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PensinteranKetuharGelombangMikro10HAP-YSZ-
Al2O3BioseramikKompositUntukAplikasiBioperubatan 

 

ABSTRAK 
 

Ciri-cirikeserasian bio yang minimum 
dankesankelonggaranimplanadalahisupentingdalamkomplikasiortopedikimplan.Keperlu
anutamaimplanperubatanadalahsifat-sifatmekanikal yang bolehditerima yang 
memberikaninteraksi yang 
baikdenganrangkaiansekitarnyatanpamendapattindakbalastisuyang 
buruk.Sifatkeserasian biohydroxyapatite (HAP) yang 
luarbiasadiiktirafsebagaibahanimplan yang paling praktikal.Bioaktif hydroxyapatite 
berhadapandenganmasalahsifat-sifatmekanikalyang lemah.Kehadiran YSZ dan 
Al2O3adalahsebagaibioseramiktidakreaktifdanfizikal yang kuatdengantahapkeserasian 
bio yang tinggi.Penyelidikan yang 
berkaitandenganbioseramikinitelahterbuktisejakbeberapatahunkebelakanganmelaluipens
interankonvensional, 
tetapipemprosesanbioseramikkompositinimenggunakanpemanasangelombangmikrohibr
idyang 
agaksukardidapatidalamkajianliteratur.Kajianinisecarakhususberkaitandengankesanpens
interanketuhargelombangmikrokomposit 10HAP-YSZ-Al2O3terhadapsuhupensinteran 
yang berbezadanpelbagaikomposisi YSZ dan Al2O3pada 10% 
beratHAP.Pensinteranperbandingandilakukanpadasuhu 900°C, 1000°C dan 1100°C. 
Komposit yang mengandungi 60% beratYSZ yang disinter 
olehgelombangmikropadasuhu 1000°C menunjukkansifat-sifat yang paling baik, 
keranapenglibatan YSZ dan Al2O3 yang mengatasikerapuhan yang adapada HAP. 
Komposit 10HAP-60YSZ-Al2O3menunjukkanpeningkatandalamketumpatankepada 
2.88g/cm3, kekerasan Vickers dankeputusankekuatanmampatanmasing-
masingadalah5.68GPa dan 36.31MPa.Optimum 30% berat 
Al2O3hadirdalamkompositberkesanmengurangkantindakbalasantara HAP dan 
YSZ.Kebolehsintaranlebihbaikdicapaimelaluisuhupensinteranmencukupi 1000°C 
menunjukkankawalanmorfologi yang lebihbaikdengansedikitjumlahkeliangansemasa 
proses pensinteranyang dikendalikanolehpemanasangelombangmikrohibrid. Dari 
segikestabilanfasadidapatisamaadadenganpeningkatanjumlah YSZ melebihi 60% 
atausuhupensinteransehingga 1100°C akanmempercepatkanpenguraian HAP 
membentukTCP bersama-samadenganpembebasanCaO. KehadiranfasaCaO yang 
tinggijugamenyebabkanpembentukan CaZrO3dan 
CaAl2O4.Pembentukanfasabaruinidisebabkanolehreaksi HAP dengan ZrO2dan Al2O3, 
menyumbangkepadakemerosotandalamsifatmekanikal. Ujianin-vitro 
telahdijalankanuntukmengkajitingkahlakukeserasian bio 10HAP-60YSZ-
Al2O3komposit.Analisis XRD menunjukkankompositdalamsimulasicecairbadan (SBF) 
telahmenyebabkankehadiranfasa HAP yang 
menggalakkanpenukleusanapatit.Kajianinimenyumbangkepadakebolehlaksaanpemprose
sanketuhargelompangmikrodalammenghasilkanbioseramik 10HAP-60YSZ-
Al2O3kompositdengansifat-sifatfizikaldanmekanikal yang 
bolehditerimadenganadanyakeserasian biountukdigunakandalamaplikasibioperubatan. 
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Microwave Sintered of 10HAP-YSZ-Al2O3Bioceramics Composites for Biomedical 
Applications 

 

ABSTRACT 
 

The minimal biocompatibility features and consequence implant loosening are the 
crucial issues in orthopedic implant complication. The prime requirements of medical 
implant are acceptable mechanical properties which impart excellent interaction with 
the surrounding tissue without elicit an adverse response. The remarkable 
biocompatibility properties of hydroxyapatite (HAP) acknowledged as the most 
practical implant materials. The bioactive hydroxyapatite encountered with poor 
mechanical properties.The presence of YSZ and Al2O3 areas an inert and physically 
strong bioceramics with high level of biocompatibility. The research associated with 
this bioceramics had been proven over the past years through the conventional sintering, 
but processing this bioceramics composites using microwave hybrid heating is rather 
scarce in literature. This research is specifically concerned with the effect of microwave 
sintered 10HAP-YSZ-Al2O3 composites towardsdifferent sintering temperatures and 
the various compositions of YSZ and Al2O3to 10 wt. % of HAP. Comparative sintering 
was performed at temperatures of 900ºC, 1000 ºC and 1100 ºC. Composites containing 
60 wt. % microwave sintered at temperature of 1000 ºC exhibited the greatest 
properties, due to incorporation of YSZ and Al2O3which overcome the inherent 
brittleness of HAP. The 10HAP-60YSZ-Al2O3 composites indicated an increase in 
density to 2.88g/cm3, Vickers hardness and compressive strength results as 5.68GPa and 
36.31MPa respectively.The optimum 30 wt. % Al2O3inclusion in composites 
effectively diminished the reaction between HAP and YSZ. Better sinterability was 
achieved through an adequate sintering temperature of 1000°C showed better 
morphology control with slight amount of porosity during the sintering process facilitate 
by microwave hybrid heating. In terms of phase stability it was foundthat either with 
increasing amounts of YSZ beyond 60 wt. % or sintering temperature up to 1100ºC will 
hasten the decomposition of HAP to TCP together with the releasing CaO. The 
substantial CaO phase also results in the formation of CaZrO3 and CaAl2O4. The 
formation of this secondary phases corresponding to the reaction of HAP 
betweenZrO2andAl2O3, contribute to deterioration in mechanical properties. In-vitro 
test has been conducted to examine the biocompatibility behavior of 10HAP-60YSZ-
Al2O3 composites. XRD analysis indicated the composites in simulated body fluid 
(SBF) induced a significant presence of HAP phases which promote the apatite 
nucleation. This research contributes to the feasibility of microwave processing in 
producing 10HAP-60YSZ-Al2O3bioceramicscomposites with acceptable physical and 
mechanical properties with ordinary biocompatibility requirement for biomedical 
applications.  
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CHAPTER 1 
 

 

INTRODUCTION 
 

 

 

1.1 Research Background 

 

There is an ongoing search on improving the development of biomaterials research 

as in response to the rising number of patients suffering with diseased or damaged bone. 

The use of biomaterials assynthetic materials that are synthesized or fabricated as a 

purpose of implants, scaffolds, fillers, or carriers have revolutionized to aid the patients 

retrieve their health problem and in some cases are promising for fully recovery 

(Dorozhkin, 2010). Therefore, an ideal implant material is expected to impart excellent 

interaction with surrounding tissue without elicit adverse response, leading to intimate 

apposition with living tissue (Muddugangahar et al.  2011).  

Prior to the current requirement of implant material, an appropriate combination of 

physical properties and minimal toxicity response in the host are the only recommended 

criteria for implant material in the early period of medical implant development (Hench 

& Thompson, 2010). At that time almost all materials used for implant were single 

phase materials but afterwards the mechanical properties of implant material and its 

responsible for the growth of body tissue become the importance subject matter in the 

biomedical field (Arifin et al., 2014).  

As with increasing demand for implant, metallic implant still predominantly used 

for making bone implants due to their outstanding mechanical strength (Niinomi, 2003). 

Despite high mechanical strength reported by metal and metal alloyed based 
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composites, poor biocompatibility resulting to loosening related failure of implant 

(Yang et al., 2011). For instance, the simple interlocking bonding between interface 

titanium and host bone as reported by Ning & Zhou, (2008). In some cases, the 

subsequent corrosion has attack the metal constituent of the implant by release the toxic 

metallic ions such as chromium, cobalt and nickel into the human body (Poinern et al., 

2013). Corrosion frequently shorten the life span of implant part which could possibly 

necessitate revision surgery (Patel & Gohil, 2012).   

At present, the crucial issues on implant regarding the minimal biocompatibility 

features and consequence implant loosening have encouraged the search for better 

materials in term of biocompatible, biological safety and economical biomaterials to 

treat the orthopedic complication (Ning & Zhou, 2008).  For that reason, calcium 

phosphate based ceramics, in particular represent as hydroxyapatite (HAP) received a 

great deal of attention which has been directed towards the most practical implant 

materials (Kupiec et al., 2013). The remarkable biocompatibility properties of HAP are 

identified by the chemical similarity with mineralogical composition of natural bone 

complemented by strong chemical bonding ability with the living tissue (Fan et al., 

2009). HAP form across the implant tissue interface that mimics the body’s natural 

repair process, which offer earlier stabilization of the implant and longer functional of 

life (Carter, 2007). However, bioactive hydroxyapatite (HAP) encountered with poor 

mechanical properties compared to other common implant material (Lim et al., 2013). 

Evidently, HAP found to be very sensitive towards the method of preparation and 

sintering conditions (Borrell et al., 2014).  

Thus, numerous efforts have been made to introduce a reinforcing phase into HAP 

composition as to improve the mechanical properties (Nouri et al., 2012). The approach 

of incorporate strong ceramics materials acts as good additives to improve the inherent 
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brittleness of HAP (Atif et al., 2012). Zirconia, especially 3 mol % yttria stabilized 

zirconia (YSZ) can significantly enhance the mechanical properties due to its high 

toughness and high compression strength in which exhibits excellent resistance against 

crack propagation (Velmurugan et al., 2010).  Desirable properties of alumina (Al2O3) 

as an inert substance, high hardness and excellent wear resistance make it useful as a 

biomaterial. Furthermore, with a dispersion of Al2O3 in YSZ matrix is expected to 

suppress the low temperature degradation which prevents the abnormal grain growth by 

controlling the microstructure (Shufeng et al., 2012). The result demonstrated no sign 

rejection of implant or prolapse after certain period of implantation, thereby showed 

positive indication of tissue ingrowth at the implant interface (Mercioniu et al., 2012; 

Rogojan et al., 2012). The representative of YSZ and Al2O3 as inert bioceramics with 

their good mechanical features might be useful to overcome the inherent brittleness of 

HAP while maintaining its bioactivity (Maccauro et al., 2011; Oktar et al., 2007). 

Previous study involved with the manufacture of HAP – ZrO2 composites usually 

found that fabricating this composite complicated by the decomposition factor at 

elevated sintering temperature with the addition of large amount ZrO2(Reidy, 2010).. 

To date with the bioceramics composite manufacturing, powder processing process is 

significant for the parts that are required to be manufactured in powder form that pose 

challenges for the specific applications through the incorporation of sintering (German, 

1996). The efficiency of sintering process is appraised by the quality of the properties 

imparts to the sintered parts at lowest processing temperature and cost (Clark et al., 

2011). As a consequence, a proposed solution for this issue is to employ a different 

sintering regime to increase the effectiveness of sintering process which can be achieved 

through microwave sintering. 
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Microwave processing technology acknowledged much attention in recent years, as 

evidenced by the emerging number of research on the processing different materials by 

microwave for particular applications. The extensive used in microwave technology in 

communication, further contributed to microwave energy for materials processing 

applications including food processing, rubber industry, ceramics, polymer, metallic 

materials and composites (Manoj Gupta & Leong, 2007). The applications involved 

with low and high temperature (>1000˚C) utilization of microwaves. The great potential 

of using microwave heating on the processing ceramics was discovered over 50 years 

ago by Von Hippel in 1954 (Lakshmanan, 2012). Voss & Tinga, (1968) showed the 

feasibility of sintering ceramic-glass-ceramic seals in the mid 1960s at University of 

Edmonton, Canada. 

A significant amount of research has been conducted on identifying and 

understanding the problem associated with the sintering of various types of ceramics 

and continuously active in this matter up to present. Most of reproducible research 

emphasizes the microwave energy processes was fundamentally different with 

conventional heating processes (Borrell et al., 2014). Microwave energy was perceived 

to provide rapid heating, volumetric heating, improve properties of materials, reduced 

environmental impact of material processing and provide approaches for processing 

materials that are challenging to produce microstructures that cannot be achieved by the 

other methods (Sharan, 2009). This has mainly led towards processing cost saving 

because of the reduction of processing time and energy (Mondal et al., 2010). In 

Malaysia, Ramesh et al., (2008) has proved the same findings regarding the short 

sintering cycle provided by microwave heating, without noticed any grain coarsening 

effecttowards the samples.  
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Microwave heating has been well employed for material processing, as much 

recognition of the heating effect of microwave joining materials (Ertugrul et al., 2014; 

Presenda et al., 2015).  A combination of multiple materials (two or more) with 

different compositions by promising individual functions and properties were 

recognized as composites (Yoruc & Sener, 2012). The feasibility of producing 

composites by combining the potential materials seems to have encouraging result in 

the area of biomedical applications, as proven by some clinical test (Bellucci et al., 

2013; Campo et al., 2014). Very limited research has been reported about microwave 

sintering processing to fabricate the bioceramics YSZ - Al2O3 added to HAP based 

composites (Benavente et al., 2014).  Therefore, this research is conducted in order to 

produce bioceramics composites with acceptable physical and mechanical properties, 

while maintaining an ordinary biocompatibility requirement for biomedical 

applications.  
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