

# 60-year Research History of Missing Data: A Bibliometric Review on Scopus Database (1960-2019)

Farah Adibah Adnan\*, Mohd Hafiz Zakaria<sup>1</sup> and Safwati Ibrahim<sup>1</sup>

<sup>1</sup>Institute of Engineering Mathematics, Faculty of Applied and Human Sciences, Universiti Malaysia Perlis, Main Campus Pauh Putra, 02600, Arau, Perlis, Malaysia.

#### ABSTRACT

Research on missing data was initiated in 1960 and the study on this topic grew exponentially across various subject areas since then. Therefore, this study aims to analyze those studies, specifically journal articles published in the context of missing data. Scopus database and analysis tools were utilized to retrieve all available journal articles related to missing data and its data. Next, due to the large number of articles found in the Scopus database, its information can only be efficiently extracted and combined using Mendeley software. To further obtained insights on the extracted information, VOSviewer was used to obtain network visualization and overlay visualization on authors' keyword and citation metrics was obtained using Harzing Publish or Perish software. Additionally, the growth of publication, languages used, subject area, countries involved, and publication activity were also presented using bibliometric analysis. In total, 6227 journal articles were found. The record shows that a drastic increment of research in missing data happened in 2016, with 446 publications compared to 361 in 2015. Most of the articles were affiliated with researchers in the United States and were written mainly in English. Mathematics, decision sciences, medicine, and computer science are four subject areas that have high number of articles. It is expected that the publications on this topic will increase significantly in 2020 due to its research trend that is currently blooming in the area of medicine and therefore lead to potential directions for future research.

Keywords: Bibliometric, Missing Value, Imputation, Regression.

### 1. INTRODUCTION

In conducting researches related to the data collection process, missing data issue is unavoidable. Normally, the sought information is often not available or missing due to many reasons. For instance, improper data entry, network error, machine breakdown, database system problems and many more. The chances of observational research to encounter this situation is almost certain and need to be dealt with wisely.

Researchers around the globe realize that missing data need to be deal with effectively. However, missing data was typically ignored and cases that have some missing data in variables included in the analysis were simply deleted. This rule is not suitable for every domain. Hence, careful study should be considered if the missing data contain some important information and really represent the target population. Various methods have been used in dealing with missing data, for example, expectation-maximization (EM), Gaussian mixture model (GMM), hot-deck (HD), linear/logistic regression, least squares, principal component analysis (PCA), multiple imputation and lots more [1, 2, 3, 4, 5]. Failure to properly deal with missing data in analyses may lead to bias in the research outcome [6].

<sup>\*</sup>Corresponding Author: farahadiba@unimap.edu.my

This study focused on analyzing scientific literature published from 1960 to 2019 on missing data using bibliometric analysis. Bibliometrics investigates the formal properties of knowledge domains by using mathematical and statistical methods. Specifically, it is defined as a statistical evaluation of published source type and is an effectual way to measure the influence of publication toward the research community [7]. Hence, by using this analysis, this study identifies articles that conducted studies related to the context of missing data from various countries and covered by various subject area. Surprisingly, to the best of authors' knowledge, there is no research on missing data using bibliometric analysis.

# 2. METHODS

This study collected all information from the Scopus database started on 16 December 2019. Scopus is the largest abstract and citation database of peer-reviewed literature [8] and the largest searchable citation and abstract source of searching literature [9].

The collected data was later refined several times to obtain the best data that is closely related to the context of missing data. This refinement was made using the search strategy and the data retrieval process shown in Table 1. For this study, the focused was on journal articles related to the context of missing data, which were based on title or author keyword. Ultimately, the following query was conducted: (TITLE ("missing data" OR "missing value" OR "missing values") OR AUTHKEY ("missing data" OR "missing value" OR "missing values")) AND (LIMIT-TO (DOCTYPE, "ar")) AND (LIMIT-TO (SRCTYPE, "j")). This query produced 6227 documents.

| Search<br>refinement<br>stage | Date       | Database | Search String                                                                                                                                                                    | Result           |
|-------------------------------|------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| First stage                   | 16/12/2019 | SCOPUS   | Title of "missing data", "missing value" or<br>"missing values", and Keyword "missing<br>data", "missing value" or "missing values",<br>and is limited to journal article.       | 1778<br>articles |
| Second stage                  | 17/12/2019 | SCOPUS   | Title of "missing data", "missing value" or<br>"missing values", or Keyword "missing data",<br>"missing value" or "missing values", and is<br>limited to journal article.        | 6850<br>articles |
| Final stage                   | 18/12/2019 | SCOPUS   | Title of "missing data", "missing value" or<br>"missing values", or Author keyword "missing<br>data", "missing value" or "missing values",<br>and is limited to journal article. | 6227<br>articles |

# 3. RESULTS AND DISCUSSION

The data collected were analyzed to ascertain publication's per year, languages, subject areas, author keywords, geographical distribution, publication activity, and citations. Most of the results are presented in frequency and percentage.

# 3.1 Publication by Year

The first research on missing data was published back in 1960 by G. N. Wilkinson in which he compares different missing value procedures [10]. The progress of related publications since then increased steadily until 1992. After that, it was exponentially increased. It is anticipated that

the number of publications in 2020 will increase even more compared to previous years because based on Figure 1, it can be seen that a publication kick-start was made. Although the year 2020 is still yet to come, some publications have already been indexed in the Scopus database.

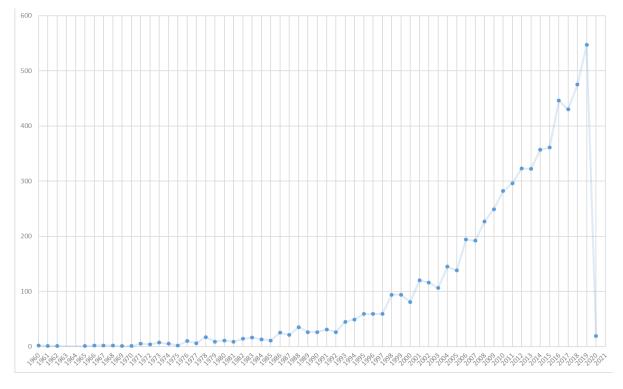



Figure 1. Publication by year.

### 3.2 Languages of Articles

Table 2 shows that most of the retrieved journals were published in English (96.37%). Out of 6227 journals, 26 journals were published in dual languages (0.4%) and hence it resulting 6253 papers in total. Among all, Croatian, Czech, Greek, Italian, and Korean were the least languages used in the papers studied, with one publication each.

. .

| Language   | No of Publication | %     |
|------------|-------------------|-------|
| English    | 6026              | 96.37 |
| Chinese    | 123               | 1.97  |
| Spanish    | 25                | 0.40  |
| German     | 16                | 0.26  |
| Japanese   | 16                | 0.26  |
| Portuguese | 13                | 0.21  |
| French     | 12                | 0.19  |
| Russian    | 10                | 0.16  |
| Persian    | 3                 | 0.05  |
| Dutch      | 2                 | 0.03  |
| Turkish    | 2                 | 0.03  |
| Croatian   | 1                 | 0.02  |
| Czech      | 1                 | 0.02  |
| Greek      | 1                 | 0.02  |
| Italian    | 1                 | 0.02  |
| Korean     | 1                 | 0.02  |
| Total      | 6253              | 100   |

### 3.3 Subject Area

This study also listed published journals based on its subject areas. Most of the studies on missing data were in the area of Mathematics, Decision Sciences, Medicine, and Computer Science represent the top 50% percentile of the total articles. The additional subject areas covered in the missing data study are presented in Table 3.

| Subject area                                 | No of Publication | %     | Percentile |
|----------------------------------------------|-------------------|-------|------------|
| Mathematics                                  | 2967              | 24.84 | 100        |
| Decision Sciences                            | 1359              | 11.38 | 75         |
| Medicine                                     | 1329              | 11.13 | 64         |
| Computer Science                             | 1256              | 10.51 | 53         |
| Engineering                                  | 740               | 6.19  | 42         |
| Social Sciences                              | 609               | 5.10  | 36         |
| Agricultural and Biological Sciences         | 596               | 4.99  | 31         |
| Biochemistry, Genetics and Molecular Biology | 578               | 4.84  | 26         |
| Psychology                                   | 362               | 3.03  | 21         |
| Environmental Science                        | 303               | 2.54  | 18         |
| Earth and Planetary Sciences                 | 220               | 1.84  | 15         |
| Economics, Econometrics and Finance          | 209               | 1.75  | 14         |
| Pharmacology, Toxicology and Pharmaceutics   | 206               | 1.72  | 12         |
| Immunology and Microbiology                  | 157               | 1.31  | 10         |
| Business, Management and Accounting          | 150               | 1.26  | 9          |
| Physics and Astronomy                        | 130               | 1.09  | 8          |
| Chemistry                                    | 124               | 1.04  | 6          |
| Health Professions                           | 113               | 0.95  | 5          |
| Neuroscience                                 | 112               | 0.94  | 5          |
| Arts and Humanities                          | 105               | 0.88  | 4          |
| Chemical Engineering                         | 81                | 0.68  | 3          |
| Nursing                                      | 76                | 0.64  | 2          |
| Materials Science                            | 64                | 0.54  | 1.37       |
| Multidisciplinary                            | 54                | 0.45  | 0.84       |
| Energy                                       | 35                | 0.29  | 0.39       |
| Veterinary                                   | 8                 | 0.07  | 0.09       |
| Dentistry                                    | 3                 | 0.03  | 0.03       |
| Total                                        | 11946             | 100   |            |

#### Table 3 Subject area

### 3.4 Keyword Analysis

The author keywords were diagrammed with VOSviewer, a software tool for constructing and visualizing bibliometric networks. Figure 2 and Figure 3 presents a network visualization and overlay visualization respectively.

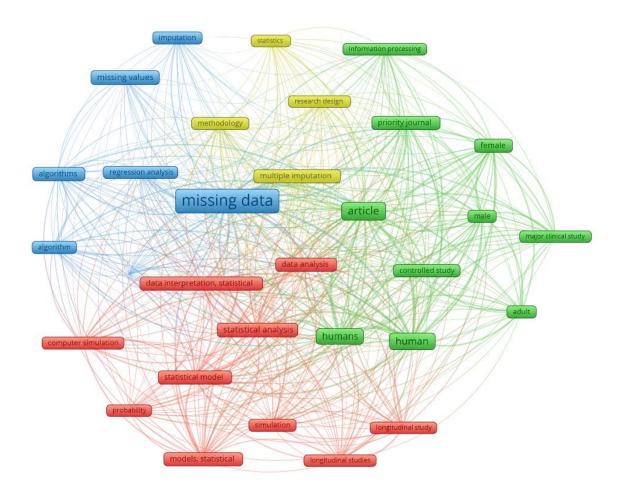



Figure 2. Network visualization.

In Figure 2, keywords with the same colour were usually listed together. So, in this study, for example, missing data, regression analysis, algorithms, missing values, and amputation were coded with the same blue colour, suggesting that these keywords have a correlation and mentioned together.

Even so, this visualization can still be questioned as multiple imputation keyword; which was among a popular keyword used in the context of missing data, were coded with different colours (yellow), suggesting that it is not a common word that co-occurs with missing data keyword. Therefore, Figure 3 (overlay visualization) was referred to in order to have a better understanding.

Figure 3 was meant to show the time series of keywords occurrence. Based on its legend, the keywords were classified into the four series of occurrence, which started in 2009 and below, and ended at 2012 and above. It can be observed that missing data keyword occurred mostly from 2010 to 2011, as for multiple imputation, it was commonly used as a keyword for missing data researches in 2012. Due to that, VOSviewer suggest that these two keywords did not have a close relationship.

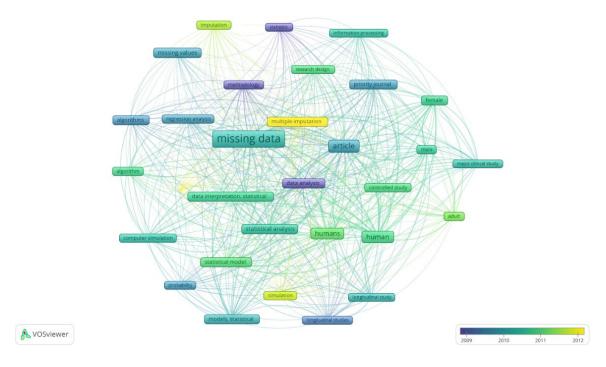



Figure 3. Overlay visualization.

Based on the number of occurrences, the top 20 keywords used in the missing data research are shown in Table 4.

| KEYWORD                          | Frequency | %     |
|----------------------------------|-----------|-------|
| Missing Data                     | 3534      | 21.53 |
| Article                          | 1680      | 10.23 |
| Human                            | 1424      | 8.67  |
| Humans                           | 1207      | 7.35  |
| Statistical Analysis             | 712       | 4.34  |
| Missing Values                   | 665       | 4.05  |
| Statistical Model                | 659       | 4.01  |
| Multiple Imputation              | 601       | 3.66  |
| Data Interpretation, Statistical | 580       | 3.53  |
| Female                           | 560       | 3.41  |
| Priority Journal                 | 545       | 3.32  |
| Models, Statistical              | 539       | 3.28  |
| Algorithms                       | 533       | 3.25  |
| Data Analysis                    | 500       | 3.05  |
| Male                             | 483       | 2.94  |
| Computer Simulation              | 470       | 2.86  |
| Methodology                      | 456       | 2.78  |
| Algorithm                        | 435       | 2.65  |
| Regression Analysis              | 423       | 2.58  |
| Controlled Study                 | 411       | 2.50  |

Table 4 Top 20 keywords used by the authors

### 3.5 Geographical Distribution

In general, 106 countries involved in the publication of missing data articles in the Scopus database. The top 20 countries are listed in Table 5. The United States was tiered first with 2683 documents, followed by the United Kingdom (669), and China (651).

| Country        | Frequency | %     |
|----------------|-----------|-------|
| United States  | 2683      | 39.28 |
| United Kingdom | 669       | 9.80  |
| China          | 651       | 9.53  |
| Canada         | 370       | 5.42  |
| Australia      | 247       | 3.62  |
| Germany        | 245       | 3.59  |
| France         | 227       | 3.32  |
| Netherlands    | 225       | 3.29  |
| Spain          | 207       | 3.03  |
| Belgium        | 176       | 2.58  |
| India          | 175       | 2.56  |
| Italy          | 164       | 2.40  |
| Japan          | 146       | 2.14  |
| South Korea    | 124       | 1.82  |
| Sweden         | 96        | 1.41  |
| Taiwan         | 96        | 1.41  |
| Hong Kong      | 88        | 1.29  |
| Brazil         | 83        | 1.22  |
| Switzerland    | 80        | 1.17  |
| Finland        | 78        | 1.14  |

**Table 5** The top 20 countries involved in the publication of the missing data article

# 3.6 Publishing Activity by Journal

There are about 6227 articles appeared in 159 journals across 27 different subject areas. Table 6 lists the journals with the most articles on missing data. The leading journals are the Statistics in Medicine, followed by the Journal of the American Statistical Association and then the Biometrics. The context of the missing data issue belongs to the initial screening process of every data analysis, which generally tapped into the areas of interest of most journals, regardless of their level of quality (in terms of Scimago journal rank).

### 3.7 Citation Analysis

In conducting citation analysis, Harzing's Publish or Perish software was used to analysed the citation metrics for the extracted data. However, due to the large amount of article filtered from Scopus, data cannot be retrieved directly. Data extraction in RIS format was done several times as at a time, only the data of 2000 articles can be extracted. This process resulted in several RIS files. After that, all of the files were re-combined using Mendeley software.

| Source title                                                            | Quartile | Publisher                 | No. of Articles |
|-------------------------------------------------------------------------|----------|---------------------------|-----------------|
| Statistics in Medicine                                                  | 1        | John Wiley & Sons Inc.    | 241             |
| Journal of the American Statistical Association                         | 1        | Taylor & Francis          | 156             |
| Biometrics                                                              | 1        | Blackwell Publishing Inc. | 138             |
| Communications in Statistics Theory and Methods                         | 3        | Marcel Dekker Inc.        | 115             |
| Biometrika                                                              | 1        | Oxford University Press   | 92              |
| Computational Statistics and Data Analysis                              | 1        | Elsevier BV               | 88              |
| Statistical Methods in Medical Research                                 | 1        | SAGE Publications         | 65              |
| Biometrical Journal                                                     | 1        | John Wiley & Sons Ltd.    | 61              |
| Journal of Biopharmaceutical Statistics                                 | 2        | Marcel Dekker Inc.        | 58              |
| Communications in Statistics Simulation and Computation                 | 3        | Dekker                    | 51              |
| Psychometrika                                                           | 1        | Springer New York LLC     | 50              |
| Journal of Statistical Computation and Simulation                       | 2        | Taylor & Francis          | 49              |
| Statistics And Probability Letters                                      | 3        | Elsevier BV               | 49              |
| Journal of Applied Statistics                                           | 3        | Routledge                 | 48              |
| Journal of Statistical Planning and Inference                           | 1        | Elsevier BV               | 47              |
| Journal of Multivariate Analysis                                        | 1        | Elsevier Inc.             | 42              |
| Journal of The Royal Statistical Society Series C<br>Applied Statistics | 1        | Blackwell Publishing Inc. | 42              |
| Statistica Sinica                                                       | 1        | Academia Sinica           | 40              |
| Neurocomputing                                                          | 1        | Elsevier BV               | 38              |
| American Journal of Epidemiology                                        | 1        | Oxford University Press   | 37              |
| BMC Medical Research Methodology                                        | 1        | BioMed Central            | 37              |

#### Table 6 Journals with the most articles on missing data

Next, the combined data has been imported into Harzing's Publish or Perish software to generate the citation metric. Table 7 summaries the citation metrics for the extracted journal articles on 18 December 2019.

| Reference date:    | 18/12/2019 12:54     |
|--------------------|----------------------|
| Publication years: | 1960 - 2020          |
| Citation years:    | 59 (1960 - 2019)     |
| Papers:            | 6227                 |
| Citations:         | 180793               |
| Citations/year:    | 3064.29              |
| Citations/paper:   | 29.03                |
| Citations/author:  | 92597.35             |
| Papers/author:     | 2778.31              |
| Authors/paper:     | 3.04                 |
| Hirsch h-index:    | 168 (46.8% coverage) |
| Egghe g-index:     | 323 (57.7% coverage) |
| PoP hI, norm:      | 119                  |
| PoP hI, annual:    | 2.02                 |

The top 20 cited articles in the context of missing data were listed in Table 8. An article titled "Missing data: Our view of the state of the art" by Schafer and Graham [7] obtained the highest number of citation in the Scopus database with 6491 citations (308.65 citations per year).

### 4. CONCLUSION

This paper presents a bibliometric review to gain a better intuition into the trends, review, contributions, and citation of the research on missing data. The study of this topic started early back in 1960 and increased steadily since then. Throughout the 60-year publication of articles about missing data, a drastically increased publication has been witnessed several times, but the most drastic increment happened in 2016, with 446 publications compared to 361 in 2015. It is anticipated that the publications in the context of missing data will be published more in 2020 based on the observation that, as of December 2019, publications indexed for 2020 now stretch to 24 documents.

This study also reveals that one of the most covered subject areas in the missing data research is related to medical and health based on the journal with the most articles on missing data. It shows that this topic of research will become more and more critical in the future, as it will significantly correlate with human health. The variation of involved countries of the extracted data shows that the United States has dominated both publications and number of citations as compared to other developed countries such as the United Kingdom. Hence, research on missing data should be done in other developing countries covering missing data in the local setting since there is still a lot more information that can be discovered.

Even so, several limitations of this study still need to be considered. It should be highlighted that even though Scopus is one of the largest academic paper databases, some articles are not indexed under it. In addition, this study only concentrates on the topic related to missing data based on the title and the author keyword used in the articles. Moreover, the search was limited to journal article only, thus, all the other document and source type that related to missing data was filtered out. It is also important to note that the search query cannot be considered as fully accurate in searching for all missing data journal articles. In this case, the search query can be further improved. The citation analysis obtained by this study through Publish and Perish is based on the data extracted on 18 December 2019 at 12:54 pm. Despite all these limitations, this study is among the first to analyse the detailed bibliometric indicators of the published journal article in the context of missing data.

| No | Article title                                                                          | Authors                              | Year | Source                                                   | Cited<br>by | Cited/<br>year |
|----|----------------------------------------------------------------------------------------|--------------------------------------|------|----------------------------------------------------------|-------------|----------------|
| 1  | Missing data: Our view of the state of the art                                         | Schafer, J.L., Graham,<br>J.W. [11]  | 2002 | Psychological<br>Methods                                 | 6491        | 380.65         |
| 2  | Inference and missing data                                                             | Rubin, D.B. [12]                     | 1976 | Biometrika                                               | 4436        | 102.86         |
| 3  | Sampling-based approaches to calculating marginal densities                            | Gelfand, A.E., Smith,<br>A.F.M. [13] | 1990 | Journal of the<br>American<br>Statistical<br>Association | 3872        | 133.38         |
| 4  | A test of missing completely at<br>random for multivariate data<br>with missing values | Little, R.J.A. [14]                  | 1988 | Journal of the<br>American<br>Statistical<br>Association | 2622        | 84.03          |

### Table 8 Top 20 cited articles in missing data

| No | Article title                                                                                                                                             | Authors                                                                                                                          | Year | Source                                                   | Cited<br>by | Cited/<br>year |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------|----------------------------------------------------------|-------------|----------------|
| 5  | Multiple imputation using<br>chained equations: Issues and<br>guidance for practice                                                                       | White, I.R., Royston,<br>P., Wood, A.M. [15]                                                                                     | 2011 | Statistics in<br>Medicine                                | 2585        | 320.38         |
| 6  | Multiple Imputation after 18+<br>Years                                                                                                                    | Rubin, D.B. [16]                                                                                                                 | 1996 | Journal of the<br>American<br>Statistical<br>Association | 1896        | 82.26          |
| 7  | The relative performance of<br>full information maximum<br>likelihood estimation for<br>missing data in structural<br>equation models                     | Enders, C.K.,<br>Bandalos, D.L. [17]                                                                                             | 2001 | Structural<br>Equation<br>Modeling                       | 1894        | 104.78         |
| 8  | Missing value estimation<br>methods for DNA microarrays                                                                                                   | Troyanskaya, O.,<br>Cantor, M., Sherlock,<br>G., Brown, P., Hastie,<br>T., Tibshirani, R.,<br>Botstein, D., Altman,<br>R.B. [18] | 2001 | Bioinformatics                                           | 1851        | 102.67         |
| 9  | Rapid and accurate haplotype<br>phasing and missing-data<br>inference for whole-genome<br>association studies by use of<br>localized haplotype clustering | Browning, S.R.,<br>Browning, B.L. [19]                                                                                           | 2007 | American<br>Journal of<br>Human<br>Genetics              | 1317        | 109.25         |
| 10 | Review: A gentle introduction<br>to imputation of missing<br>values                                                                                       | Donders, A.R.T., van<br>der Heijden, G.J.M.G.,<br>Stijnen, T., Moons,<br>K.G.M. [20]                                             | 2006 | Journal of<br>Clinical<br>Epidemiology                   | 1138        | 87.23          |
| 11 | How many imputations are<br>really needed? Some practical<br>clarifications of multiple<br>imputation theory                                              | Graham, J.W.,<br>Olchowski, A.E.,<br>Gilreath, T.D. [21]                                                                         | 2007 | Prevention<br>Science                                    | 1107        | 92.00          |
| 12 | Estimation of regression<br>coefficients when some<br>regressors are not always<br>observed                                                               | Robins, J.M.,<br>Rotnitzky, A., Zhao,<br>L.P. [22]                                                                               | 1994 | Journal of the<br>American<br>Statistical<br>Association | 1105        | 43.96          |
| 13 | Modeling the drop-out<br>mechanism in repeated-<br>measures studies                                                                                       | Little, R.J.A. [23]                                                                                                              | 1995 | Journal of the<br>American<br>Statistical<br>Association | 1014        | 42.13          |
| 14 | Accounting for decay of<br>linkage disequilibrium in<br>haplotype inference and<br>missing-data imputation                                                | Stephens, M., Scheet,<br>P. [24]                                                                                                 | 2005 | American<br>Journal of<br>Human<br>Genetics              | 983         | 70.07          |
| 15 | Maximum likelihood<br>estimation via the ECM<br>algorithm: A general<br>framework                                                                         | Meng, X.L., Rubin, D.B.<br>[25]                                                                                                  | 1993 | Biometrika                                               | 932         | 35.81          |
| 16 | Working with missing values                                                                                                                               | Acock, A.C. [26]                                                                                                                 | 2005 | Journal of<br>Marriage and<br>Family                     | 899         | 64.16          |

| No | Article title                                                                                                  | Authors                                            | Year | Source                                                   | Cited<br>by | Cited/<br>year |
|----|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------|----------------------------------------------------------|-------------|----------------|
| 17 | Analysis of semiparametric<br>regression models for<br>repeated outcomes in the<br>presence of missing data    | Robins, J.M.,<br>Rotnitzky, A., Zhao,<br>L.P. [27] | 1995 | Journal of the<br>American<br>Statistical<br>Association | 881         | 36.58          |
| 18 | An approach to time series<br>smoothing and forecasting<br>using the em algorithm                              | Shumway, R.H.,<br>Stoffer, D.S. [28]               | 1982 | Journal of<br>Time Series<br>Analysis                    | 817         | 22.05          |
| 19 | A phylogeny and revised<br>classification of Squamata,<br>including 4161 species of<br>lizards and snakes      | Pyron, R.A., Burbrink,<br>F.T., Wiens, J.J. [29]   | 2013 | BMC<br>Evolutionary<br>Biology                           | 813         | 135.17         |
| 20 | Three likelihood-based<br>methods for mean and<br>covariance structure analysis<br>with nonnormal missing data | Yuan, KH., Bentler,<br>P.M. [30]                   | 2000 | Sociological<br>Methodology                              | 771         | 40.47          |

#### ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewer for their constructive comments and suggestions to improve this paper.

#### REFERENCES

- [1] Ghorbani, S., Desmarais, M. C., Appl Artif Intell **31**, 1 (2017) 1–22.
- [2] Kang, P., Neurocomputing **118** (2013) 65–78.
- [3] De Souto, M. C. P., Jaskowiak, P. A., Costa, I. G., Bioinformatics **16** (2015) 64–72.
- [4] Pati, S. K., Das A. K., Knowl Inf Syst **52** 3(2017) 709–750.
- [5] Valdiviezo, H. C., Van, A. S., Inf Sci **31** 1(2015) 163–181.
- [6] Pampaka, M., Hutcheson, G., Williams, J. International Journal of Research & Method in Education **39**, 1 (2016) 19-37.
- [7] Madani, F. Weber, C., World Patent Information 46 (2016) 32-48.
- [8] Burnham, J. F. Biomed. Digit. Libr. **3**, 1 (2006) 1.
- [9] Chadegani, A. A. Asian Soc. Sci. 9, 5 (2013).
- [10] Wilkinson, G. N. Australian Journal of Statistics 2, 2 (1960) 53-65.
- [11] Schafer, J. L., Graham, J. W. Psychological Methods 7, 2 (2002) 47-177.
- [12] Rubin, D. B., Biometrika **63**, 3 (1976) 581-592.
- [13] Gelfand, A. E., Smith, A. F. M. Journal of the American Statistical Association **85**, 410 (1990) 398-409.
- [14] Little, R. J. A. Journal of the American Statistical Association **83**, 404 (1988) 1198-1202.
- [15] White, I. R., Royston, P., Wood, A. M. Statistics in Medicine **30**, 4 (2011) 377-399.
- [16] Rubin, D. B. Journal of the American Statistical Association **91**, 434 (1996) 473-489.
- [17] Enders, C. K., Bandalos, D. L. Structural Equation Modeling **8**, 3 (2001) 430-457.
- [18] Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., Botstein, D., Altman, R. B. Bioinformatics **17**, 6 (2001) 520-525.
- [19] Browning, S. R., Browning, B. L. American Journal of Human Genetics 81, 5 (2007) 1084-1097.
- [20] Donders, A. R. T., Heijden, G. J. M. G., Van, D., Stijnen, T., Moons, K. G. M. Journal of Clinical Epidemiology 59, 10 (2006) 1087-1091.
- [21] Graham, J. W., Olchowski, A. E., Gilreath, T. D. Prevention Science 8, 3 (2007) 206-213.

- [22] Robins, J. M., Rotnitzky, A., Zhao, L. P. Journal of the American Statistical Association **89**, 427 (1994).
- [23] Little, R. J. A. Journal of the American Statistical Association **90**, 431 (1995) 1112-1121.
- [24] Stephens, M., Scheet, P. American Journal of Human Genetics **76**, 3 (2005) 449-462.
- [25] Meng, X. L., Rubin, D. B. Biometrika **80**, 2 (1993) 267-278.
- [26] Acock, A. C. Journal of Marriage and Family **67**, 4 (2005) 1012-1028.
- [27] Robins, J. M., Rotnitzky, A., Zhao, L. P., Journal of the American Statistical Association 90, 429 (1995) 106-121.
- [28] Shumway, R. H., Stoffer, D. S. Journal of Time Series Analysis **3**, 4 (1982) 253-264.
- [29] Pyron, R. A., Burbrink, F. T., Wiens, J. J. BMC Evolutionary Biology **13**, 1 (2013).
- [30] Yuan, K. H., & Bentler, P. M. Sociological Methodology **30**, 1 (2000) 165-200.