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      Abstract- Numerical simulations of compressible inviscid 
flows using fully implicit high order compact flowfield-
dependent variation (HOC-FDV) method has been developed. 
The third-order accurate in time flowfield-dependent variation 
(FDV) scheme is used for time discritization and the fourth-
order compact Pade scheme is used to approximate the first and 
second spatial derivatives. The solution procedure consists of a 
number of tri-diagonal matrix operations with considerable 
saving in computing time, and produces an efficient solver. The 
method has been tested and verified for two numerical 
examples, a flow over a channel flow with 
compression/expansion and a flow past NACA0012 airfoil. 
Good agreement with the analytical and other numerical 
solutions has been obtained in both cases. Numerical results 
show the validity and accuracy of the proposed method. 
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I. INTRODUCTION 

Numerical predictions of the compressible supersonic 
flows play very important role in computational fluid 
dynamics (CFD) and are very important. The FDV method 
was originally introduced by T. J. Chung et al. [1]. The FDV 
idea began from the need to address the transitions from one 
type of flow to another and interactions between two 
distinctly different flows. The approach begins by obtaining 
the implicitness FDV parameters from the current flowfield 
variables at each time step and every nodal point. These 
parameters are used to adjust governing equations at each 
regime according to the current flowfield situation. The 
physical interpretation of the FDV first-order parameter, s1, 
and the second-order parameter, s2, is the foundation of the 
FDV method. Large values of these parameters reflect large 
changes in the conservation variables. These changes may 
occur between adjacent nodal points within the special nodes 
as well as between adjacent time steps. The second-order 
FDV parameter, s2, is chosen to be exponentially proportional 
to the first-order FDV parameter, s1. This choice is based on 
the fact that the first-order FDV parameter tends to assure 
accuracy of the solution, whereas the second-order FDV 
parameter provides numerical stability [1-3]. 

A fourth-order compact Pade scheme was used to 
approximate the first and second order spatial derivatives. 
Together with the FDV technique this results in a higher-
order compact flow field dependent variable (HOC-FDV) 
scheme. This technique was successfully applied to solve the 
unsteady non-linear viscous Burgers equation [6]. 

In this paper, the HOC-FDV scheme is implemented to 
solve the two-dimensional Euler equations. Two steps; along 
i and j directions are used for each time level. The spatial 
derivatives are calculated using higher-order compact 
approximation Pade Scheme. Each step is solved using block 
tri-diagonal algorithm. The problems associated with 
multidimensionality are solved by using the alternating 
direction implicit (ADI) factored algorithm which reduces the 
formidable matrix inversion problem to a series of small band 
width matrix inversion problems that have efficient solution 
algorithms. Cross-derivatives terms arising from the FDV 
derivation are excluded from the implicit side and are 
evaluated explicitly at the known time step.    

II. GOVERNING EQUATIONS 

  The two dimensional Euler form of the FDV equations 
proposed by Chung [1] can be written in the compact 
factorized ADI form as: 
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Where 
( )nAsD 11 tΔ=     (3) 
( )nBsD 12 tΔ=     (4) 
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Where A and B are the Jacobian matrices along x and y 

axis respectively, and s1 and s2 are the implicit FDV 
parameters.  

The gradient of the RHS terms are evaluated by high-
order compact schemes proposed by Hirsh [4] while the 
derivatives in the implicit part are approximated by second 
order central schemes. The higher-order approximations to 
the first order derivatives in the residual part are obtained by 
the cell-centred fourth-order compact scheme as follows: 
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The second order derivatives in the residual term, E ′′ and 
F ′′ are approximated using the following equations [4]: 
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III. NUMERICAL EXAMPLES 

The two dimensional Euler FDV equations have been 
tested for two numerical examples, a channel flow with 
compression/expansion and a flow past NACA0012 airfoil. 
The examples include formation of oblique and expansion 
waves and their reflections and interactions.  

A. Channel flow 

The case presents a supersonic laminar flow entering a 
channel with a compression corner and an expansion corner 
located at the lower surface and a straight upper surface. The 
computational grid of 241×131 has been generated by 
algebraic grid generation routine. Clustering at the 
compression corner, expansion corner, the lower surface, and 
the upper surface has been implemented. The inflow 

boundary conditions are M∞=3, T∞=300 K, and ρ∞=1.25 
kg/m3. 

Mach number contours of the converged solutions are 
shown in Fig. 1. The comparisons of the pressure and Mach 
number along the lower surface with the analytical solutions 
are shown in fig. 2 and fig. 3 respectively. The figures show 
good agreements between the current computational results 
and the analytical solutions. Fig. 4 shows the contours of the 
first order convection variation parameter, s1. Note that s1 = 0 
away from the shockwaves and becomes nearly unity at 
locations of high gradients. Note that contours resemble the 
flowfield itself. 

B. Flow Past NACA 0012 Airfoil 

External flow calculations around a NACA 0012 airfoil 
are performed using HOC-FDV scheme for Mach number 0.8 
and angle of attack 1.25. The Reynolds number is 3×106. The 
grid is an O-type grid with 161×33 points that is generated by 
an elliptic grid generation procedure described by Hoffman 
and Chiang [5]. The outer boundary of the grid is located 10 
chord lengths from the airfoil. The Flows are initially set to 
free stream conditions and the Flow tangency boundary 
condition is applied at the airfoil surface. 

Fig. 6 shows a qualitative comparison of Mach number 
contours aver the airfoil surface with the results given by 
high order compact of reference [7]. The contours are very 
identical and the figure indicates that the transonic flow has a 
shock wave on the upper surface of the airfoil. Table 1 shows 
the quantitative comparison of lift and drag coefficients in of 
the present results with results taken from Mawlood [7]. It is 
clear from this table that the present results are in good 
agreement with high order compact results obtained using 
high order compact scheme. The absolute errors history of 
the numerical solution of the non-dimensional density is 
plotted in Fig. 7.  
 
 

 
Fig. 1 Steady state Mach number contours 
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Fig. 2 Pressure distribution along the wall 

 

 

 
Fig. 3 Mach number distribution along the wall 

 

 

 
Fig. 4 First-order variation parameter, s1 contours 

 

 
Fig. 5 A close view of the O-grid for NACA 0012 airfoil 

 

 

 
(a) Present Results 
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(b) HOC results [7] 

Fig. 6 Comparison of Mach number contours for NACA 0012 airfoil 
(M∞ = 0.8, α =1.25) 
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TABLE I 
COMPARISON OF LIFT AND DRAG COEFFICIENTS FOR THE FLOW PAST 

NACA 0012AIRFOIL (M∞ = 0.8, Α =1.25) 

parameter HOC-FDV Mawlood [7] 

CL
 0.3735 0.37432 

CD
 0.02332 0.02350 

 

 
Fig. 7 Error history for NACA 0012 airfoil  

(M∞ = 0.8, α =1.25) 

IV. CONCLUSIONS 

A higher-order compact-flowfield dependent variation 
method (HOC-FDV) has been developed. The numerical 
examples are tested to demonstrate the accuracy and 
resolution of the method in capturing flow physics for all 
regimes. The higher order FDV scheme results have been 
compared with analytical solution. The results are in 
excellent agreement with the analytical solution. 
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