TENSILE AND THERMAL PROPERTIES OF OIL PALM EMPTY FRUIT BUNCH REGENERATED CELLULOSE BIOCOMPOSITE FILMS USING IONIC LIQUID

NUR LIYANA IZYAN BT. ZAILUDDIN

UNIVERSITI MALAYSIA PERLIS

2014

TENSILE AND THERMAL PROPERTIES OF OIL PALM EMPTY FRUIT BUNCH REGENERATED **CELLULOSE BIOCOMPOSITE FILMS USING** IONIC LIQUID LIN is protected by or LIV

SNUR LIYANA IZYAN BT. ZAILUDDIN

(1431621153)

A dissertation submitted in partial fulfilment of the requirements for the degree of Master of Science (Polymer Engineering)

> **School of Materials Engineering UNIVERSITI MALAYSIA PERLIS**

> > 2014

UNIVERSITI MALAYSIA PERLIS

DECLARATION OF THESIS					
Author's full name	:	NUR LIYANA IZYAN BT. ZAILUDDIN			
Date of birth	:	13 JANUARY 1990			
Title	:	TENSILE AND THERMAL PROPERTIES OF OIL PALM EMPTY FRUIT			
		BUNCH REGENERATED CELLULOSE BIOCOMPOSITE FILMS USING			
		IONIC LIQUID			
Academic Session	:	2014/2015			
I hereby declare that the thesis becomes the property of Universiti Malaysia Perlis (UniMAP) and to be placed at the library of UniMAP. This thesis is classified as : CONFIDENTIAL (Contains confidential information under the Official Secret Act 1972)*					
)	(Contains restricted information as specified by the organization where research was done)*			
_		I agree that my thesis is to be made immediately available as hard copy or on-line open access (full text)			
• •		to the UniMAP to reproduce this thesis in whole or in part for the purpose of			
research or academic	research or academic exchange only (except during a period of1_ years, if so requested above).				
~	Certified by:				
SIGNA	ATURE	SIGNATURE OF SUPERVISOR			
900113 (NEW IC NO. /	3-14-570 / PASSF				
Date : 05/01/2	2015	Date : 05/01/2014			

NOTES: * If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentially or restriction.

ACKNOWLEDGEMENT

First of all I would like to thank Allah S.W.T. for giving me strength both mentally and physically to complete this project on time. I would like to express my profound gratitude and appreciation to my supervisor Assoc. Prof. Ir. Dr. Salmah Husseinsyah for all her guidance and advice in finishing the project, and writing and completing this thesis. From the bottom of my heart, I am really grateful to have her as my supervisor because she thought me a lot about how to write a proper thesis and assisted me to the end. Also a big thank you to all lecturers that have helped me understand the theory included in this report. My special thanks also go to all the lab staff especially Mr Nasir and Mr Zaidi for their assistance in helping me complete my lab testing.

My heartfelt thanks to my parents who understood and encouraged me to stay strong especially during my low moments. In addition to that, thank you for all the advice and help and patience to put up with me through this journey of mine. I love you guys so much. Not forgetting my friends who directly or indirectly involved in lending your shoulders and helping me through this roller coaster ride in finishing my research. Many thanks to all of you especially Farah Norain Hahary and Vaniespree Govindan.

Thank you.

NUR LIYANA IZYAN BT. ZAILUDDIN

TABLE OF CONTENTS

THESIS DEC	LARA'	TION		PAGE i
ACKNOWLE	DGEM	IENT		ii
TABLE OF C	ONTE	NTS		iii
LIST OF TAP	BLES			vii
LIST OF FIG	URES			viii
LIST OF ABE	BREVL	ATION	5	xi
LIST OF SYN	IBOLS	5	OVINO	xiii
ABSTRAK			àcor	xiv
ABSTRACT			FION by original copyright	XV
CHAPTER 1	INTR	RODUC	TION NOT	
	1.1	Resear	ch Background	1
	1.2	Proble	mStatements	5
	1.3	Object	ives	6
	1.4	Scope	of Study	6
CHAPTER 2	LITE	RATH	RE REVIEW	
	2.1		erated Cellulose	7
	2.2	-	l Fibers Reinforced Composites	9
		2.2.1	Advantages and Disadvantages of Natural Fibers	13
		2.2.2	Applications of Natural Fibers	14
	2.3	Oil Pal	m Empty Fruit Bunch (OPEFB)	14
	2.4	Pretrea	tment of Lignocelluloses	17
	2.5	Cellulo	ose and Its Structure	18
		2.5.1	Cellulose Crystalline	21

	2.5.2 Cellulose Hydrogen Bonding	24
2.6	Hemicelluloses	29
2.7	Lignin	30
2.8	Types of Cellulose Particles	31
2.9	Microcrystalline Cellulose (MCC)	32
2.10	All-Cellulose Composites	34
2.11	Ionic Liquid	36
2.12	Dimethylacetamide (DMAc)/Lithium Chloride (LiCl) Solution	38
2.13	Activation of Cellulose	41
2.14	Cellulose Modification	43
2.15	Methylacrylic Acid (MAA)	45
2.16	Butyl Methacrylate (BMA)	46

CHAPTER 3 METHODOLOGY

	3.1	Materi	als	47
	3.2	Acid H	lydrolysis of OPEFB (Pretreatment)	47
	3.3	Chemi	cal Treatment of OPEFB with MAA and BMA	48
©	3.4	1	ation of Untreated and Treated Regenerated ose OPEFB Biocomposite Films	48
	3.5	Testing	g and Characterization	49
		3.5.1	Tensile Properties	49
		3.5.2	X-Ray Diffraction (XRD)	50
		3.5.3	Morphology Study	50
		3.5.4	Thermogravimetric analysis (TGA)	51
		3.5.5	Fourier Transform Infrared Spectroscopy Analysis (FTIR)	51

CHAPTER 4 RESULTS AND DISCUSSION

	4.1		ct of OPEFB Content on the s of Regenerated Cellulose Biocomposite	52
		4.1.1	Tensile Strength	52
		4.1.2	Elongation at Break	53
		4.1.3	Modulus of Elasticity	54
		4.1.4	X-Ray Diffraction (XRD)	56
		4.1.5	Morphology Study	58
		4.1.6	Thermogravimetric Analysis (TGA)	60
	4.2	of OPEF	et of Butylmethacrylate (BMA) treatment B on Properties of Regenerated e Biocomposite Films	62
		4.2.1	Tensile Strength	62
		4.2.2	Elongation at break	63
	•	4,2.3	Modulus of Elasticity	64
- Mile	ren	4.2.4	X-Ray Diffraction (XRD)	65
1 his		4.2.5	Morphology Study	67
\odot		4.2.6	Thermogravimetric Analysis (TGA)	69
		4.2.7	Fourier Transform Infrared Spectroscopy Analysis (FTIR)	70
	4.3	OPEFB of	et of Methacrylic acid (MAA) treatment of on Properties of Regenerated Cellulose osite Films	73
		4.3.1	Tensile Strength	73
		4.3.2	Elongation at break	74
		4.3.3	Modulus of Elasticity	75
		4.3.4	X-Ray Diffraction (XRD)	76

4.3.5	Morphology Study	78
4.3.6	Thermogravimetric Analysis (TGA)	80
4.3.7	Fourier Transform Infrared Spectroscopy Analysis (FTIR)	81

CHAPTER 5 CONCLUSION

	5.1	Conclusion	83
	5.2	Recommendation for Future Project	84
REFERENCE	S	Recommendation for Future Project	85
		2009	85
		righto	
		2 10 × 0.	
		ecter.	
		(Prote	
	, en		
This			
© `			

REFERENCES

LIST OF TABLES

NO.		PAGE
2.1	The chemical compositions of different types of natural fibers	10
2.2	Chemical compositions of OPEFB	15
3.1	Formulation of untreated and treated regenerated cellulose OPEFB biocomposite films	49
4.1	The crystallinity index (CrI) of OPEFB before and after pretreatment and OPEFB RC biocomposite films	57
4.2	TGA data of RC biocomposite films at 2 and 4 wt% of OPEFB contents	61
4.3	The crystallinity index (CrI) of untreated and treated RC biocomposite films with BMA	67
4.4	TGA data of untreated and treated RC biocomposite films with BMA at 2 and 4 wt% of OPEFB contents	70
4.5	The crystallinity index (CrI) of untreated and treated RC biocomposite films with MAA	78
4.6	TGA data of untreated and treated RC biocomposite films with MAA at 2 and 4 wt% of OPEFB contents	81
© `		

LIST OF FIGURES

NO.		PAGE
2.1	Classification of natural fibers	12
2.2	Pretreatment of lignocelluloses	18
2.3	Molecular structure of cellulose	19
2.4	Supramolecular structure of cellulose	20
2.5	The crystal structure of cellulose I_β onto a-b plane	22
2.6	The crystal structure of cellulose II onto a-b plane	23
2.7	The interconnection between the different cellulose polymorphs	24
2.8	Cellulose I and cellulose II chain conformations	25
2.9	Cellulose hydrogen bonding structure	26
2.10	The chain conformations of cellulose I and II	28
2.11	The structure of hemicelluloses	29
2.12	Chemical structure of lignin	31
2.13	Surface selective dissolution process to prepare the all- cellulose composite	36
2.14	The degradation of cellulose reaction with DMAc/LiCl	40
2.15	Proposed interactions between cellulose and DMAc/LiCl solvent system during the dissolution	41
2.16	Structure of MAA	45
2.17	Structure of BMA	46
4.1	The effects of OPEFB contents on the tensile strength of RC biocomposite films	53
4.2	The effects of OPEFB contents on the elongation at break of RC biocomposite films	54

4.3	The effects of OPEFB contents on the modulus of elasticity of RC biocomposite films	55
4.4	XRD curves of OPEFB before and after pretreatment and RC biocomposite films at 2 and 4 wt% of OPEFB contents	57
4.5	SEM micrograph of tensile surface fracture of RC biocomposite films (at 2 wt% of OPEFB contents)	59
4.6	SEM micrograph of tensile surface fracture of RC biocomposite films (at 4 wt% of OPEFB contents)	59
4.7	Thermogravimetric Analysis (TGA) curves of OPEFB RC biocomposite films	61
4.8	The effect of OPEFB contents on the tensile strength of untreated and treated RC biocomposite films with BMA	62
4.9	The effects of OPEFB contents on the elongation at break of untreated and treated RC biocomposite films with BMA	64
4.10	The effects of OPEFB contents on the modulus of elasticity of untreated and treated RC biocomposite films with BMA	65
4.11	XRD curves of untreated and treated RC biocomposite films at different OPEFB contents	66
4.12	SEM micrograph of tensile surface fracture of treated RC biocomposite films with BMA (at 2 wt% of OPEFB contents)	68
4.13	SEM micrograph of tensile surface fracture of treated RC biocomposite films with BMA (at 4 wt% of OPEFB contents)	68
4.14 (MI)	Thermogravimetric Analysis (TGA) curves of untreated and treated OPEFB RC biocomposite films with BMA	69
4.15	FTIR spectra of untreated and treated RC biocomposite films with BMA	71
4.16	The schematic reaction between OPEFB cellulose with BMA treatment	72
4.17	The effect of OPEFB contents on the tensile strength of untreated and treated RC biocomposite fims with MAA	74
4.18	The effect of OPEFB contents on the elongation at break of untreated and treated RC biocomposite films with MAA	75
4.19	The effects of OPEFB contents on the modulus of elasticity of untreated and treated RC biocomposite films with MAA	76

- 4.20 XRD curves of untreated and treated RC biocomposite films at 77 different OPEFB contents
- 79
- 79
- 80
- 82
- 82

<text><text><text><text><text>

LIST OF ABBREVIATIONS

- ABE Acetone-Butanol-Ethanol
- ACC All-cellulose composites
- ATR Total reflectance
- **BMA** Butyl methacrylate
- CN Cellulose nanoparticle
- CPH Cocoa pod husk
- DMAc Dimethylacetamide
- DMSO Dimethylsulfoxide
- itieinal copyrient DMI 1,3-demethyl (2-limidazolimide)
- DP Degree of polymerization
- C₃H₃OH Ethanol
- Fourier Transform InfraredSpectroscopy FTIR
- H_2SO_4 Sulphuric acid
- H₃PO₃ Phosphoric acid
- Ionic liquid IL
- IR Infrared Spectroscopy
- LiCl Lithium chloride
- LODP Leveling-off degree of polymerization
- MAA Methylacrylic acid
- MCC Microcrystalline cellulose
- MFC Microfibrillated cellulose
- MMT Montmorillonite
- NaClO₂ Sodium chlorite
- NaOH Sodium hydroxide
- NFC Nanofibrillated cellulose
- NMMO N-methylmorpholine-N-oxide
- NMR Nuclear Magnetic Resonance

Hydroxyl groups OH

Oil palm empty fruit bunch **OPEFB**

PF Paraformaldehyde

Polypropylene PP

Regenerated Cellulose RC

RTIL Room-temperature ionic liquids

Scanning Electron Microscopy SEM

SRPM

TGA

TSIL

XRD

o this item is protected by original copyright

LIST OF SYMBOLS

%	Percentage
---	------------

wt%	Weight percentage
-----	-------------------

- θ Theta
- Degree Celsius °C
- ο Degree
- CrI
- T_{dmax}
- T₃₀₀
- In undegradation at 300 °C. Temperature degradation at 600 °C, think to provide the formula of T₆₀₀
- μm
- v/v
- w/v
- Gram g
- ml Milliliter
- Millimeter mm
- Minute min
- Milligram mg

Sifat-sifat Tensil dan Terma Filem-Filem Biokomposit Tandan Buah Kosong Minyak Sawit Selulosa Dijana Semula Menggunakan Cecair Berion

ABSTRAK

Filem-Filem biokomposit selulosa dijana semula (SDS) daripada tandan buah kosong minyak sawit (TBKMS) dan selulosa berhablur mikro (SBM) disediakan menggunakan cecair berion. N, N Dimetilacetamida (DMAc) dan Litium Khlorida (LiCl) digunakan sebagai sistem pelarut untuk melarutkan selulosa dijana semula pada suhu bilik. Separa terlarut SDS dan seterusnya bertukar kepada domain matrik terbenam diperkuat SDS yang tidak terlarut. Di dalam kajian ini kandungan SDS berbagai dari 1, 2, 3, dan 4 wt% dan SBM adalah ditetapkan pada 3 wt%. Kesan kandungan TBKMS dan modifikasi kimia menggunakan asid Butilmetakrilat (ABM) dan asid Metakrilat (AMA) ke atas pembelauan X-Ray, sifat-sifat tensil, morfologi, sifat-sifat termadan, FTIR filem biokomposit telah dikaji. Didapati pada kandungan 2 wt% TBKMS menunjukkan indeks penghabluran (IP), kekuatan tensil dan elastisiti modulus yang paling tinggi biokomposit filem SDS, tetapi pemanjangan pada takat putus adalah lebih rendah daripada kandungan-kandungan TBKMS yang lain. Suhu penguraian maksimum pengurangan berat T_{dmax} dan pengurangan berat pada suhu 300 °C (T₃₀₀) berkurang dengan meningkatnya kandungan TBSMK, manakala pengurangan berat pada suhu 600 °C (T₆₀₀) didapati meningkat. Kajian morfologi filem biokomposit TBKMS dijana semula menunjukkan pada kandungan 2 wt% TBKMS mempunyai penyebaran SDS yang lebih baik di dalam matrik. Modifikasi kimia TBKMS menggunakan ABM atau AMA menunjukkan peningkatan sifat-sifat filem biokomposit SDS dirawat. Indeks penghabluran, kekuatan tensil dan elastisiti modulus filem biokomposit SDS dirawat dengan ABM atau AMA adalah lebih tinggi dibandingkan dengan filem-filem biokomposit SDS tidak dirawat. T_{dmax} filem-filem biokomposit SDS dirawat dengan ABM atau AMA adalah lebih tinggi dibandingkan filem-filem biokomposit SDS tidak dirawat. Pada suhu penguraian T_{300} dan T_{600} menunjukkan filem-filem biokomposit SDS dirawat mempunyai pengurangan berat yang lebih rendah daripada filem-filem biokomposit SDS tidak dirawat. Ini menunjukkan bahawa filem-filem biokomposit SDS dirawat mempunyai kestabilan terma yang lebih baik. Peningkatan interaksi antara muka dan penyebaran filem-filem biokomposit SDS dirawat dengan ABA atau AMA telah dibuktikan dengan kajian SEM. Spektra FTIR filem-filem biokomposit RC dirawat menunjukkan pembentukan tindak balas pengesteran diantara selulosa dari TBKMS dan SBM dengan ABM atau AMA. Filem-filem biokomposit SDS dirawat dengan ABM mempunyai indeks penghabluran, kekuatan tensil, elastisiti modulus dan kestabilan terma yang tinggi dibandingkan filem-filem biokomposit SDS dirawat dengan AMA.

Tensile and Thermal Properties of Oil Palm Empty Fruit Bunch Regenerated Cellulose Biocomposite Films using Ionic Liquid

ABSTRACT

The regenerated cellulose (RC) biocomposite films from oil palm empty fruit bunch (OPEFB) and microcrystalline cellulose (MCC) were prepared using ionic liquid. N, N Dimethylacetamide (DMAc) and Lithium Chloride (LiCl) were used as solvent system to dissolve the regenerated cellulose, at room temperature. The partially dissolve of RC and subsequently convert onto matrix domain embedding the reinforcement of the nondissolve RC. In this study, the OPEFB contents were varied from 9, 2, 3 and 4 wt% and MCC were fixed at 3 wt%. The effect of OPEFB contents and chemical modification using Butylmethacrylate acid (BMA) and Methacrylic acid (MAA) on X-Ray diffraction, tensile properties, morphology study, thermal properties and FTIR of RC biocomposite films were investigated. It was found that at 2 wt% of OPEFB contents showed the highest crystallinity index (CrI), tensile strength and modulus of elasticity of RC biocomposite films, but lower elongation at break than other OPEFB contents. The temperature at maximum rate of weight loss (T_{dmax}) and weight loss at temperature 300 $^{\circ}C$ (T₃₀₀) decreased with increasing OPEFB contents, while weight loss at temperature 600 °C (T₆₀₀) increased. The morphology study of OPEFB RC biocomposite films exhibited at 2 wt% contents of OPEFB has better dispersion of RC into the matrix. The chemical modification of OPEFB using BMA or MAA indicated enhance the properties of treated RC biocomposite films. The T_{dmax} of treated RC biocomposite films with BMA or MAA were higher than the untreated RC biocomposite films. At temperature T_{300} and T_{600} degradation showed that treated RC biocomposite films with BMA or MAA have lower weight loss. This indicated that treated biocomposite films had better thermal stability. The enhanced of interfacial interaction and dispersion of treated RC biocomposite films with BMA or MAA were proven by SEM study. The FTIR spectra of treated RC biocomposite films indicated the formation of esterification reaction between cellulose from OPEFB and MCC with BMA or MAA. The treated RC biocomposite films with BMA have higher crystallinity index, tensile strength, modulus of elasticity and thermal stability compared to treated RC biocomposite films with MAA.

CHAPTER 1

INTRODUCTION

1.1 Research Background

Polymers from renewable resources have gain attentions worldwide due to their biodegradability and potential to substitute petrochemical which are diminishing (Guansen et al., 2012). The research and development of material biodegradable polymer has drawn considerable attention due to a new sustainable development concept (Zhang et al., 2012; Soheilmoghaddam et al., 2014). Cellulose as renewable resources in nature, is amongst the most widely used natural fibers (Chen et al., 2006; Kadokawa et al., 2009; Klemm et al., 2005; Kosam et al., 2008). However, the preparation of cellulose can be quite ambitious or strenuous. This is because the natural polymer does not melt or dissolve in usual solvent due to its inter and intra hydrogen bond, particularly crystalline structure, which strictly limiting its processing and applications (Chi & Zhang, 2006; Ruan et al., 2008; Zadagen et al., 2010; Han et al., 2013).

Regenerated cellulose is known as the man-made cellulose. In other word, it is a chemical dissolution of insoluble natural cellulose followed by the recovery of the material from the solution. The regenerated cellulose fibers have been made according to various processes yielding with a wide range of mechanical properties. The textile fibers with a low modulus, and high elongation at break, fibers for technical applications such as tire yarns with an intermediate modulus and strength, and fibers

with a high modulus and low elongation at break (Norholt et al., 2001). Regenerated cellulose fibers can be used to produce applications ranging from films, membranes and sponges (Klemm et al., 2005).

Recently, a new type of solvent, ionic liquid (ILs) has been the focus of interest due to their potential to be eco-friendly. In addition, they also exhibit characteristics including low melting points, low flammability, non-volatility, non-explosiveness, thermal stabilities and ease of recycling. Hence, ILs has the potential to replace traditional volatile organic solvents (Gatowshi et al., 2003; Mahmoudian et al., 2012). Cellulose can dissolve in several solvent systems which include heavy metal-ceramic complex solutions, concentrated metal salt, cold NaOH solution, thiocyanate/amine, dimethylacetamide (DMAc)/lithium chloride (LiCl), *N*-methylmorphiline-*N*-oxide (NMMO/H₂O) system and concentrated H₂SO₄ and H₃PO₃ (Haibo et al., 2007).

The used of ILs can be seen in many forms ranging from media for organic synthesis and catalysts to lubricants and recently have generated much interest as replacements for environmentally, damaging volatile organic solvents (Berg et al., 2005). The emergence of ILs caters an extensive opportunity for the development of cellulose chemistry. The evolution of cellulose dissolution has been confirm by the use of ILs based on their unique and exclusive properties, such as low melting points, negligible vapor pressure, non-volatile and inflammable as well as wide electrochemical windows (Huddleston et al., 2001; Zhen et al., 2012).

Some researchers, it were found that cellulose can swell and dissolve in several solvents such as *N*-methylmorpholine-*N*-oxide (NMMO) (Biganska et al., 2002; Zhao et

al., 2007), *N*-dimethylacetamide/lithium chloride (DMAc/LiCl), (Zhang et al., 2012), 1butyl-3-methylimidazolium chloride (Soheilmoghaddam & Wahit, 2013; Soheilmoghaddam et al., 2013; Mahmodian et al., 2012; Han et al., 2013; Chen et al., 2009; Liu et al., 2011), dimethyl sulfoxide/paratormaldehyde (DMSO/PF) (Jiang et al., 2012), 1,3-demethyl (2-limidazolimide)/lithium chloride (DMI/LiCl) (Tamai et al., 2004) and NaOH/urea solution (Kuo & Lee, 2009).

Encompassed by the solvents mentioned above, the two-component DMAc/LiCl solvent system is the most frequent used solvent for homogeneous cellulose modification and also dissolution of different types of cellulose without significant degradation (Granström, 2009; Vladimir et al., 2012). The dissolution process can be achieved in two ways which are by altering the ratio between the solvent and cellulose. In additional to that, an activation step is required for both processes (Granström, 2009). Since the solvent exhibit the advantage in dissolving cellulose, a variety of cellulose analysis by various methods was studied such as Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM) (Araki et al., 2006).

The groundwork of regenerated cellulose fibers through this dissolution method need to undergo the activation procedure in which the fiber is penetrated with a polar medium. Skipping the activation step may lead to the dissolution of cellulose to take up to several months (Tim et al., 2012). A study by Daisuke et al. (2008) showed that the DMAc-treated celluloses dissolved more rapidly as compared to the dissolution of the acetone-treated celluloses and the untreated one. It has been reported that the solubility of cellulose increases with LiCl content (Tim et al., 2012). Govindan et al. (2014) have conducted a researched on preparation and characterization of regenerated cellulose using ionic liquid whereby the dissolution of micro crystalline cellulose (MCC) using DMAc/LiCl has improve the tensile strength and modulus of elasticity of the biocomposite films.

Palm oil fiber is one lignocellulosic material which is abundant in Malaysia. The use of palm oil biomass has taken the focus of researchers and scientists to exploit their properties. Palm oil is widely grown in Malaysia and its vast production has also lead to the vast production of biomass waste such as oil palm empty fruit bunch (OPEFB). Since the overloaded of these wastes that scattered the land, it is an idea to convert this useful waste into valuable product. OPEFB has showed potential as being natural fiber reinforcement in biocomposite sectors. The composition of OPEFB can be divided into cellulose (59.7 %), lignin (18.1 %), and hemicelluloses (22.1 %) (Geng, 2013).

Due to the fact that the cellulose content in OPEFB fiber is the most dominant constituent, it is best to further the study on the use of this cellulose to produce new biobased product that is simply eco-friendly to the environment. One of the advantages is that the cellulose in OPEFB can be used to be regenerated into the production of biocomposite films. In order to form the regenerated cellulose, cellulose from OPEFB must dissolve in suitable solvents (Hassan et al., 2010; Chang, 2014).

To obtain the cellulose component prior to the dissolution in DMAc/LiCl solvent, usually pretreatment in the form of physical or chemical is carried out. The significant of conducting pretreatment is to break the lignin and the crystalline structure to obtain more cellulose content and thus, enhancing the dissolution ability of the solvent (Kihlman, 2012). Ariffin et al. (2008) reported the effect of physical, chemical

and thermal pretreatments of the oil palm empty fruit bunch (OPEFB) with increased in cellulose content and lignin while hemicelluloses decreased.

1.2 Problem Statements

The study using ionic liquid with commercial microcrystalline cellulose and type of inorganic material has been reported in previous study (Mahmoudian et al., 2012; Soheilmoghaddam & Wahit, 2013; Soheilmoghaddam et al., 2014). However, the utilization of OPEFB as biocomposite regenerated cellulose has not yet been studied by using ionic liquid. Thus, this is one of many new methods can be used to utilize the use of OPEFB to produce green products such as biocomposite films with low cost and environmental friendly. However, OPEFB consist of complex structure of cellulose, lignin and hemicelluloses and is regarded as a material that is difficult to digest. To produce regenerated cellulose, extraction of cellulose from OPEFB is essential to separate the cellulose from the lignin and hemicelluloses that can prevent the dissolution or penetration of solutions. The study using regenerated cellulose DMAc/LiCl solvent is not yet reported. In order to improve the properties of biocomposite films, the chemical treatment of regenerated cellulose OPEFB was investigated.

1.3 **Objectives**

The objectives of this research are:

- 1. To study the effect of different OPEFB contents of regenerated cellulose N-dimethylacetamide/lithium biocomposite films using chloride (DMAc/LiCl) based on the X-ray diffraction, tensile properties, transform morphologhy, thermal properties and Fourier infrared spectroscopy analysis.
- 2. To investigate the effect of different chemical treatments such as, butyl metacrylate (BMA) and methacrylic acid (MAA) of OPEFB on the properties of regenerated cellulose OPEFB biocomposite films. otectedby

1.4 **Scope of Study**

The scope of this study involves several testings such as tensile properties, morphology, thermal properties, Fourier transform infrared (FTIR) and X-Ray diffraction (XRD). Tensile properties are used to measure the tensile strength, elongation at break and modulus of elasticity. Scanning electron mocroscope (SEM) is an imaging technique used to observe the morphology of the regenerated cellulose biocomposite films. Thermogravimetric analysis (TGA) is used to determine the thermal properties of the regenerated celullose biocomposite films. Fourier transform infrared (FTIR) is used to identify the functional groups of regenerated cellulose biocomposite films. X-Ray diffraction (XRD) is explained to study the crsytallinity of regenerated cellulose biocomposite films.

CHAPTER 2

LITERATURE REVIEW

2.1 Regenerated Cellulose

Regenerated cellulose is known as the man-made cellulose which was introduced in 1846 where Karl-Friedrich Schönbein discovered cellulose nitrate. In addition to that, cellulose xanthate or commonly known as Viscose was discovered in 1891 by Cross, Bevan, and Beadle (Roder et al., 2009).

Recently, it has been reported of a highly oriented cellulose fiber with high modulus and tenacity properties spun from an anisotropic solution in phosphoric acid using an air gap. Liquid crystalline solutions are known to be good precursors for high modulus/high tenacity yarns. The advantage of using a liquid crystalline solution for fiber production is the location orientation order of the chains is already at such a level they can be transformed into highly oriented fibers without the necessity of an aftertreatment, which is required in spinning from isotropic melts or solutions of flexible polymers (Norholt et al., 2001).

The steps in cellulose regeneration started when some parts of the cellulose began to swell when dissolve in a particular solvent. This swollen cellulose will be transformed into the matrix phase covering the non-dissolved part of cellulose which acts as the reinforcement. After partial dissolution of cellulose, the solvent will be removed by using a coagulant (for example water) followed by evaporative drying. This