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Peningkatan Prestasi Peranti Optoelektronik Menggunakan Kuantum 
Dot Kumpulan-III Nitrida Berasaskan 

Kuantum dot telah menjadi subjek kepentingan yang luar biasa dalam bidang 
semikonduktor reka bentuk peranti optoelektronik untuk penyelidik kerana beberapa 
sifat-sifat mereka yang unik. Antara pelbagai jenis peranti optoelektronik beberapa ciri-
ciri penting dalam sel solar dan laser telah dikaji secara meluas. Kedua-dua peranti ini 
dipilih kerana kepentingan peranti semikonduktor optoelektronik dalam bidang tenaga 
boleh diperbaharui dan komunikasi gentian optik masing-masing. Terbaharu ini ia telah 
mengakui bahawa penyelidik memberikan perhatian yang lebih kepada titik kuantum 
golongan III nitrida. Oleh itu kajian ini adalah dikhaskan untuk menyiasat peningkatan 
prestasi sel solar dan laser menggunakan Inn berdasarkan kuantum dot dalam lapisan 
aktif struktur peranti. Dalam kajian ini bekerja peningkatan prestasi kedua dua peralatan 
ini telah dicapai dengan menukar bahan lapisan aktif tanpa menjejaskan parameter 
struktur lain. Kesan pemalar kekisi pada jurang jalur pengoptimuman tenaga 
 ଵି௫ܰ telah disiasat pada mulanya. Dari analisis berangka ia telah mendapatiܽܩ௫݊ܫ
bahawa ݊ܫ௫ܽܩଵି௫ܰ menawarkan jurang tenaga dari 0.7eV - 3.5eV, yang 
menjadikannya bahan yang sesuai untuk sel solar untuk menyerap pelbagai tenaga 
cahaya. Tambahan pula, ia telah menunjukkan bahawa ݊ܫ଴.଼଻ܽܩ଴.ଵଷܰ mampu 
memancarkan cahaya pada panjang gelombang 1.55μm, yang menawarkan pengecilan 
yang paling rendah bagi penghantaran isyarat melalui gentian optik. Oleh itu, hasil 
daripada siasatan awal menentukan bahawa dalam ݊ܫ௫ܽܩଵି௫ܰ boleh menjadi bahan 
yang menjanjikan untuk menghasilkan dan menggunakan sel solar dan laser. Kemudian 
pergantungan suhu daripada jurang tenaga bahan semikonduktor telah dikaji dengan 
menggunakan model Varshni dan model Bose-Einstein. Walaupun menganalisis 
pergantungan suhu tenaga jurang jalur Gan menggunakan kedua model had utama 
model Bose-Einstein telah dikenal pasti dan pengubahsuaian model ini telah 
dicadangkan untuk menyelesaikan masalah pengiraan suhu kritikal. Selepas itu 
penyerapan dan pelepasan fenomena, kesan masa operasi kepada ciri-ciri balas 
pengguna dan pergantungan panjang rongga kerugian dan mendapatkan ciri-ciri dan 
kehidupan foton masa kuantum dot laser telah disiasat. Tambahan pula kesan suhu ke 
atas panjang hanyut dan panjang resapan daripada syarikat penerbangan telah disiasat 
bersama-sama dengan voltan litar terbuka, arus litar pintas, kuasa output sel solar. 
Keputusan berangka yang diperolehi berbanding dengan apa yang diperolehi dengan 
menggunakan bahan-bahan yang sedia ada konvensional untuk kedua laser dan sel 
solar. Untuk laser mendapat keputusan berangka dibandingkan dengan GaN dan AlN 
dot kuantum berasaskan laser dan untuk sel solar, mendapat keputusan dibandingkan 
dengan sel solar dan Si Ge kuantum dot berasaskan. Keputusan berangka menunjukkan 
bahawa ciri-ciri laser telah meningkat secara drastik dan kestabilan ciri-ciri sel solar 
telah meningkat dengan ketara menggunakan Inn dot kuantum sebagai bahan lapisan 
yang aktif. Akhirnya dapat disimpulkan bahawa Inn dot kuantum boleh menjadi bahan 
yang menjanjikan untuk merekabentuk peranti optoelektronik dalam masa terdekat. 
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Performance Improvement of Optoelectronic Devices Using Group-III 
Nitride based Quantum Dot 

 
Quantum dot has become a subject of incredible interest in the field of semiconductor 
optoelectronic device design for the researchers due to some of their unique properties. 
Among the wide range of optoelectronic devices some important characteristics of solar 
cell and laser have been studied extensively. These two devices are chosen because of 
the importance of these optoelectronic semiconductor devices in the field of renewable 
energy and optical fiber communication respectively. Recently it has been 
acknowledged that the researchers are paying more and more attention to the group-III 
nitride based quantum dots. Therefore this research is devoted to investigate the 
performance improvement of solar cell and laser using InN based quantum dot in the 
active layer of the device structure. In this research work the performance improvement 
of both these devices have been achieved by changing the active layer material without 
affecting other structural parameters. The effect of lattice constant on band gap energy 
optimization of ݊ܫ௫ܽܩଵି௫ܰ has been investigated initially. From the numerical analysis 
it has been found that ݊ܫ௫ܽܩଵି௫ܰ offers a band gap energy ranging from 0.7eV - 3.5eV, 
which makes it a suitable material for solar cell to absorb a wide range of light energy. 
Furthermore, it has been demonstrated that In0.87Ga0.13N is capable of emitting light at 
the wavelength of 1.55µm, which offers the lowest attenuation for signal transmission 
through optical fiber. Therefore the result of initial investigation ascertains that 
 .ଵି௫ܰ can be a promising material for the fabrication of solar cell as well as laserܽܩ௫݊ܫ
Then the temperature dependence of the band gap energy of semiconductor material 
was investigated using Varshni’s model and Bose–Einstein model. While analyzing the 
temperature dependence of band gap energy of GaN using these two models a major 
limitation of Bose–Einstein model has been identified and a modification of this model 
has been proposed to solve the problem of calculation of critical temperature. After that 
the absorption and emission phenomena, effect of operating time on the feed-back 
characteristics and the cavity length dependence of the loss and gain characteristics and 
photon life time of quantum dot laser were investigated. Furthermore the effect of 
temperature on the drift length and the diffusion length of the carriers have been 
investigated along with the open circuit voltage, short circuit current, output power of 
the solar cell. The numerical results obtained were compared with those obtained by 
using other conventional existing materials for both laser and solar cell. For laser 
obtained numerical results were compared with GaN and AlN quantum dot based laser 
and for solar cell, obtained results were compared with Si and Ge quantum dot based 
solar cell. Numerical results reveal that the laser characteristics have been improved 
drastically and the stability of solar cell characteristics has been increased significantly 
using InN quantum dot as the active layer material. Finally it can be concluded that InN 
quantum dot can be a promising material to fabricate the optoelectronic devices in the 
very near future. 
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CHAPTER 1 

 

INTRODUCTION  

 

1.1 Background 

 

For many years the general aim of the modern semiconductor technology has 

been the fabrication of semiconductor devices in their possible utmost minuscule 

dimensions. Initially the semiconductor devices fabricated with the centimetre and 

millimetre dimensions were considered as very small in size. However with the 

advancement of the solid state physics, researchers have successfully developed the 

devices with the physical dimensions in the scale of micro and nanometre. The 

breakthrough of using ultra thin layer of semiconductor occurred through the invention 

of quantum well (QW) in the 1980s, which gained wide spread acceptance to the 

scientific community. Further development in the field of semiconductor devices were 

achieved through the invention of quantum structures with further less dimensionality 

like one dimensional quantum wire (QWR) and eventually zero dimensional quantum 

dot (QD).  

“Since the first demonstration of optical properties of self-organized QDs, these 

materials are under extensive investigation all over the world for their applicability in 

optoelectronic device design. QD is formed spontaneously when a layer of a material 

having a large difference in lattice constant from that of the substrate is formed on the 

substrate (Goldstein, et al, 1985). It has been reported that if the dimension of a QD 
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becomes comparable to the De-Brogile wavelength, the density of states (DOS) 

becomes a δ-function (Grundmann, et al. 1995). The δ-function like DOS and strong 

confinement of electron and hole wave functions are unique properties of QDs, which 

improve the semiconductor optoelectronic device characteristics significantly. Thus, 

QDs provide an ultimate limit of size quantization in solids and an extremely large 

change of electronic properties as compared to QWs and QWRs. The real breakthrough 

occurred when new class of self-organized QDs were applied for the device design.  

Very recently it has been reported that QD is a subject of intense investigation 

on its optical properties, which are crucial for the improvement of optoelectronic device 

performances (Salhi, et al. 2008). Among the wide range of optoelectronic devices a 

theoretical investigation of laser and solar cell has been carried out in this present 

research work. Thus all the consecutive sections of this thesis paper have been 

organized in two fold for each section mentioning the lasers and the solar cells 

respectively. 

 

1.2 Motivation for This Research  

 

This section describes the motivation of improving performance of 

optoelectronic devices namely laser and solar cell by using InN QD in the active layer 

of the device structure. This section is divided into two sub-sections.       

   

1.2.1  Semiconductor Lasers 

 

Semiconductor laser (SL) is an active light source in optical fiber 

communication (OFC) due to its high quantum efficiency (QE), pure output spectrum 
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and the narrower gain spectra, direct modulation capability and high reliability. In the 

early days homostructured SLs were fabricated using bulk materials. The bulk SLs 

required high threshold current density in the range of 104 ~ 105 A/cm2 to create lasing 

action. Furthermore these lasers were only able to operate at cryogenic temperature. The 

active region of a bulk SL was very large. Therefore high power pump source was 

required in order to pump in a lot of electrons and holes to overcome this photonic re-

absorption and to emit light in a self-sustaining way. A large active region also caused a 

greater number of uncontrolled spontaneous emissions of photons, which oppose 

stimulated emission as well as create optical noise. Another major problem was a large 

“linewidth enhancement factor (LEF)”. As the current and gain increased, the index of 

refraction varied as well, which altered the wavelength of the standing waves inside the 

laser cavity. Consequently the output wavelength and intensity danced around. 

Advanced performance of heterostructure lasers compared to homostructured 

lasers made them capable of using in OFC since 1978. However bulk materials in the 

active region blocked a further improvement of heterostructure lasers and led to the 

development of quantum well lasers (QWLs) motivated by the strong modification of 

properties of a semiconductor crystal in low-dimensional heterostructures. The 

problems such as non-equilibrium carrier spreading out of the cavity region, facet 

overheating due to surface recombination, non-radiative recombination enhanced by 

dislocation growth due to carrier diffusion to dislocations, no possibility of free-

standing micro cavities and large ground state population time associated with QWLs 

restricted the achievement of better performances (Bimberg, Grundmann, 

Heinrichsdorff, Ledentsov, Ustinov, Zhukov, et al., 2000). 

Further enhancement of device characteristics is expected for SLs with lower 

dimensionality of the active region, such as QWR and especially QD laser where the 
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motion of carriers is restricted from all the three directions predicting suppression of 

temperature dependence of threshold current (Arakawa, 2007; Arakawa, & Sakaki, 

1982) and to overcome the problems of QWLs. Recent research is devoted to the 

improvement of revolutionary QDLs using InN QD in the active layer of the QDL 

structure.”It has been revealed from the outcome of this research that InN QDL provide 

better performances such as higher effective DOS of the carriers, higher optical 

feedback level, reduction of frequency fluctuation, higher momentum relaxation time 

with reduced rate of change momentum relaxation, more uniform carrier mobility, 

reduced absorption loss, higher carrier density, enhanced feedback strength and superior 

fermi wave factor. Further improvements of the laser characteristics were reported in 

terms of lower threshold current density, minimization of internal loss, enhancement of 

modal gain and high external differential efficiency and enhanced photon lifetime. 

 

1.2.2  Solar Cells 

 

“Power crisis has become a severe problem all over the world. Recently it has 

been reported that different sources of energy pollutes our environment in different 

ways and in different degrees (Mahrane, Chik, & Chikouche, 2010). The solar energy is 

widely used around the world because it is the most environmental friendly source of 

energy ever discovered (Sharaf, & Yang, 2005). Solar cell is the optoelectronic device 

that can convert the solar energy directly to electrical energy. Therefore researchers are 

paying more and more attention on the performance improvement of solar cell in order 

to make it a suitable alternative to meet the ever increasing demand in an environment 

friendly manner.  
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The majority of the existing solar cells are fabricated using conventional 

semiconductor materials like Si and Ge (Doi, Tsuda, Sakuta & Matsui, 2003; Fan et al. 

2010). However there are some problems in solar cell performance still arises due to the 

material quality of different layers of the device structure (Huang, Semichaevsky, 

Webster, Johnson, & Goldman, 2011). Recently researchers have found that group III 

nitride based QDs have better potential in providing better device performance. Besides 

some unique properties of InN such as: narrow band gap, the strong polarization, piezo-

electric effect and many others have made it attractive to the researchers. 

The primary limitation of the conventional solar cell is to achieve high output 

power as well as more stable operation at high temperature. Therefore, this research has 

been devoted to achieve better stability in the solar cell characteristics with high output 

power. Few more problems have also been detected from earlier solar cells like local 

increase in the dark forward current of a cell usually that is caused by the materials. 

Therefore in order to increase the stability in the solar cell characteristics the main focus 

is to investigate the solar cell performance. This research work is based on 

characteristics analysis of InN QD solar cell which will be compared to the existing 

material like Si and Ge QD.”  

   

1.3  Research Objectives  

 

The main purpose of this research is to improve the major characteristics of 

optoelectronic devices like laser and solar cell using InN QD in the active layer of the 

device structure. To accomplish the goal of achieving better performance of more than 

one device using a single material this research work was progressed based on few 

objectives. 
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