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Kadar Penyerapan Khusus di Kepala Manusia Disebabkan Oleh Cermin Mata 
Bingkai-besi dan Prostesis Telinga  

ABSTRAK 

Kajian di dalam tesis ini melibatkan penyiasatan kadar penyerapan tertentu (SAR) 
dalam model kepala manusia didedahkan kepada medan elektromagnet. SARs (1-g dan 
10-g) telah dibandingkan dalam beberapa model kepala manusia. Siasatan ini bertujuan 
mengkaji kesan penggunaan cermin mata bingkai logam dan implan telinga prostetik 
yang realistik dikekalkan disambung pada sisi kepala. Satu set antena dwi-kutub yang 
beroperasi pada frekuensi umum 900, 1800 dan 2100 MHz telah dipusingkan untuk 
mengkaji kesan frekuensi dan polarisasi. Dua situasi dipertimbangkan dalam tesis; 
radiasi di bahagian hadapan muka, dan bahagian sisi kepala. Kajian awal telah 
dijalankan dengan menggunakan model kepala yang ringkas dan objek logam untuk 
meminimakan tempoh simulasi. Empat jenis kepala bergeometri ringkas digunakan; 
bata, silinder, sfera dan silinder yang berbentuk elip disimulasikan dengan hidung dan 
tanpa hidung yang berbentuk ringkas untuk menyiasat sebarang kesan. Pada masa yang 
sama, rod logam lurus pada awalnya digunakan untuk mewakili cermin mata bingkai 
logam. Parameter telah diperluaskan lagi terhadap keberaliran rod logam yang berbeza, 
dimensi sebuah model kepala, kelengkungan rod dan jejari rod. Dalam kes radiasi 
sebelah sisi, penyiasatan telinga prostesis telah dimulakan dengan melihat kesan sifat 
dielektrik telinga tiruan yang berbeza. Selain itu, penggunaan gabungan objek logam ini 
yang mempunyai bentuk realistik bagi kedua-dua cermin mata dan implan (telinga) 
telah dikaji lebih terperinci dengan menggunakan model kepala manusia homogen dan 
heterogen. Keputusan ujikaji ini mencadangkan bahagian lain implan tersebut 
beresonansi bergantung pada frekuensi dan polarisasi, dan selanjutnya, menunjukkan 
bahawa implan ini nyata adalah elemen penyerakan. Implan menumpukan, fokus dan 
memantulkan tenaga frekuensi radio. Tisu yang berhampiran kepala juga akan 
mempunyai kesan muatan dielektrik sekunder. Peningkatan relatif kepada SAR10g 
kerana implan yang jauh lebih kecil. Taburan SAR menunjukkan bahawa peningkatan 
pada SAR kerana implan logam tersebut amat setempat. Ini menerangkan perubahan 
dalam SAR1gdan perubahan yang jauh lebih kecil untuk 10g SAR. Walau 
bagaimanapun, cermin mata bingkai logam yang dipilih dalam penyiasatan ini telah 
menunjukkan kenaikan SARs tidak ketara pada semua orientasi dwi-kutub dan 
frekuensi yang dipilih. Secara keseluruhannya, dengan mengambil kira telinga prostesis, 
pendedahan kepada 900 MHz daripada sebarang peranti berdekatan dengan implan 
tersebut mungkin boleh mengakibatkan kemudaratan. Ia juga dicadangkan supaya 
pesakit yang mempunyai telinga prostetik ini tidak boleh didedahkan kepada sebarang 
bentuk alat perhubungan berhampiran-badan pada sebarang julat frekuensi, kerana 
terdapat bukti bahawa logam diimplan di dalam bahan-bahan tertentu mempunyai 
perilaku berlainan untuk logam yang sama yang belum ditanam dalam sebarang bahan. 

 

 

 

 

 

 

 

©
 T

his 
ite

m
 is

 p
ro

te
ct

ed b
y o

rig
in

al
 co

pyr
igh

t 



 

 
xv 

 

Specific Absorption Rate in the Human Head due to Metal-frame Glasses and Ear 
Prosthesis  

ABSTRACT 

The research in this thesis involves the investigation of the specific absorption rate 
(SAR) in a human head model exposed to electromagnetic fields. The SARs (1-g and 
10-g) were compared inside various models of the human head. Investigation is aimed 
at the study of the effect of the use of a realistic implant retained prosthetic ear attached 
to the side of the head and metal-frame glasses. A set of dipole antennas operating at a 
common frequency of 900, 1800 and 2100 MHz were rotated to investigate the effect of 
frequency and polarization. Two situations were considered in the thesis; radiation at 
the front of the face, and at the side of the head.  Initial studies were conducted using a 
simplified model of the head and metal object to minimize the duration of the 
simulation. Four types of simple geometrical head were used; brick, cylindrical, 
spherical and elliptical cylinders were simulated with and without the simple shape of 
the nose to investigate its possible effects. At the same time, a straight metal rod was 
initially employed to represent the metal-frame glasses. The parameters were further 
expanded to the different conductivities of the metal rod, the dimensions of a model of 
the head, the curvature of the rod and the radii of the rod. In the side radiation case, the 
investigation of the ear prosthesis was initiated by looking at the effect of different 
dielectric properties of the artificial ear. Moreover, the combined use of these metal 
objects with realistic shapes of both glasses and implant (ear) were investigated in detail 
using homogeneous and heterogeneous models of a human head. The results suggest 
that different sections of the implant resonate depending on the frequency and 
polarization, and furthermore, demonstrate that this real implant is a complex scattering 
element. The implant focuses and reflects the incident radio frequency (RF) energy. The 
nearby tissue of the head will also have a secondary dielectric loading effect. The 
relative enhancement on the SAR10g due to the implant was much smaller. The SAR 
distribution shows that the increase in the SAR due to the metallic implant is extremely 
local with regards to the implant. This explains the change in the SAR1g  and the much 
smaller changes to the 10g SAR. However, the metal-frame glasses selected in this 
investigation had given a negative significant increment of SARs at any orientation of 
the dipole and frequency chosen. Overall, with regard to the ear prosthesis, exposure to 
900 MHz from any device adjacent to the implant may cause harm. It also is suggested 
that patients with ear prostheses should not be exposed to any near-body 
communication at any frequency range, because there is evidence that metal implanted 
inside certain materials has different behavior from the same metal that has not been 
implanted in any material. 
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CHAPTER 1  

INTRODUCTION 

1.1 Background 

In 1865, Maxwell formulated a set of equations as a first introduction to 

electromagnetic (EM) theory. The possibility of transmitting EM signals through the air 

was discovered in the late 19th century, but only in the past two decades the wireless 

communications become available to the general public, most notably through mobile 

phones. Over that period of time, the mobile communications industry has become 

economically important, especially in Finland, and a significant amount of research has 

managed to enhance the quality of wireless systems. 

Radio frequency (RF) engineering and modern microwave engineering are 

exciting and vigorous topics, due in large part to the interaction between the advances in 

modern electronic technology and the increasing in demand for voice, data, and video 

communication capacity. Due to this major improvement in communications, mobile 

communication devices operating in the RF range have flourished rapidly in the market. 

Most notably, the smartphone almost has become a basic need for everyone. However, 

over the past few years, the possible consequences of the use of mobile phones on 

human health has been investigated by several researchers, (e.g., McIntosh, Anderson, 

& McKenzie, 2005; Siriwitpreecha, Rattanadecho, & Wessapan, 2013; Virtanen, 

Huttunen, Toropainen, & Lappalainen, 2005; Virtanen, Keshvari, & Lappalainen, 

2007).  
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Mobile phones are placed in close proximity to the user’s head, hence, a certain 

amount of EM energy is absorbed by the head rather than being directly radiated. In 

addition, as the technology continues to improve, mobile phones will be used for 

various purposes and, therefore, the users will be exposed to EM energy for longer 

periods every day (Rahmat-Samii & Stutzman, 1998; W. G. Whittow, Edwards, 

Panagamuwa, & Vardaxoglou, 2008), and this may compound any possible health 

effects. 

1.2 Problem Statement 

The health effects of using mobile phones have been studied extensively in the 

past. Consequently, mandatory safety limits for RF energy absorption by human tissue 

have been established throughout the world. In order to minimize the heating effect on 

tissue caused by the absorption of RF energy by the human body, all mobile 

communications equipment (MCE) must comply with the regulations that establish the 

maximum power output of mobile phones.  

The specific absorption rate (SAR) is used to evaluate the rate of absorption of 

energy by human tissue, and spatially-averaged SAR limits have been promulgated 

worldwide. For example, in the U.S. and Europe, the limits are 1.6 W/kg over 1 g of 

tissue and 2 W/kg over 10 g of tissue, respectively (ICNIRP, 1998; IEEE, 2005). 

Although RF emissions from mobile MCE are carefully regulated, the possibility exists 

that the RF characteristics are altered somewhat when tissue is irradiated by RF energy, 

thereby increasing the SAR. 

Concern about the possible health effects due to exposure to electromagnetic 

fields (EMF) has increased among health professionals and the general public since 
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these communication devices were developed (Bernardi, Cavagnaro, Pisa, & Piuzzi, 

2000; Cooper, & Hombach, 1996). This concern has caused an increase in the research 

conducted on the rate at which electromagnetic radiation is absorbed by the human body 

(Bernardi et al., 2000; Cooper & Hombach, 1998; Dimbylow, 2011). The issue is 

complicated further by the presence of any metal objects that may affect the 

characteristics of the EM radiation.  

Furthermore, with recent advances in technology, mobile phones have been 

incorporated in a number of applications that require the device to be held in front of the 

face while transmitting. This introduces a new scenario in which both the side of the 

user’s head and the user’s face are exposed to the radiation source, which may be 

coupled with metal objects. In the past, several objects have been shown to alter the 

level of RF energy absorbed, including medical implants (Virtanen et al., 2007), metal-

frame glasses (Troulis, Evans, Scanlon, & Trombino, 2003; W.G. Whittow & Edwards, 

2004), and metal jewelry (W. G. Whittow et al., 2008). 

More than a decade ago, rapid prototyping (RP) techniques began to be used 

extensively in maxillofacial surgery. This technique concentrates on producing exact 

physical replicas of patients' skeletal anatomy, and surgeons and prosthetists use the 

replicas to help plan reconstructive surgery and prosthetic rehabilitation. Developments 

in this area are moving rapidly towards the use of complex technologies to design and 

produce implants that make custom-fitted prostheses a reality. The definitive treatment 

for traumatic loss of an ear and poor surgical reconstruction often are followed by an 

implant-retained auricular prosthesis. As a result, there is increasing concern on the part 

of such patients about the health and safety aspects of such prostheses given the 

increasing use of RF devices, such as mobile phones, in close proximity to metal 

implants. In their initial study, Cooper & Hombach, (1996) concluded that the amount 
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of RF absorption within a homogeneous head model was enhanced substantially in the 

presence of metal implants. For example, the method used to retain an auricular 

prosthesis requires the use of a metal bar and a metal clip.  

Thus, given the widespread application of bar and clip mechanisms in the 

production of prostheses for ears, it was deemed imperative to evaluate the 

compatibility between metal implants and EMF from RF devices, but, to date, this has 

not been done.  

Furthermore, the combination of metal-frame glasses and an ear prosthesis could 

possibly result in a significant increase in the SAR. Again, no research addressing this 

issue can be found in the literature. It is hypothesized that SARs might increase at 

certain angles of incidence and frequency when the resonant frequency matches the 

length of the metal objects and is parallel to the excitation sources. It is predicted that an 

embedded metal implant inside different ear’s tissues permittivity will produce different 

effects. 

1.3 Objectives of the Research Work 

The main objectives are to analyze the worst-case effects of metal-frame glasses 

and prosthetic ear implants on the SAR of energy by a human head when a subject is 

using common RF sources. The sources considered were mobile phones operating at 

900, 1800, and 2100 MHz. The specific objectives are as follows:  
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• To determine the parameters that influence the RF energy coupling effect of a 

conductive metal rod in the human head. 

• To model a 3D, realistic, metal-frame pair of glasses and an ear prosthesis for 

simulation in order to investigate the effect on human tissue.   

• To evaluate the effect of an RF energy source on the SAR of a human head in 

the presence of both an ear prosthesis and metal-frame glasses.  

1.4 Contribution of the Thesis 

Changes in the SAR caused by metal objects in the presence of an RF energy 

source have received limited attention in the literature. In this thesis, the SAR in a 

model of a head exposed to EMF was analyzed while there was a 3D, implant-retained 

prosthetic ear attached to the side of the head. In addition, 3D, metal-frame glasses were 

added to evaluate the worst case scenario, i.e., when the person using the mobile phone 

has both of these metal objects on her or his head.  

Different models of the human head were considered in the study. A simple 

homogeneous, spherical model of the head was used to validate the simulation with 

published results. Secondly, the head of a homogeneous specific anthropomorphic 

mannequin (SAM) used to observe the amount of RF energy the head absorbed. Then, 

the results were compared with the more realistic voxel model of the human head. Also, 

a cubical model of the head was used to compare the measurement and simulation 

results.  

This thesis includes the effect of a real ear prosthesis and metal-frame glasses. To 

date, there have been very few research publications concerning the effect of an ear 

implant, i.e., cochlear implant, on the SAR in the head. However, it has been proven 
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that the presence of metal objects enhances the SAR. Thus, this thesis makes a new, 

important contribution to the knowledge in the field of bio-electromagnetics. 

1.5 Thesis Outline 

The thesis consists of six chapters, and the following five chapters are organized 

as follows; Chapter 2 provides a critical review of the effect of a metal object on the 

SAR, basic SARs for simulation and measurement, and the factors that affect the SAR. 

In this chapter, the interactions between the antenna, the human head, and metal objects 

also are discussed.  

Chapter 3 deals with the methods and tools that were used in this research to 

investigate RF interactions with biological bodies. Chapter 3 also provides the 

validation procedure used to ensure that the simulation setup was designed 

appropriately before the simulation was conducted.  

In Chapter 4, the results of the simulations are analyzed using tissue simulating 

liquid (TSL). In this chapter, four simple geometrical model of heads phantom are 

discussed with emphasis on the effect of the simple head with and without a simple 

geometrical human nose. The other parameters are varied in this chapter to determine 

the parameters that have the greatest effect on the SAR.  The effects of orienting the 

dipole antenna in different directions were evaluated. 

Chapter 5 investigated in detailed base on the results obtained from TSL and 

further studied with the voxel model of the human head for using the same source from 

an earlier chapter.  The maximum SAR was studied in this chapter using the basis of the 

maximum SAR obtained from Chapter 4. This chapter also shows the measurement 
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results that indicate the effects of the metal objects on the SAR inside the cube head 

phantom model that filled with tissue-equivalent liquid.  

Chapter 6 provides the conclusions based on the results of the simulations and 

experimental tests. Also, some recommendations for future work are presented.  
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CHAPTER 2  

LITERATURE REVIEW 

2.1 Introduction  

In RF communication, there are two types of EMF situation; one is near field 

and the other is far field. In free space, the far field is straight forward because the 

electric field and the magnetic field are perpendicular to each other. In the context of 

analyzing the far field effect, exposure from a regular base station and simulation using 

a plane wave are used. Unlike the near field, the far field is much complex. In analyzing 

the near field for a device, such as a mobile phone used in close proximity to tissues, it 

is difficult to predict the EM field and other characteristics, since certain parts of the 

mobile phone scatter and reflect the EMF. The rationale for the studies of the effect of 

far field exposure is the work-related, high-level exposure of personnel while 

conducting their assigned tasks. Conversely, studies of the effect of near field exposure 

have resulted from public concern about the health risk associated with the use of RF 

devices in close proximity to the body. At the same time, carrying a metal object 

theoretically may enhance the possibility of RF absorption in certain cases. This is due 

to the complex reaction that occurs when EMF comes in contact with the surface of the 

human body. The transmitted RF energy may be absorbed by the human tissue (body), 

and or it may be reflected. The amounts of energy that are absorbed and reflected vary 

with the dielectric properties, the frequency of exposure, the shape of the exposed 

tissue, the angle of incidence, and the electrical conductivity of the tissues (Johnson & 
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Guy, 1972; Rani & Raju, 2013). Moreover, this absorption in the lossy tissues 

attenuates as the RF energy is absorbed by the tissue. In this chapter, reviews from the 

most-cited prior publications related to this research are discussed to determine their 

relevance and significance. 

2.2 Radiation from Mobile Phones  

Mobile phones broadcast in the microwave region, which is non-ionizing 

radiation. RF waves belong to the category of non-ionizing radiation because they 

cannot break chemical bonds or extract electrons from atoms, causing mater ionizing. 

Ionizing radiation causes biological effects because it breaks chemical bonds and 

creates ions. Thus, ionizing radiation is far more dangerous than non-ionizing radiation 

because it can cause distortions of the genetic and cause cancer (Holton, 2009). Figure 

2.1 shows the microwave region of the electromagnetic spectrum. 

 

Figure 2.1: Electromagnetic spectrum (“electromagnetic spectrum,” n.d.). 
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