test	48
CHAPTER 3 : METHODOLOGY	
 2.9 Review on the Research Activities of Ceranics Processing 2.9.1 Sintering Techniques 2.9.2 Microwave Sintering 2.10 In-Vitro Biocompatibility Test CHAPTER 3 : METHODOLOGY 3.1 Background of the research 	49
3.2 Introduction	52
3.3 Raw Materials	54
3.3.1 Yttria Stabilized Zirconia (YSZ)	54
3.3.2 Alpha-Alumina (Al ₂ O ₃)	55
3.3.3 Hydroxyapatite (HAP)	56
3.3.4 Stearic Acid	57
3.4 Raw material characterization	57
3.4.1 Particle Size Analysis	57
3.4.1 SEM and XRD Analysis	58

3.5 Fabrication of the 10HAP-YSZ-Al ₂ O ₃ composites	58
3.5.1 Weighing and mixing	58
3.5.2 Compaction	59
3.5.3 Sintering	61
3.6 Physical and mechanical properties testing	65
3.6.1 Bulk density and apparent porosity	66
 3.6.1 Bulk density and apparent porosity 3.6.2 Vickers Micro Hardness 3.6.3 Compression Strength Test 3.7 Morphology observation 3.7.1 Ceramography preparation 3.7.2 SEM observation 3.7.3 SEM-EDS analysis 	67
3.6.3 Compression Strength Test	68
3.7 Morphology observation	68
3.7.1 Ceramography preparation	68
3.7.2 SEM observation	69
3.7.3 SEM-EDS analysis	69
3.7.4X-ray Diffraction (XRD)	70
3.8 BioactivityTest	70
3.8.1 Preparation of Simulated Body Fluid (SBF)	71
3.8.2 Procedures of in-vitro test	72
3.8.3 pH measurement	73
CHAPTER 4 : RESULTS AND DISCUSSION	
4.1 Introduction	74
4.2 Characterization of Raw Materials	74
4.2.1 Yttria Stabilized Zirconia (YSZ)	74

4.2.2 Alumina (Al_2O_3)	76	
4.2.3 Hydroxyapatite (HAP)	78	
4.3 Bulk Density and Apparent Porosity	80	
4.4 Vickers Microhardness	86	
4.5 Compressive Strength	89	
4.6 Morphology Observation	91	
4.7 X-ray diffraction Analysis for Sintered 10HAP-YSZ-Al ₂ O ₃ Composites	96	
4.8 Bioactivity Test	101	
4.8.1 SEM Analysis	103	
4.8.2 XRD Analysis	107	
4.8.3pH Analysis	109	
4.8 Bioactivity Test 101 4.8.1 SEM Analysis 103 4.8.2 XRD Analysis 107 4.8.3pH Analysis 109 CHAPTER 5 : CONCLUSION 109 5.1 Conclusion 112 5.2 Recommendations 115		
5.1 Conclusion	112	
5.2 Recommendations	115	
REFERENCES	115	
GLOSSARY	128	
LIST OF PUBLICATIONS	129	

LIST OF FIGURES

NO. PAGE

2.1	Classification of bioceramics according to their biocompatibility properties; (a) bioinert, zirconia (b) bioactive, hydroxyapatite $(Ca_{10}(PO_4)_2(OH)_2)$ (c) surface active, bioglass, (d) bioresorbable tri- calcium phosphate implant $(Ca_3(PO_4)_2)$	12
~ ~		
2.2	Clinical uses of bioceramics	17
2.3	The electromagnetic spectrum and frequencies used in microwave processing	33
2.4	Two absorption mechanisms that contribute to ionic conduction and dipolar rotation. The term $X \equiv$ distance; $A \equiv$ Amplitude of electric field; \mathcal{E} "eff \equiv effective dielectric loss; $f \equiv$ frequency; $RT \equiv$ room temperature; $HT \equiv$ high temperature	34
25	Illustration of interpation of microwayas with materials: (a) transport	
2.5	Illustration of interaction of microwaves with materials: (a) transparent (b) opaque (c) absorber	36
2.6	Heat distribution within a material (a) conventional resistance heating, (b) microwave heating, and (c) hybrid heating using microwaves (heat from inside to outside) and radiant heating (heat from outside to inside)	
		37
2.7	Distribution of research papers with respect to difference highlighted publication of ceramics and bioceramics from 2005-2015	38
3.1	Research framework of microwave-sintered $10HAP-YSZ-Al_2O_3$ bioceramics composites	52
3.2	Schematic of the uniaxial die pressing for powders	58
3.3	Synotherm high temperature system HAMiLab-V3 microwave furnace	61
3.4	Diagram of the HAMiLab-V3 microwave system; 1) Furnace chamber 2) Furnace base 3) Rotating system 4) Microwave generator 5) Gas flow control cabinet 6) Control cabinet 7) Pyrometer pipe 8) Loading	
	structure of pyrometer	61
3.5	The illustration of experimental setup inside the microwave furnace	63
3.6	The preparation of samples for microwave sintering process	63
3.7	Microwave sintering heating profile of 10HAP-YSZ-Al ₂ O ₃	64
3.8	Sample immersed in SBF solution	72

4.1	SEM micrograph of YSZ powder recorded at 1000x magnification	74
4.2	Particle size distribution of as-received YSZ powder	74
4.3	XRD patterns of YSZ powder	75
4.4	SEM micrograph of as-received Al ₂ O ₃ powder	76
4.5	Particle size distribution of Al ₂ O ₃ powder	76
4.6	XRD patterns of Al ₂ O ₃ powder	77
4.7	SEM micrograph of as-received HAP	78
4.8	Particle size distribution of HAP powder XRD pattern of as-received HAP powder	78
4.9	XRD pattern of as-received HAP powder	79
4.10	The value of green density and bulk density of the 10HAP-YSZ- Al_2O_3 composites sintered at three different sintering temperatures and four different wt. % of YSZ to the remaining Al_2O_3 and HAP respectively	82
4.11	Schematic representation of a sintering curve for 10HAP-60YSZ-Al ₂ O ₃ composites	82
4.12	The value of percentage apparent porosity of the 10HAP-YSZ-Al2O3 composites sintered at three different sintering temperatures and four different sintering	ent
	wt. % of YSZ to the remaining Al_2O_3 and HAP respectively 83	
4.13	Wt. % of YSZ to the remaining AI_2O_3 and HAP respectively 83 The effect of varying wt. % of YSZ to the remaining AI_2O_3 and HAP respectively with respect to different sintering temperature on the Vickers microhardness of the 10HAP-YSZ- AI_2O_3 composites	86
4.134.14	The effect of varying wt. % of YSZ to the remaining Al_2O_3 and HAP respectively with respect to different sintering temperature on the	86 89
	The effect of varying wt. % of YSZ to the remaining Al ₂ O ₃ and HAP respectively with respect to different sintering temperature on the Vickers microhardness of the 10HAP-YSZ-Al ₂ O ₃ composites The compressive strength versus different wt. % of YSZ as a function	
4.14	The effect of varying wt. % of YSZ to the remaining Al ₂ O ₃ and HAP respectively with respect to different sintering temperature on the Vickers microhardness of the 10HAP-YSZ-Al ₂ O ₃ composites The compressive strength versus different wt. % of YSZ as a function of different sintering temperature SEM micrographs for samples with (a) 20 wt. %, (b) 40 wt. %, (c) 60 wt. % and (d) 80 wt. % of YSZ additions into the remaining Al ₂ O ₃ -	89
4.14 4.15	 The effect of varying wt. % of YSZ to the remaining Al₂O₃ and HAP respectively with respect to different sintering temperature on the Vickers microhardness of the 10HAP-YSZ-Al₂O₃composites The compressive strength versus different wt. % of YSZ as a function of different sintering temperature SEM micrographs for samples with (a) 20 wt. %, (b) 40 wt. %, (c) 60 wt. % and (d) 80 wt. % of YSZ additions into the remaining Al₂O₃-10HAP sintered at 900°C SEM micrographs for samples with (a) 20 wt. %, (b) 40 wt. %, (c) 60 wt. % and (d) 80 wt. % of YSZ additions into the remaining Al₂O₃-10HAP sintered at 900°C 	89 92
4.14 4.15 4.16	 The effect of varying wt. % of YSZ to the remaining Al₂O₃ and HAP respectively with respect to different sintering temperature on the Vickers microhardness of the 10HAP-YSZ-Al₂O₃ composites The compressive strength versus different wt. % of YSZ as a function of different sintering temperature SEM micrographs for samples with (a) 20 wt. %, (b) 40 wt. %, (c) 60 wt. % and (d) 80 wt. % of YSZ additions into the remaining Al₂O₃-10HAP sintered at 900°C SEM micrographs for samples with (a) 20 wt. %, (b) 40 wt. %, (c) 60 wt. % and (d) 80 wt. % of YSZ additions into the remaining Al₂O₃-10HAP sintered at 1000°C SEM micrographs for samples with (a) 20 wt. %, (b) 40 wt. %, (c) 60 wt. % and (d) 80 wt. % of YSZ additions into the remaining Al₂O₃-10HAP sintered at 1000°C 	89 92 94

4.19	XRD pattern for 10HAP-YSZ-Al ₂ O ₃ composite after sintered at temperature 1000° C	98
4.20	XRD pattern for 10HAP-YSZ-Al ₂ O ₃ composite after sintered at temperature 1100° C	100
4.21	SEM micrographs and EDS spot/area microanalysis of 10HAP-60YSZ- Al_2O_3 samples sintered at 900°C, after immersed in SBF for 9 days and 30 days	
4.22	SEM micrographs and EDS spot/area microanalysis of 10HAP-60YSZ- Al_2O_3 samples sintered at 1000°C, after immersed in SBF for (a) 9 days and (b) 30 days 10	
4.23	SEM micrographs and EDS spot/area microanalysis of 10HAP-60YSZ- Al_2O_3 samples sintered at 1100°C, after immersed in SBF for (a) 9 days and (b) 30 days 1000000000000000000000000000000000000	
4.24	XRD pattern for 10HAP-60YSZ-Al2O3 composite as a function of immersion time in SBF for samples sintered at 1000° C10	
4.25	immersion time in SBF for samples sintered at 1000°C	

LIST OF TABLES

NO. PAGE

 \bigcirc

2.1	The tissue attachment of mechanism and bioceramics classification	16
2.2	Mechanical Properties of human bone	18
2.3	Comparison of mechanical properties of YSZ in literature	21
2.4	Various phases of calcium phosphate ceramics	23
2.5	The composition of biological apatite and hydroxyapatite	24
2.6	Comparison of mechanical properties of HAP in literature	24
2.7	Comparison of mechanical properties of Al ₂ O ₃ in literature	25
2.8	Features and advantages for microwave processing ceramics over the conventional processing	40
2.9	Comparison of mechanical properties of microwave sintered of related bioceramics in literature	46
3.1	The physical and mechanical properties of yttria stabilized zirconia powder	53
3.2	The physical and mechanical properties of alpha alumina powder	54
3.3	The physical and mechanical properties of Hydroxyapatite powder	55
3.4	The composition of the composites	58

LIST OF ABBREVIATIONS

Al_2O_3	Alumina
ASTM	American Standard Testing Method
Ca	Calcium
CaO	Calcium Oxide
$Ca_3(PO_4)_2$	Tricalcium Phosphate
$Ca_4P_2O_9$	Tetracalcium Phosphate (TTCP)
$Ca_{10}(PO_4)_2(OH)_2$	Tricalcium Phosphate (TTCP) Hydroxyapatite Calcium Zirconate
CaZrO ₃	Calcium Zirconate
c-ZrO ₂	Cubic Zirconia
H ₂ O	Water
Hv	Vickers Hardness
0Н-	Hydrogen Oxide
P	Phosphate
OH- P Pt Mg	Platinum
Mg	Magnesium
Na ₂ HPO ₄ 7H ₂ O	Sodium Monohydrogen Phosphate Heptahydrate
SiC	Silicon Carbide
SBF	Simulated Body Fluid
SEM	Scanning electron microscope
Ti	Titanium
XRD	X-ray diffraction

officitien is protected by original copyright

LIST OF SYMBOLS

%	Percent
°C	Degree Celcius
А	exposed specimen area, cm ²
g/cm ³	gram per centimeter cube
GPa	Giga Pascal
MPa	Mega Pascal
min	Minutes
wt. %	Weight Percent
μm	micrometer
othisitemis	gram per centimeter cube Giga Pascal Minutes Weight Percent micrometer

PensinteranKetuharGelombangMikro10HAP-YSZ-Al₂O₃BioseramikKompositUntukAplikasiBioperubatan

ABSTRAK

Ciri-cirikeserasian bio minimum yang dankesankelonggaranimplanadalahisupentingdalamkomplikasiortopedikimplan.Keperlu anutamaimplanperubatanadalahsifat-sifatmekanikal bolehditerima yang yang memberikaninteraksi yang baikdenganrangkaiansekitarnyatanpamendapattindakbalastisuyang buruk.Sifatkeserasian biohydroxyapatite (HAP) yang luarbiasadiiktirafsebagaibahanimplan yang paling praktikal.Bioaktif hydroxyapatite berhadapandenganmasalahsifat-sifatmekanikalyang lemah.Kehadiran YSZ dan Al₂O₃adalahsebagaibioseramiktidakreaktifdanfizikal yang kuatdengantahapkeserasian bio tinggi.Penyelidikan yang yang berkaitandenganbioseramikinitelahterbuktisejakbeberapatahunkebelakanganmelaluipens interankonvensional, tetapipemprosesanbioseramikkompositinimenggunakanpemanasangelombangmikrohibr idyang agaksukardidapatidalamkajianliteratur.Kajianinisecarakhususberkaitandengankesanpens interanketuhargelombangmikrokomposit 10HAP-YSZ-Al₂O₃terhadapsuhupensinteran berbezadanpelbagaikomposisi VSZ dan Al₂O₃pada 10% vang beratHAP.Pensinteranperbandingandilakukanpadasuhu 900°C, 1000°C dan 1100°C. Komposit mengandungi 60% beratYSZ disinter vang vang olehgelombangmikropadasuhu 1000°C menunjukkansifat-sifat yang paling baik, keranapenglibatan YSZ dan Al_2O_3 yang mengatasikerapuhan yang adapada HAP. Komposit 10HAP-60YSZ-Al₂O₃menunjukkanpeningkatandalamketumpatankepada 2.88g/cm3, kekerasan dankeputusankekuatanmampatanmasing-Vickers masingadalah5.68GPa 36.31MPa.Optimum 30% dan berat HAP Al_2O_3 hadirdalamkompositberkesanmengurangkantindakbalasantara dan YSZ.Kebolehsintaranlebihbaikdicapaimelaluisuhupensinteranmencukupi 1000°C menunjukkankawalanmorfologi yang lebihbaikdengansedikitjumlahkeliangansemasa proses pensinteranyang dikendalikanolehpemanasangelombangmikrohibrid. Dari segikestabilanfasadidapatisamaadadenganpeningkatanjumlah YSZ melebihi 60% atausuhupensinteransehingga 1100°C akanmempercepatkanpenguraian HAP membentukTCP bersama-samadenganpembebasanCaO. KehadiranfasaCaO vang tinggijugamenyebabkanpembentukan CaZrO₃dan CaAl₂O₄.Pembentukanfasabaruinidisebabkanolehreaksi HAP dengan ZrO₂dan Al₂O₃, menyumbangkepadakemerosotandalamsifatmekanikal. Ujianin-vitro telahdijalankanuntukmengkajitingkahlakukeserasian bio 10HAP-60YSZ-Al₂O₃komposit.Analisis XRD menunjukkankompositdalamsimulasicecairbadan (SBF) telahmenyebabkankehadiranfasa HAP yang menggalakkanpenukleusanapatit.Kajianinimenyumbangkepadakebolehlaksaanpemprose sanketuhargelompangmikrodalammenghasilkanbioseramik 10HAP-60YSZ-Al₂O₃kompositdengansifat-sifatfizikaldanmekanikal yang bolehditerimadenganadanyakeserasian biountukdigunakandalamaplikasibioperubatan.

Microwave Sintered of 10HAP-YSZ-Al₂O₃Bioceramics Composites for Biomedical Applications

ABSTRACT

The minimal biocompatibility features and consequence implant loosening are the crucial issues in orthopedic implant complication. The prime requirements of medical implant are acceptable mechanical properties which impart excellent interaction with the surrounding tissue without elicit an adverse response. The remarkable biocompatibility properties of hydroxyapatite (HAP) acknowledged as the most practical implant materials. The bioactive hydroxyapatite encountered with poor mechanical properties. The presence of YSZ and Al_2O_3 areas an inert and physically strong bioceramics with high level of biocompatibility. The research associated with this bioceramics had been proven over the past years through the conventional sintering, but processing this bioceramics composites using microwave hybrid heating is rather scarce in literature. This research is specifically concerned with the effect of microwave sintered 10HAP-YSZ-Al₂O₃ composites towardsdifferent sintering temperatures and the various compositions of YSZ and Al₂O₃to 10 wt. % of HAP. Comparative sintering was performed at temperatures of 900°C, 1000 °C and 1100 °C. Composites containing 60 wt. % microwave sintered at temperature of 1000 °C exhibited the greatest properties, due to incorporation of YSZ and Al₂O₃which overcome the inherent brittleness of HAP. The 10HAP-60YSZ-Al₂O₃ composites indicated an increase in density to 2.88g/cm³, Vickers hardness and compressive strength results as 5.68GPa and 36.31MPa respectively. The optimum 30 wt. % Al₂O₃ inclusion in composites effectively diminished the reaction between HAP and YSZ. Better sinterability was achieved through an adequate sintering temperature of 1000°C showed better morphology control with slight amount of porosity during the sintering process facilitate by microwave hybrid heating. In terms of phase stability it was found that either with increasing amounts of YSZ beyond 60 wt. % or sintering temperature up to 1100°C will hasten the decomposition of HAP to TCP together with the releasing CaO. The substantial CaO phase also results in the formation of CaZrO₃ and CaAl₂O₄. The formation of this secondary phases corresponding to the reaction of HAP betweenZrO₂andAl₂O₃, contribute to deterioration in mechanical properties. In-vitro test has been conducted to examine the biocompatibility behavior of 10HAP-60YSZ-Al₂O₃ composites. XRD analysis indicated the composites in simulated body fluid (SBF) induced a significant presence of HAP phases which promote the apatite nucleation. This research contributes to the feasibility of microwave processing in producing 10HAP-60YSZ-Al₂O₃bioceramicscomposites with acceptable physical and mechanical properties with ordinary biocompatibility requirement for biomedical applications.

othis item is protected by original copyright

CHAPTER 1

INTRODUCTION

1.1 Research Background

There is an ongoing search on improving the development of biomaterials research as in response to the rising number of patients suffering with diseased or damaged bone. The use of biomaterials assynthetic materials that are synthesized or fabricated as a purpose of implants, scaffolds, fillers, or carriers have revolutionized to aid the patients retrieve their health problem and in some cases are promising for fully recovery (Dorozhkin, 2010). Therefore, an ideal implant material is expected to impart excellent interaction with surrounding tissue without elicit adverse response, leading to intimate apposition with living tissue (Muddugangahar et al. 2011).

Prior to the current requirement of implant material, an appropriate combination of physical properties and minimal toxicity response in the host are the only recommended criteria for implant material in the early period of medical implant development (Hench & Thompson, 2010). At that time almost all materials used for implant were single phase materials but afterwards the mechanical properties of implant material and its responsible for the growth of body tissue become the importance subject matter in the biomedical field (Arifin et al., 2014).

As with increasing demand for implant, metallic implant still predominantly used for making bone implants due to their outstanding mechanical strength (Niinomi, 2003). Despite high mechanical strength reported by metal and metal alloyed based composites, poor biocompatibility resulting to loosening related failure of implant (Yang et al., 2011). For instance, the simple interlocking bonding between interface titanium and host bone as reported by Ning & Zhou, (2008). In some cases, the subsequent corrosion has attack the metal constituent of the implant by release the toxic metallic ions such as chromium, cobalt and nickel into the human body (Poinern et al., 2013). Corrosion frequently shorten the life span of implant part which could possibly necessitate revision surgery (Patel & Gohil, 2012).

At present, the crucial issues on implant regarding the minimal biocompatibility features and consequence implant loosening have encouraged the search for better materials in term of biocompatible, biological safety and economical biomaterials to treat the orthopedic complication (Ning & Zhou, 2008). For that reason, calcium phosphate based ceramics, in particular represent as hydroxyapatite (HAP) received a great deal of attention which has been directed towards the most practical implant materials (Kupiec et al., 2013). The remarkable biocompatibility properties of HAP are identified by the chemical similarity with mineralogical composition of natural bone complemented by strong chemical bonding ability with the living tissue (Fan et al., 2009). HAP form across the implant tissue interface that mimics the body's natural repair process, which offer earlier stabilization of the implant and longer functional of life (carter, 2007). However, bioactive hydroxyapatite (HAP) encountered with poor mechanical properties compared to other common implant material (Lim et al., 2013). Evidently, HAP found to be very sensitive towards the method of preparation and sintering conditions (Borrell et al., 2014).

Thus, numerous efforts have been made to introduce a reinforcing phase into HAP composition as to improve the mechanical properties (Nouri et al., 2012). The approach of incorporate strong ceramics materials acts as good additives to improve the inherent

brittleness of HAP (Atif et al., 2012). Zirconia, especially 3 mol % yttria stabilized zirconia (YSZ) can significantly enhance the mechanical properties due to its high toughness and high compression strength in which exhibits excellent resistance against crack propagation (Velmurugan et al., 2010). Desirable properties of alumina (Al₂O₃) as an inert substance, high hardness and excellent wear resistance make it useful as a biomaterial. Furthermore, with a dispersion of Al₂O₃ in YSZ matrix is expected to suppress the low temperature degradation which prevents the abnormal grain growth by controlling the microstructure (Shufeng et al., 2012). The result demonstrated no sign rejection of implant or prolapse after certain period of implantation, thereby showed positive indication of tissue ingrowth at the implant interface (Mercioniu et al., 2012; Rogojan et al., 2012). The representative of YSZ and Al₂O₃ as inert bioceramics with their good mechanical features might be useful to overcome the inherent brittleness of HAP while maintaining its bioactivity (Maccauro et al., 2011; Oktar et al., 2007).

Previous study involved with the manufacture of HAP – ZrO_2 composites usually found that fabricating this composite complicated by the decomposition factor at elevated sintering temperature with the addition of large amount $ZrO_2(Reidy, 2010)$. To date with the bioceramics composite manufacturing, powder processing process is significant for the parts that are required to be manufactured in powder form that pose challenges for the specific applications through the incorporation of sintering (German, 1996). The efficiency of sintering process is appraised by the quality of the properties imparts to the sintered parts at lowest processing temperature and cost (Clark et al., 2011). As a consequence, a proposed solution for this issue is to employ a different sintering regime to increase the effectiveness of sintering process which can be achieved through microwave sintering. Microwave processing technology acknowledged much attention in recent years, as evidenced by the emerging number of research on the processing different materials by microwave for particular applications. The extensive used in microwave technology in communication, further contributed to microwave energy for materials processing applications including food processing, rubber industry, ceramics, polymer, metallic materials and composites (Manoj Gupta & Leong, 2007). The applications involved with low and high temperature (>1000°C) utilization of microwaves. The great potential of using microwave heating on the processing ceramics was discovered over 50 years ago by Von Hippel in 1954 (Lakshmanan, 2012). Voss & Tinga, (1968) showed the feasibility of sintering ceramic-glass-ceramic seals in the mid 1960s at University of Edmonton, Canada.

A significant amount of research has been conducted on identifying and understanding the problem associated with the sintering of various types of ceramics and continuously active in this matter up to present. Most of reproducible research emphasizes the microwave energy processes was fundamentally different with conventional heating processes (Borrell et al., 2014). Microwave energy was perceived to provide rapid heating, volumetric heating, improve properties of materials, reduced environmental impact of material processing and provide approaches for processing materials that are challenging to produce microstructures that cannot be achieved by the other methods (Sharan, 2009). This has mainly led towards processing cost saving because of the reduction of processing time and energy (Mondal et al., 2010). In Malaysia, Ramesh et al., (2008) has proved the same findings regarding the short sintering cycle provided by microwave heating, without noticed any grain coarsening effecttowards the samples. Microwave heating has been well employed for material processing, as much recognition of the heating effect of microwave joining materials (Ertugrul et al., 2014; Presenda et al., 2015). A combination of multiple materials (two or more) with different compositions by promising individual functions and properties were recognized as composites (Yoruc & Sener, 2012). The feasibility of producing composites by combining the potential materials seems to have encouraging result in the area of biomedical applications, as proven by some clinical test (Bellucci et al., 2013; Campo et al., 2014). Very limited research has been reported about microwave sintering processing to fabricate the bioceramics YSZ - Al₂O₃ added to HAP based composites (Benavente et al., 2014). Therefore, this research is conducted in order to produce bioceramics composites with acceptable physical and mechanical properties, while maintaining an ordinary biocompatibility requirement for biomedical applications.

othis item is protected