THE EFFECTS OF FILLER LOADING AND COUPLING AGENTS ON PROPERTIES OF RECYCLED HIGH DENSITY POLYETHYLENE/ WOOD FIBER COMPOSITES

MOHD HANIF BIN MOHD PISAL

UNIVERSITI MALAYSIA PERLIS

2015

THE EFFECTS OF FILLER LOADING AND COUPLING AGENTS ON PROPERTIES OF RECYCLED HIGH DENSITY POLYETHYLENE/ WOOD FIBER COMPOSITES

MOHD HANIF BIN MOHD PISAL

by

1430411199

A thesis submitted in fulfillment of the requirements for the degree of

Master of Science in Materials Engineering

School of Materials

UNIVERSITI MALAYSIA PERLIS

Year

2015

ACKNOWLEDGEMENT

Alhamdulillah, thank god for His graciousness and mercifulness has gave me the strength and ability to complete this thesis successfully.

The author would like to express his foremost gratitude and sincere appreciation to his senior supervisor Associate Professor Dr. Supri A. Ghani, and Associate supervisor Dr. Firuz Zainuddin. Their invaluable support, guidance and encouragement throughout the research period are the impetus behind the successful completion of this work on time.

The author is equally thankful to the committee members Dr. Khairel Rafezi Ahmad, Dean of School of Materials Engineering for their comments and suggestions. The author also thanks the School of Bio Process Engineering and Department of Nano Materials, University Malaysia Perlis, for the technical supports for helping with testing and characterizes the wood plastic composites. I would like to thanks all the academic staff, technical staff and colleagues at School of Materials Engineering for their immeasurable assistance during my research work.

The author is also immensely grateful to the Government of Malaysia for providing Mybrain15 postgraduate scholarship to pursue the Master of Science degree at the University Malaysia Perlis. A heartfelt gratitude is extended to the UniMAP friends in Perlis for their encouraging support and inspiration during my stay here. Finally, the author would like to give my respect to my parents, brother, sister, and young sister for their support and encouragement in all his endeavors. The author is also grateful to University Malaysia Perlis for giving me the opportunity to be one of their MSc program students. Thank you very much.

TABLE OF CONTENTS

	PAGE
THESIS DECLARATION	i
ACKNOWLEDGEMENT	ii
TABLE OF CONTENTS	iii
LIST OF FIGURES	viii
LIST OF TABLES	xii
LIST OF EQUATIONS	xiv
LIST OF ABBREVIATIONS	XV
LIST OF SYMBOLS	xix
ABSTRAK	XX
ABSTRACT	xxi
CHAPTER 1 INTRODUCTION	
1.1 Research Background	1
1.2 Problem Statement	6
1.3 Objectives	8
1.4 Scope of Study	8

CHAPTER 2 LITERATURE REVIEW

10)
	10

2.1.1 Introduction of Wood Plastic Composite	10
2.1.2 Properties of Wood Plastic Composite	12
2.1.3 Application of Wood Plastic Composite	13
2.1.3.1 Building Products	14
2.1.3.2 Infrastructures	14
2.1.3.3 Transportation	15
2.2 Plastics in Wood Plastic Composite	15
2.2.1 Polyethylene (PE)	16
2.2.2 High Density Polyethylene (HDPE)	19
2.2.2.1 Properties of High Density Polyethylene (HDPE)	20
2.2.2.2 Application of High Density Polyethylene (HDPE)	21
2.3 Plastics in Municipal Solid Waste	22
2.4 Recycled Thermoplastic in Wood Plastic Composite	23
2.5 Filler	24
2.5.1 Types of Filler	27
2.5.2 Wood Filler	28
2.5.3 Wood Filler in Wood Plastic Composite	29
2.5.4 Chemical Composition of Wood	31
2.5.4.1 Cellulose	31
2.5.4.2 Hemicellulose	32
2.5.4.3 Lignin	33
2.5.5 Waste Wood for Reinforcing Filler	33
2.6 Improvement of Interfacial Bonding in Wood Plastic Composite	34
2.6.1 Coupling Agents	34
2.6.1.1 Salicylic Acid	35

2.6.1.2 Maleic Anhydride (MAH)	36
2.6.1.3 Phthalic Anhydride (PAH)	37
2.7 Interaction between Natural Fibers and Polymer Matrix	38
2.7.1 Filler-Matrix Interaction	39
2.7.2 Filler-Filler Interaction	43
2.8 Wood Plastic Composite Manufacturing	46
CHAPTER 3 RESEARCH METHODOLOGY	
3.1 Raw Materials and Chemicals	48
3.2 Treatment of Wood Fiber with Salicylic Acid/Ethanol (WF_m)	49
3.3 Preparation of rHDPE/WF and rHDPE/WF _m Composites	50
3.4 Preparation of rHDPE/WF and rHDPE/WF _m Composites with Different Coupling Agent	51
3.5 Compression Molding	53
3.6 Testing and Characterizations	54
3.6.1 Tensile Test	54
3.6.2 Water Absorption Test	54
3.6.3 Scanning Electron Microscopy (SEM) Analysis	55
3.6.4 Fourier Transform Infrared Spectroscopy (FTIR) Spectroscopy	55
3.6.5 Thermogravimetric Analysis (TGA)	56
3.6.6 X-Ray Diffraction (XRD) Study	56
3.7 Chart of Experimental	57

CHAPTER 4 RESULTS AND DISCUSSION

4.1 Effect of Salicylic Acid on Properties of rHDPE/WF and rHDPE/WF _m	58
Composites	

4.1.1 Tensile Properties	58
4.1.2 Water Absorption	62
4.1.3 Morphology Analysis	63
4.1.4 Fourier Transform Infrared Analysis (FTIR)	66
4.1.5 Thermal Degradation using TGA	70
4.1.6 X-ray Diffraction Analysis (XRD)	73
4.2 Effect of Phthalic Anhydride on the Properties of rHDPE/WF Composites	77
4.2.1 Tensile Properties	77
4.2.2 Water Absorption	80
4.2.3 Morphology Analysis	82
4.2.4 Fourier Transform Infrared Analysis (FTIR)	84
4.2.5 Thermal Degradation using TGA	85
4.2.6 X-ray Diffraction Analysis (XRD)	88
4.3 Effect of Maleic Anhydride on the Properties of rHDPE/WF Composites	90
4.3.1 Tensile Properties	90
4.3.2 Water Absorption	93
4.3.3 Morphology Analysis	95
4.3.4 Fourier Transform Infrared Analysis (FTIR)	96
4.3.5 Thermal Degradation using TGA	98
4.3.6 X-ray Diffraction Analysis (XRD)	101
4.4 Effect of Difference Type of Coupling Agent on Properties of rHDPE/WF30 Composites	104
4.4.1 Tensile Properties	104
4.4.2 Water Absorption	107
4.4.3 Morphology Analysis	109

4.4.4 Thermal Degradation using TGA	110
4.4.5 X-ray Diffraction Analysis (XRD)	112

CHAPTER 5 CONCLUSION AND SUGGESTION

5.1 Conclusion	115
5.2 Suggestions	116
REFERENCES	118
APPENDIXES	128
LIST OF PUBLICATIONS	135
OCIES	
60%	
ecter and a second s	
NOT	
· · · · · · · · · · · · · · · · · · ·	
THIS	
\bigcirc	

LIST OF FIGURES

NO.		PAGE
2.1	Schematic model of inter-phase.	12
2.2	Chemical structures for (a) ethylene and (b) polyethylene.	17
2.3	Illustrations of the structure of HDPE (a molecule of linear) and LDPE (a molecule of branched.	19
2.4	Typical filler particle shape.	26
2.5	Segment of a cellulose molecule showing linear and unbranched structure.	32
2.6	Chemical structure of salicylic acid.	36
2.7	Chemical structure of maleic anhydride (MAH).	36
2.8	Chemical structure of phthalic anhydride (PAH).	37
2.9	Modification mechanism for esterification reaction between wood particles and materiated polyolefin's: (a) monoester; (b) diester formation.	42
2.10	Chemical bond between group A on surface and group B on the other surface.	43
2.11	Simple diagram of crosslink.	43
2.12	Schematic view for the structure of filler-filler bonds in polymer matrix.	45
3.1 ©	Process flow of the whole experiment.	57
4.1	Tensile strength vs. fiber loading of rHDPE/WF composites and rHDPE/WF _m composites.	59
4.2	Modulus of elasticity vs. fiber loading of rHDPE/WF composites and rHDPE/WF _m composites.	60
4.3	Elongation at break vs. fiber loading of rHDPE/WF composites and rHDPE/WF _m composites.	61
4.4	Effect of fiber loading on water absorption of rHDPE/WF and rHDPE/WF _m composites was immersed in distilled water for 42 days	62
4.5	Equilibrium water absorption vs. fiber loading of rHDPE/WF composites and rHDPE/WF _m composites.	63

4.6	 (A)-(G) SEM micrographs of tensile fracture surfaces of rHDPE/WF composites: (A)rHDPE, (B)rHDPE/WF5, (C)rHDPE/WF15, (D)rHDPE/WF30, (E)rHDPE/WFm5, (F)rHDPE/WFm15 and (G)HDPE/WFm30. 	65
4.7	Infrared spectroscopy spectra; (A) wood fiber (WF) and (B) wood fiber treatment with salicylic acid (WF _m).	67
4.8	Infrared spectroscopy spectra; (A) rHDPE/WF and (B) rHDPE/WF _m composites.	68
4.9	Illustration of the mechanism of interaction of salicylic acid modified WF with rHDPE phase of rHDPE/WF composites.	69
4.10	TGA thermogravimetric of rHDPE/WF composites at different fiber loading.	70
4.11	DTG thermogravimetric of rHDPE/WF composites at different fiber loading.	71
4.12	TGA thermogravimetric of rHDPE/WF _n with salicylic aicd composites at different fiber loading.	72
4.13	DTG thermogravimetric of $rHDPE/WF_m$ with salicylic aicd composites at different fiber loading.	72
4.14	XRD diffractogram of rHDPE/WF composites at different fiber loading.	74
4.15	XRD diffractogram of rHDPE/WF _m composites at different fiber loading.	75
4.16	Tensile strength vs. fiber loading of rHDPE/WF and rHDPE/WF/PAH composites.	78
4.17	Modulus of elasticity vs. fiber loading of rHDPE/WF and rHDPE/WF/PAH composites.	79
4.18	Elongation at break vs. fiber loading of rHDPE/WF and rHDPE/WF/PAH composites.	80
4.19	Equilibrium water absorption vs. fiber loading of rHDPE/WF and rHDPE/WF/PAH composites.	81
4.20	(A)-(C) SEM micrographs of tensile fracture surfaces of rHDPE/WF/PAH composites: (a) rHDPE/WF5/PAH, (b) rHDPE/WF15/PAH and (c) rHDPE/WF30/PAH.	83
4.21	Infrared spectroscopy spectrum of rHDPE/WF/PAH composites.	84
4.22	Illustration of the mechanism of interaction of phthalic anhydride modified WF with rHDPE phase of rHDPE/WF/PAH composites.	85

4.23	TGA thermogravimetric of rHDPE/WF/PAH composites at different fiber loading.	86
4.24	DTG thermogravimetric of rHDPE/WF/PAH composites at different fiber loading.	86
4.25	XRD diffractogram of rHDPE/WF/PAH composites at different fiber loading.	88
4.26	Tensile strength vs. fiber loading of rHDPE/WF and rHDPE/WF/MAH composites.	91
4.27	Modulus of elasticity vs. fiber loading of rHDPE/WF and rHDPE/WF/MAH composites.	92
4.28	Elongation at break vs. fiber loading of rHDPE/WF and rHDPE/WF/MAH composites.	93
4.29	Equilibrium water absorption vs. fiber loading of rHDPE/WF and rHDPE/WF/MAH composites.	94
4.30	(A)-(C) SEM micrographs of tensile fracture surfaces of rHDPE/WF composites: (A) rHDPE/WF5/MAH, (B) rHDPE/WF15/MAH and (C)rHDPE/WF30/MAH,	96
4.31	Infrared spectroscopy spectrum of rHDPE/WF/MAH composites.	97
4.32	Illustration of the mechanism of interaction of maleic anhydride modified WF with rHDPE phase of rHDPE/WF/MAH composites.	98
4.33	TG thermogravimetric of rHDPE/WF/MAH composites at different fiber loading.	99
4.34	DTG thermogravimetric of rHDPE/WF/MAH composites at different fiber loading.	100
4.35	XRD diffractogram of rHDPE/WF/MAH composites at different fiber loading.	102
4.36	Tensile strength vs. types of composites of rHDPE/WF, rHDPE/WF _m , rHDPE/WF _m /PAH and rHDPE/WF _m /MAH composites.	105
4.37	Modulus of elasticity vs. types of composites of rHDPE/WF, rHDPE/WF _m , rHDPE/WF _m /PAH and rHDPE/WF _m /MAH composites.	106
4.38	Elongation at break vs. types of composites of rHDPE/WF, rHDPE/WF _m , rHDPE/WF _m /PAH and rHDPE/WF _m /MAH composites.	107

- 4.39 Equilibrium water absorption vs. types of composites of 108 rHDPE/WF_m, rHDPE/WF_m/PAH rHDPE/WF, and rHDPE/WF_m/MAH composites.
- 4.40 (A)-(B) SEM micrographs of tensile fracture surfaces of 109 rHDPE/WF30 composites: (A) rHDPE/WF_m/PAH and (B) rHDPE/WF_m/MAH.
- 4.41 TGA thermogravimetric of rHDPE/WF30 composites at different 110 coupling agents.
- 4.42 DTG thermogravimetric of rHDPE/WF30 composites at different 111 coupling agents.
- XRD diffractogram of rHDPE/WF30 composites at different 4.43 113

this termisprotected by original contractions the state of the strength of the

LIST OF TABLES

NO.	PAGE
2.1 Commercial Classification of Polyethylene Resins.	17
2.2 Different types of inorganic fillers.	25
2.3 Different types of organic fillers.	25
2.4 Chemical constituents of wood.	28
2.5 Suitability of methods of disposal for grades of waste wood.	29
2.6 Some typical representative commercial coupling agents.	40
3.1 Properties of virgin high density polyethylene (HDPE) and recycled high density polyethylene (rHDPE).	48
3.2 Formulations of rHDPE/WF and rHDPE/WF _m composites at different filler loading.	51
3.3 Formulation of rHDPE/WF/PAH and rHDPE/WF _m /PAH composites at different filler loading.	52
3.4 Formulation of rHDPE/WF/MAH and rHDPE/WF $_m$ /MAH composites at different filler loading.	53
4.1 Data of final decompose temperature, decomposition temperature and residual mass of rHDPE/WF composites and rHDPE/WF _m composites at different fiber loadings.	73
4.2 Orientation ratio and interparticle spacing of rHDPE/WF composites and rHDPE/WF _m composites with different of fiber loading.	76
4.3 Data of final decompose temperature, decomposition temperature and residual mass of rHDPE/WF and rHDPE/WF/PAH composites at different fiber loadings.	87
4.4 Orientation ratio and Interparticle spacing (<i>d</i>) of rHDPE/WF and rHDPE/WF/PAH composites at different fiber loadings.	89
4.5 Data of final decompose temperature, decomposition temperature and residual mass of rHDPE/WF and rHDPE/WF/MAH composites at different fiber loadings.	101
4.6 Orientation ratio and interparticle spacing of rHDPE/WF and rHDPE/WF/MAH composites at different fiber loadings.	103

- 4.7 Data of final decompose temperature, decomposition temperature 112 and residual mass of rHDPE/WF30 composite at different coupling agents.
- 4.8 Orientation ratio and interparticle spacing of rHDPE/WF30 114 composites at differences coupling agents.

o this item is protected by original copyright

LIST OF EQUATIONS

NO.		PAGE
3.1	Molarity	49
3.2	Water absorption (%)	55
3.3	Absorbance	55
3.4	Crystal orientation ratio	56
3.5	Bragg's law	56
	this item is protected by original.	

LIST OF ABBREVIATIONS

АНА	Alpha-hydroxy acid
AKD	Alkyl ketene dimer
ASTM	American Society for Testing and Materials
BF	Banana fiber
BP	Bamboo powder
DSC	Differential Scanning Calorimetry
EPDM	Ethylene propylene diene monomer
EPM	Ethylene propylene rubber
ESP	Eggshell powder
EVA	Ethylene vinyl acetate
FDT	Final Decomposition Temperature
FTIR	Fourier transforms infrared spectroscopy
HDPE	High density polyethylene
HMDIC	Hexamethylene diisocyanate
HW	High length
ICI	Imperial Chemical Industries
KBr	Potassium Bromide

KF	Kenaf fiber
КР	Kenaf powder
LDPE	Low density polyethylene
LLDPE	Linear low density polyethylene
MAH	Maleic anhydride
MAPE	Maleic anhydride-grafted-polyethylene
MAPP	Maleated polypropylene
MDPE	Medium density polyethylene
MMA	Methyl methacrylate
MW	Molecular length
NaOH	Socium hydroxide
NBR	Acrylonitrile butadiene-rubber
NDE this	Non-destructive evaluation
NFPC	Natural fiber reinforced polymer composite
NR	Natural rubber
ОН	Hydroxyl groups
РАН	Phthalic anhydride
PE	Polyethylene
PE-g-MAH	Polyethylene-grafted-maleic anhydride

PEO-g-MAH	Maleic anhydride grafted Poly(ethylene octane)
PLA	Poly (lactic acid)
PP	Polypropylene
PP-g-MAH	Polypropylene-grafted-maleic anhydride
PS	Polystyrene
PVC	Poly (vinyl chloride)
rHDPE	Recycled high density polyethylene
RHP	Rice husk powder
rLDPE	Recycled low density polyethylene
rNBR	Recycled acrylonitrile butadiene-rubber
rPP	Recycled polypropylene
SA Ker	Salicylic acid
SCB this	Sugarcane bagasse
SEM	Scanning electron microscopy
SEBS-g-MAH	Maleic anhydride grafted styrene-(ethylene-co-butylene)-styrene
SW	Short length
TGA	Thermogravimetric analysis
UHMWPE	Ultra-high molecular weight polyethylene
UV	Ultra-violet

Virgin isotactic polypropylene VPP

- WPC Wood polymer composite
- vHDPE Virgin high density polyethylene
- Very low density polyethylene VLDPE
- WHF Water hyacinth fiber
- Wheat hush fiber WHF
- WF Wood fiber
- , copyright Wood fiber treatment with salicylic acid WF_m
- WPC Wood plastic composite
- X-ray diffraction analysis , di. orthisitemisprot XRD

LIST OF SYMBOLS

Kesan-Kesan Pembebanan Pengisi dan Agen-Agen Gandingan Terhadap Sifat-Sifat Komposit Polietilena Ketumpatan Tinggi Kitar Semula/Serat Kayu.

ABSTRAK

Polietilena ketumpatan tinggi kitar semula (rHDPE)/serat kayu (WF) komposit telah disediakan menggunakan Brabender Plasticorder pada suhu 160°C dengan kelajuan rotor pada 50 rpm. Kesan pembebanan serat kayu dan agen gandingan ke atas sifat tegangan, penyerapan air, ciri-ciri morfologi, pencirian spektroskopi infra merah (FTIR), sifat degradasi terma (TGA) dan pencirian (XRD) terhadap komposit rHDPE/WF telah dikaji. Keputusan menunjukkan bahawa penambahan serat kayu telah mengurangkan kekuatan tegangan, pemanjangan pada takat putus dan jarak antara zarah, manakala modulus keanjalan, peratus keseimbangan penyerapan air, kestabilan terma dan nisbah orientasi kristal komposit meningkat. Agen-agen gandingan seperti asid salisilik, maleik anhidrida dan phthalik anhdrida telah digunakan, di mana kesan positif pada sifat tegangan, penyerapan air, kestabilan terma dan peratusan penghabluran komposit rHDPE/WF telah dihasilkan. Kehadiran agen-agen gandingan meningkatkan kekuatan tegangan, modulus keanjalan, kestabilan terma dan nisbah orientasi kristal, akan tetapi menurunkan pemanjangan pada takat putus, penyerapan air dan jarak di antara zarah (d). Keputusan pelbagai agen gandingan pada rHDPE/WF30 komposit telah diperiksa. Kajian mendapati komposit rHDPE/WF_m/MAH menunjukkan kekuatan tegangan, modulus keanjalan, kestabilan terma dan nisbah orientasi hablur yang lebih tinggi diikuti dengan komposit rHDPE/WF_m/PAH > rHDPE / WF_m (serat kayu yang dirawat dengan asid salisilik) komposit > rHDPE / WF komposit mengikut turutan. Tambahan pula, lebih rendah pemanjangan pada takat putus, rendah peratusan keseimbangan penyerapan air dan jarak diantara zarah menjadi lebih kecil (d). Mikroskop penskanan elektron (SEM) permukaan patah tegangan bagi komposit dengan agen-agen gandingan menggunakan asid salisilik, maleik anhidrida, dan phthalik anihdrida menunjukkan bahawa interaksi antara permukaan dan lekatan di antara WF dengan permukaan rHDPE adalah lebih baik daripada komposit rHDPE/WF.

The Effects of Filler Loading and Coupling Agents on Properties of Recycled High Density Polyethylene/Wood Fiber Composites

ABSTRACT

The recycled high density polyethylene (rHDPE)/wood fiber (WF) composites had been prepared using Brabender Plasticorder at temperature 160°C with rotor speed of 50 rpm. The effect of wood fiber loading and coupling agents on tensile properties, water absorption, morphology, spectroscopy infrared (FTIR) analysis, thermogravimetric analysis (TGA) and x-ray diffraction (XRD) of rHDPE/WF composites were investigated. The results show that the addition of wood fiber reduced the tensile strength, elongation at break and interparticle spacing (d), whereas the modulus of elasticity, equilibrium water absorption percentage, thermal stability, and the crystal orientation ratio of composites increased. The coupling agents such as salicylic acid, maleic anhydride, and phthalic anhydride were used, which resulted in positive effect on tensile properties, water absorption, thermal stability and percentages of crystallinity of rHDPE/WF composites. Whereas the presence of coupling agents had increased the tensile strength, modulus of elasticity, thermal stability and crystal orientation ratio but decreased the elongation at break, water absorption and interparticle spacing (d). The results of various coupling agents on properties of rHDPE/WF30 composites have been examined. The study was showed that rHDPE/WF_m/MAH composites showed higher tensile strength, modulus of elasticity, thermal stability and crystal orientation ratio followed by rHDPE/WFm/PAH composites > rHDPE/WFm (wood fiber treated salicylic acid) composites > rHDPE/WF composites in orders. Furthermore, lower the elongation at break, lower percentage equilibrium water absorption and lower interparticle spacing (d). The scanning electron microscopy (SEM) micrographs of tensile fracture surfaces for the composites with coupling agents of salicylic acid, maleic anhydride, and phthalic anhydride indicated that the interfacial interaction and adhesion between WF and rHDPE phases were better than rHDPE/WF composites.

CHAPTER 1

INTRODUCTION

1.1. Research Background

High amount of waste generated, non-biodegradability and fast depletion of natural resources was the reason of plastic becomes major problem nowadays. Wood also implies the problem with lesser degree than plastic where trees and forests are becoming more depleted and its waste are either burned or disposed resulting in extra consumption, depletion and pollution of nature (Bovea et al., 2010; Astrup et al., 2009).

Wood plastic composite (WPC) is a product which can be produced from plastic and wood. WPC is a composite that consisted of mixture of wood waste and polymeric materials and WPC composite also has rapid growing usage nowadays (Soury et al., 2009). This WPC composite can help reduce solid waste content and conserves the natural resources thus allow of saving costs, energy and reduce depletion virgin materials. In addition, sustainability of materials over incoming years can be assured for future generation's use (Talbot, 2013).

It is well known that recycling contributes to a reduction in resources consumption and pollution. For example, the technology developed by Waste and Resources Action Programme (WRAP) for the recycling HDPE milk bottles from kerbside and brings scheme collections in the United Kingdom reported by Kosior, (2006). The results from the rheological tests, processing tests and the mechanical tests show that the recycled HDPE is technically very similar to the virgin resin used to make milk bottles.

The recycled HDPE content was lowered 30 % of transparency compared to virgin HDPE. The other differences that were noted are the presence of gels and black specks and the odor after processing, however, these were not at a level that detracted from us as a commercially acceptable bottle. According to Adhikary et al., (2008a) reported that the composites made from post-consumer recycled HDPE are shown better mechanical properties than composites from virgin HDPE in similar to or in some cases.

Earlier studies show that the recycled HDPE properties were not largely different than the virgin HDPE and the cost also less expensive from those of virgin HDPE. Therefore, recycled HDPE can be used for many applications while offering the vision of subsiding waste disposals and decreasing the costs of product (Adhikary et al., 2008a; Lu & Oza, 2013) studied the mechanical properties of hemp fiber with virgin and recycled high density polyethylene matrix. From the findings, they indicated that hemp fiber composites with recycled HDPE matrix performed better than composites with virgin HDPE in mechanical and thermo-mechanical properties.

Rheological analysis shows the normal flow of recycled LDPE can be promoted by virgin LDPE and thus mobility of chain segments in flow are improved. As a result, blend with recycled LDPE and virgin LDPE has better rheological and processing properties compared to recycled LDPE (Zhao et al., 2013). One of the most important advantages of recycled high density polyethylene is its consistent density and melt flow index in majority of the recycling plants (Mishra & Yagci, 2008).

(C)