

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

School of Computer and Communication Engineering UNIVERSITY MALAYSIA PERLIS

2014

UNIVERSITI MALAYSIA PERLIS

Acknowledgement

Credence praise and sincere calls to Allah (SWT) who gave me the strength and courage to complete this thesis. My most special thanks to my supervisor Prof. Dr. Syed Alwee Aljunid for supporting me through the doctoral process and for his academic advice. His guidance, ideas, encouragement, affable nature, kindness and support were greatly helpful. Even with his busy schedule because he is a Dean of Research Management and Innovation Centre, he spent considerable amount of time helping me through the different phases of this project. I would like to thank my field supervisor Prof. Dr. Syed Mohammed Aljunid and my co-supervisor Assoc. Prof. Dr. Oteh Maskon for their kind support, and suggestions especially in medical side. I would also like to thank Dr. Osama Ali M. Ibrahim and Dr. Samir Kumar Paul for their support to do manual diagnosing for all EGG records used in this Thesis.

I wish to thank my wife, sons, and daughters Rafah, Ahmed, Yamama, and Nisma who inspired me by their, courage, support and patience throughout the period of my study. I am indebted to them and words will never express the gratitude I owe to them.

Last but not least, sincere thanks and gratitude to my mother Madeeha, her daily prayers, giving me the motivation and strength, and encouraging me to accomplish and achieve my ambitions.

Sameer Kleban Salih University Malaysia Perlis (UniMAP)

TABLE OF CONTENTS

PAGE

DECLARATION OF THESIS	Error! Bookmark not defined.
ACKNOWLEDGMENTS	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	viii
LIST OF FIGURES	x
LIST OF ABBREVIATIONS	xiii
LIST OF SYMBOLS	xix
ABSTRAK	xxiii
ABSTRACT	XXV
1.1 Background	1
1.2 Problem Statements	4
1.3 Research Objectives	5
1. Scope of Research	6
1.5 Summary of Main Contributions	8
1.6 Thesis Outline	10

Chapter 2 LITERATURE REVIEW

2.1 Introduction	12
2.2 The Basic Concepts of ECG signal	13
2.2.1 The Cardiac Conduction System	13

2.2.2 The ECG components	18
2.2.3 The 12 Lead ECG	19
2.2.3.1 The Limb leads	20
2.2.3.1.1 The Bipolar Leads	21
2.2.3.1.2 The Augmented (Unipolar) Lead	22
2.2.3.2 The Chest (Precordial) Leads	23
2.3 The Data Resources of the 12 lead ECG	25
2.3.1 The ECG machine	25
2.3.2 The ECG Database	26
2.3.2.1 The MIT-BIH Arrhythmia Database	27
2.3.2.2 The QT ECG database	28
2.3.2.3 The Diagnostic 12-lead ECG Databases	28
2.3.3 Digital Recovery of the Raw ECG Data from Paper Printout Recording	30
2.4 ECG Signal Analysis	33
2.4.1 ECG Waves Detection	34
2.4.1.1 QRS Complex Detection	35
2.4.1.2 P and T waves Detection	39
2.5 Diagnosing Cardiac Disease Based on 12-Lead ECG Signal Analysis	41
2.5.1 Diagnosing High Risk Cardiac Diseases	42
2.5.2 Predication of Sudden Cardiac Death using ECG Signal Analysis	44
2.6 Summary	47

Chapter 3 RESEARCH METHODOLOGY

3.1 Introduction	51
3.2 12-Lead ECG Data	54
3.2.1 Online ECG Data	54
3.2.2 Digital Recovery of 12-lead ECG data from Paper Printout Recordings	56
3.2.2.1 Proposed Approach for Digital Recovery of 12-Lead ECG from Pape Printout Recordings	er 56
3.3 Detection Time Characteristics of ECG Waves	65
3.3.1 Proposed Approach for Detecting QRS Complex	66
3.3.2 Proposed Approach for Detecting P and T waves	73
3.3.2.1 Delineating the Time Characteristics of P wave	74
3.3.2.1.1 Delineating the Peak Time location of P wave	74
3.3.2.1.2 Delineating the Onset and the End Time Locations of P wave	80
3.3.2.2 Delineating the Time Characteristics of T wave	83
3.3.2.2.1 Delineating the Peak Time Location of T wave	84
3.3.2.2.2 Delineating the Onset and the End Time Locations of T wave	87
3.4 Diagnosing High Risk Cardiac Diseases	89
3.4.1 Diagnosing Left Ventricular Hypotrophy	90
3.4.1.1 Standard Diagnostic Criteria for LVH Cardiac Disease	91
3.4.1.2 Proposed Criterion for Diagnosing LVH Cardiac Disease	93
3.4.1.3 ECG Voltage Parameters for Proposed Diagnostic Criterion	95
3.4.1.4 Proposed FIS for Diagnosing LVH Cardiac Disease	96

Chapter 4 RESULTS AND DISCUSSION

4.1 Introduction	106
4.2 Performance Evaluation of proposed Digital Recovery Approach	106
4.2.1 Graphical Evaluation of the 12-lead ECG Data	108
4.2.2 Analytical Evaluation of Single ECG Lead	113
4.2.2.1 Qualitative evaluation	113
4.2.2.2 Quantitative Evaluation	115
4.3 Performance Evaluation of Proposed Approaches for Detecting ECG waves	118
4.3.1 Performance Analysis of Proposed RFEM Approach	118
4.3.1.1 Graphical Evaluation of R _{PEAK} time locations	119
4.3.1.2 Graphical Evaluation of QRS time characteristics	123
4.3.1.3 Validation of RFEM Proposed Approach	127
4.3.2 Performance Analysis of Proposed HSDPTW Approach	131
4.3.2.1 Evaluation metrics of P and T waves delineation	132
4.3.2.2 Graphical Evaluation of P and T wave Delineation in Various Categorial	gories 133
4.3.2.3 Analytical Results of Delineating Time Characteristics in P and T w	vaves 137

4.3.2.4 Validation of Proposed HSDPTW Approach	142
4.4 Performance Evaluation of LVH Cardiac Disease Diagnosis	143
4.4.1 Selection of Tested ECG Data for Diagnosing LVH Cardiac Disease	144

4.4.2 Quantitative Evaluation of Diagnosing Process	145
4.4.3 Analytical Results of Proposed LVH Diagnosing Approach	146
4.4.4 LVH Diagnosis Results Using Proposed FIS	151
4.4.5 Validation of Proposed Diagnostic Approach	159
4.5 Summary	160
Chapter 5 CONCLUSIONS AND FUTURE WORK	
5.1 Conclusion	163
5.2 Future Works	166
, p10'	
REFERENCES	168
Appendix A	179
Appendix B	184
, his	
LIST OF PUBLICATIONS	188

LIST OF TABLES

NO.		PAGE
2.1	Summary of Literature Review	48
3.1	Standard Diagnostic Criteria of LVH Cardiac Disease (M:Male, F:Female)	89
3.2	Additional Diagnostic Criteria of LVH Cardiac Disease	90
4.1	Validation Results and Accuracy of Five Standard ECG parameters obtained in Lead II of Three Patients ; 1 small square $(SS) = 0.04$ s (Standard Sampling Time of ECG signal)	114
4.2	Simulation Results of Statistical Metrics of Applying Proposed RFEM Approach on 48 ECG Records from MIT-BIH DB.	125, 126
4.3	Simulation Results of Statistical Metrics (Se, P+, and Fd) obtained by Proposed RFEM Approach and Other Eight QRS Detection Methods.	127
4.4	Comparison of Average Required Time of Processing ECG Signal Using Proposed RFEM Approach and Other Three QRS Complex Detection Methods	128
4.5	Analytical Results of Statistical Metrics (Sensitivity, Specificity, Mean, and Standard Deviation) Obtained by Applying Proposed HSDPTW Delineation Approach on 28 ECG Records From QTDB	134, 135, 136, 137
4.6	Comparison the Statistical Metrics (Se, P+, m, and s) of the Delineated Onset, Peak, and End Time Locations in P and T wave Obtained by the Proposed HSDPTW Approach and Other Five Detection Methods Using ECG Records From QTDB, (N/A: not applicable, N/R: not reported).	140

4.7 The ECG Voltage Parameters of the LVH Diagnostic Criteria and **144, 145** MDV values of the Proposed Diagnostic Criterion

- **4.8** Comparison Between the LVH Diagnosis Results Obtained by the **146, 147** Proposed Approach and Nine traditional Diagnostic Criteria Using 50 ECG Patients Suffering From Different Cardiac Disease: (LVH, □: Other Cardiac Diseases or Normal Patient)
- **4.9** Comparison of Evaluation Parameters for Diagnosing LVH Cardiac **156** Disease Using Proposed Criterion and Other Nine Diagnostic Criteria

o this term is protected by original copyright

LIST OF FIGURES

NO.		PAGE
1.1	General Block Diagram of ECG Processing Signal (Sörnmo & Laguna, 2006)	2
1.2	General Block Diagram of Classifying/ Diagnosing ECG Signal using Computerized Based Technique (Güler, 2005)	3
2.1	Structure of the Human Heart	13
2.2	Cardiac Conduction of the HH (Assadi, Motabar, & Lange, 2011)	14
2.3	Representation the Electrical Conduction System of the HH by the ECG Signal	16,17
2.4	The Waves, Intervals, and Segments of Typical ECG Signal (Suri & Spaan, 2007)	18
2.5	The Transverse and Frontal Planes of the 12 Lead ECG (Foster, 2007)	20
2.6	The Electrical Connection of the Limb Leads to the Human Body	21
2.7	(a) Polarity Diagram of the Augmented (Uni-polar) Leads Incorporated into Einthoven's Triangle (Bowbrick & Borg, 2006), (b) View of the Limb Leads with Respect to the Common Central Terminal (Aehlert, 2012)	23
2.8	(a) The Placement of ECG Chest Leads in the HH (Bowbrick & Borg, 2006), (b) Top View of the Chest Leads (Aehlert, 2012)	24
2.9	The ECG Patterns of the Chest Leads	25
2.10	The ECG Grid Paper; (a) The Time Event is Represented by the Horizontal Axis and the Voltage is Represented by the Vertical Axis, (b) In the Calibration of ECG Machine, a 1 mV Electrical Signal of Square Shape Will Produce a Deflection Measuring Exactly 10 mm Height (Aehlert, 2012)	26
2.11	The Diagnostic Features Limited by the Time Location Points in a Single ECG Cycle	34
2.12	The ECG Signal of SCD Patient Before 2 minutes of SCD Event and Several Seconds After that (E. Ebrahimzadeh & Pooyan, 2011)	46
3.1	General Block Diagram of Proposed System for Analyzing and Diagnosing 12-lead ECG Signal	51

- **3.2** General Block Diagram of Proposed Approach for Digital Recovery of **54** 12 lead ECG Data from Colour Scanned Image of ECG Paper Printout Recording
- **3.3** (a) Classical 12-lead Paper Printout Recording, (b), (c) Modern Forms **55, 56** of 12-lead Paper Printout Recordings with Automatic ECG Interpretation
- **3.4** A Process of Replacing Test Point with Designed Mask to Fill Blank **58** Spaces between Two Neighbouring Points
- **3.5** General Block Diagram of Proposed (RFEM) Approach for Detecting **64** Time Characteristics of QRS Complex

65

- **3.6** Extremely Tall amplitude of T wave (Foster, 2007)
- Graphical Representation of RFEM approach, (a) Original ECG Signal 67
 [SEL16483 from MIT-BIH Normal Sinus Rhythm], (b) Delineation of Q_{END}, R_{PEAK}, S_{ONSET} Time Location Points (c) Delineation of Q_{ONSET}, S_{END} Time Location Points
- **3.8** Graphical Representation of Proposed Approach for Detecting P and **73** waves, (a) Search Period Limits Utilized by Proposed Algorithm for P and T Peak Delineation in Single ECG Record of Dataset "SEL307" From ST Change Category in QTDB, (b) P-wave Segment Marked with Angles and Intervals Utilized by PWONOFF Subroutine to Extract the Onset and the End time locations of P wave and (c) T-wave Segment Marked with Three Sequential Stairs Utilized by TWONOFF Subroutine to Extract the Onset and the End the End of T wave (|3| : time interval of three beats, H_{dif} : Height Difference (Δ amplitude) of |3|)
- 3.9 The Effect of Correcting the Delineated Primary Peak of the P Wave, 75 (a) Three ECG Cycles of Dataset "SEL39" From the Sudden Death Category in QTDB; (b) Right/Left Scan Iteration
- 3.10 General Block Diagram of Proposed Approaches to Delineate the 86 Onset, Peak, and End Time Locations of P and T Waves in the ECG Signal
- **3.11** A 12-lead ECG Record of a 38-year-old Man with Long-Standing **87** Severe Hypertension and LVH (Foster, 2007)
- **3.12** Expert FIS System Model (Sivanandam, Sumathi, & Deepa, 2007; **93** Sumathi & Paneerselvam, 2010)
- 3.13 The Proposed FIS of Diagnosing LVH Cardiac Disease
 3.14 Graphical Diagrams of the Input MFs in Proposed FIS.
 3.15 Graphical Diagrams of the Output MFs in Proposed FIS.
 99, 100

4.1	The Scanned Image of ECG Printed Chart Using 600 dpi	104
4.2	Graphical Evaluation of Reconstructed 12 lead ECG Raw Data Resulted from Applying Proposed Digital Recovery Approach on Digital Scanned Image of ECG Printed Chart, Lead (a) I, (b) aVR, (c) V1, (d) V4, (e) II, (f) aVL, (g) V2, (h) V5, (i) III, (j) aVF, (k) V3, and (l) V6	105, 106, 107, 108
4.3	Scaling Factors of Time and Voltage Amplitude which are Represented by Number of Pixels in One Small Square of ECG Printed Chart	109
4.4	Combined Drawing of Original and Reconstructed ECG Signal with Identical Distribution of Validation Points in Both Signals of Lead II (a) 1st Patient, (b) 2nd Patient, and (c) 3rd Patient	111, 112
4.5	Delineation Results of R _{PEAK} Time Locations in Eight ECG Records from MIT-BIH Arrhythmia Database, (a) Record100, (b) Record107, (c) Record111, (d) Record118, (e) Record122, (f) Record210, (g) Record232, and (h) Record234	117, 118, 119
4.6	The Manual Annotations by Cardiologists and Delineation Results of QRS Time Characteristics for Processing QTDB Records: (a) "SEL16256" Normal Sinus Rhythm DB, (b) "SEL853" Super Ventricular DB, (c) "SEL116" Arrhythmia DB, (d) "SEL14157" Long- Term DB, and (e) "SEL106" European ST-T DB	120, 121, 122
4.7	Histogram of Time Deviations Between the Delineation Results of Proposed RFEM Approach and the Manual Annotation Results of Five ECG Records From QTDB for QRS Time Characteristics: (a) Onset of Q wave, (b) Peak of R wave, and (c) Onset of S wave	123, 124
4.8	Delineation Results of (Onset, Peak, and End) Time Locations of P and T waves in Seven QTDB Records: (a) "SEL-232" Arrhythmia DB, (b) "SEL-307" ST Change DB, (c) "SEL-808" Super Ventricular DB, (d) "SEL-16483" Normal Sinus Rhythm DB, (e) "SEL-122" European ST- T DB, (f) "SEL-39" Sudden Death DB and (g) "SEL-14157" Long- Term DB	131,132, 133
4.9	The Generated Rule Viewer Diagram by Proposed FIS on I21 Patient	150
4.10	The Generated Rule Viewer Diagram by Proposed FIS on I36 Patient	151
4.11	The Generated Rule Viewer Diagram by Proposed FIS on I73 Patient	152
4.12	The Generated Rule Viewer Diagram by Proposed FIS on I10 Patient	153
4.13	The Generated Rule Viewer Diagram by Proposed FIS on I50 Patient	154

4.14 The Generated Rule Viewer Diagram by Proposed FIS on I28 Patient 155

LIST OF ABBREVIATIONS

AV	Atrioventricular
AcMI	Acute Myocardial Infarction
AF	Atrial Fibrillation
ANFIS	adaptive neuro-fuzzy inference system
ANN	artificial neural network
APC	atrial premature contraction
ARVC	Arrhythmogenic Right Ventricular Cardiomyopathy
AV	Atrioventricular
aVF	augmented unipolar limb lead between left foot (+) and common terminal (-)
aVL	augmented unipolar limb lead between left arm (+) and common terminal (-)
AVNB	Atrioventricular nodal block
aVR	augmented unipolar limb lead between right arm (+) and common terminal (-)
BW CHIS	Black and White
CRTA16	LVH Diagnostic Criteria 1 to 6
CSE	Common Standards for Electrocardiography
CSIEPC	Colored Scanned Image of ECG Printed Chart
DCT	Discrete Cosine transform
DOM	difference operation method
dpi	dot per inch
DSP	Digital Signal Processing

- DWT **Discrete Wavelet Transform**
- EarMI Earlier Myocardial Infarction
- ECG Electrocardiogram
- **ECHO** Echocardiography
- EKG Electrocardiogram
- EMD empirical mode decomposition oriemalcopyright
- Female F Gender
- failure detection Fd
- FIS fuzzy inference system
- FN False Negative
- first order absolute moment FOAM
- FP False Positive
- Gaussian mixture models **GMMs**
- GUI graphical user interface
- HH Human Heart
- hidden Markov models HMMs
- HOCM Hypertrophic obstructive cardiomyopathy
- HRT Heart Rate Turbulence
- HRV Heart Rate Variability
- **HSDPTW** high speed approach for detecting time characteristics of P and T waves
- Lead I Bipolar Limb Lead between right arm (-) to left arm (+)
- ICA independent component analysis

Lead II	Bipolar Limb Lead between right arm (-) to left foot (+)
Lead III	Bipolar Limb Lead between left arm (-) to left foot (+)
IMF	intrinsic mode functions
INCART	St. Petersburg Institute of Cardiological Technics 12-lead Arrhythmia Database
KNN	K-nearest neighbor algorithm
LA	Left Arm
LBBB	Left Bundle Brunch Block
LL	Left Leg
LQTcS	long QT corrected syndrome
LVH	Left Ventricular Hypertrophy
т	mean 2007
M Gender	Male x
MDV	main decision value
MFs	membership functions
MI .S	myocardial infarction
MIT-BIH	Massachusettes Institute of Technology and Boston's Beth Hospital
MLP	multilayer perceptron
MOS	mean opinion score
NORM	Normal Beat
NSR	arrhythmias normal sinus rhythm (NSR),
Р	ECG P wave
P+	Specificity

PCA	principle component analysis
PQ	ECG time segment between end of the P wave and starting point of the QRS complex
PR	ECG time interval between onset of the P wave and starting point of the QRS complex
PRD	percentage root mean square difference
РТ	Pahsor transform
PTB	Physikalisch-Technische Bundesanstalt
PVCs	Premature Ventricular Contractions
Q	ECG Q wave
QRS	ECG QRS complex
QT	ECG time interval between onset of the Q wave and end of the T waves
QTc	corrected QT interval
QTDB	Online ECG Database for Evaluation of Alggorithms for Measurement of QT and Other Waveform Intervals in the ECG
R	ECG R wave
RA	Right Arm
RBBB	Right bundle brunch block
REC-CRTA	Recommended criterion
RFEM	rising falling edge mutation
RGB	Red Green Blue
RR	Interval between two consective R waves
RR _{successive}	the distance variation between the present and the next RR interval
S	ECG S wave

S	standard deviation
SA	sinoatrial node
SA-ECG	signal averaged electrocardiogram
SCD	sudden cardiac death
SD	sudden death
SE	Shannon energy
Se	sensitivity
SHT	Standard Hough Transform
SND	Sinus node dysfunction
ST segment	limited time interval between end of QRS complex and onset of T wave
ST	S-Transform
STele	ST elevation
SVMs	support vector machines
SVT	Supraventricular tachycardia
Т	ECG T wave
TDV	time deviation
TIA	Transient Ischemic Attack
TN	True Negative
TP	True Postive Beats
TWA	T wave alternans
U	ECG U wave
V1 to V6	precordial chest leads 1 to 6

- Ventricular bigeminy VBG
- VF ventricular fibrillation
- VPC ventricular premature contractions
- VT ventricular tachycardia
- WCT Wilson Central Terminal
- WPW Wolf Parkinson White Syndrome
- WT

o this item is protected by original copyright

LIST OF SYMBOLS

P_{Amp}	Amplitude Voltage of P wave
P _{ON}	Onset Time Location of P Wave
P _{PEAK}	Peak Time Location of P Wave
P _{OFF}	End Time Location of P Wave
Qon	Onset Time Location of Q Wave
R_{Amp}	Amplitude Voltage of R wave
Q_{OFF}	End Time Location of Q Wave
S _{ON}	Onset Time Location of S Wave
S _{OFF}	End Time Location of S Wave
QRS_{Amp}	Positive Amplitude Voltage of QRS Complex
S_{Amp}	Amplitude Voltage of S wave
QRS _{Dur}	Time Duration Between Onset and End Time Locations of QRS complex
T _{Amp}	Amplitude Voltage of T wave
T _{ON}	Onset Time Location of T Wave
T _{PEAK}	Peak Time Location of T Wave
T _{OFF}	End Time Location of T Wave
<i>R_{PEAK}</i>	Peak Time Location of R Wave
J-point	The end of QRS segment and the beginning of ST segment
d1 to d5	First to Fifth resolutions of Wavelet Transform
ECG _{Pre}	Resulted ECG Signal from Pre Processing Stage in Proposed ECG System
RRint	Time Interval Between Two Consecutive R Waves

R_{th} ,	Threshold Value of Red Component in RGB Color
G_{th} ,	Threshold Value of Green Component in RGB Color
B _{th}	Threshold Value of Blue Component in RGB Color
HS	Height of Slice Image partitioned from CSIEPC
WS	Width of Slice Image partitioned from CSIEPC
M _{left}	Number of Black Pixels in 3x3 Mask to the Left of a Tested Point
<i>M_{Right}</i>	Number of Black Pixels in 3x3 Mask to the Right of a Tested Point
M_{Up}	Number of Black Pixels in 3x3 Mask Above a Tested Point
M _{Down}	Number of Black Pixels in 3x3 Mask Below a Tested Point
PS	Number of Pixels in single Small Square
Raw_Data	Matrix Vector of Resulted Raw ECG Data
Final_Raw_Data	Final Matrix Vector of Raw ECG Data after Shifting Data with Baseline Level and Scaling them by Amplitude Factor
Amp_Fact	Amplitude Scaling Factor
Baseline Level	Determined ECG Baseline Level
R _{th}	Threshold Value of R wave
S _{th}	Threshold Value of S wave
AMPi	Amplitude Voltage Difference between Next and Current ECG Beat
AMP _{i-1}	Amplitude Voltage Difference between Current and Previous ECG Beat
Beat _i	Time Event of Current ECG Beat
Q _{END}	Time Event of Q Wave Delineated by RFEM
rm	Time Period of R wave
sm	Time Period of S wave

$TDQ_{O \to E}$	Time Duration limited by Q_{ONSET} and Q_{END}
$TDS_{O \to E}$	Time Duration limited by $S_{\mbox{\scriptsize ONSET}}$ and $S_{\mbox{\scriptsize END}}$
Bt_{Qe}	Voltage of ECG Beat at Q _{END}
Bt _{Qe-i}	Voltage of Previous ECG Beat from Q_{END}
Bt_{So}	Voltage of ECG Beat at S _{ONSET}
Bt_{So+i}	Voltage of Next ECG Beat from SONSET
P _{start}	Start Limit of Search Period for Delineating PPEAK
P _{end}	End Limit of Search Period for Delineating PPEAK
T _{start}	Start Limit of Search Period for Delineating T _{PEAK}
T _{end}	End Limit of Search Period for Delineating T_{PEAK}
PMX	Primary Time Location of Delineated PPEAK
MPMX	Corrected Time Location of Delineated PPEAK
PUP	Counting of Rising Interval in P Wave
PDW	Counting of Falling Interval in P Wave
<i>Frw</i> _{index}	Forward Iteration with Odd Index
Bak _{index}	Backward Iteration with Even Index
PS _{ON~OFF}	Subroutine for Delineating Onset and End Time Locations in P wave
TS _{ON~OFF}	Subroutine for Delineating Onset and End Time Locations in T wave
ANG1	Limited Angle Between P_{PEAK} and Horizontal Line
ANG2	Limited Angle Between $P_{\text{ONSET}}/$ P_{END} and Horizontal Line
X _i	ECG Beat of Index i
BG	Left Iteration Scan of Delineating PONSET
EF	Right Iteration Scan of Delineating P_{END}
P _{ON}	Delineated Onset Time Location by HSDPTW

P _{OFF}	Delineated End Time Location by HSDPTW
X _{PEAK}	Amplitude voltage (mV) of the pre-detected P_{PEAK}
X _{BG}	Amplitude voltage (mV) of current beat separated by 3 time units
X _{BG-2}	Amplitude voltage (mV) of previous beat separated by 3 time units
X _{PEAK+3}	Amplitude voltage (mV) of ECG beat separated by 3 time units from the right of P_{PEAK}
X _{EF} ,	Amplitude voltage (mV) of current beat separated by 3 time units, respectively
X _{EF+2}	Amplitude voltage (mV) of nest beat separated by 3 time units, respectively
C _{UP}	Counter of ECG beats in rising edge of T wave
C _{DOWN}	Counter of ECG beats in falling edge of T wave
TUP	Counter of T wave in Up Direction
TDW	Counter of T wave in Down Direction
TN	Left Iteration Scan of Delineating T _{ONSET}
TD	Right Iteration Scan of Delineating T _{END}
TMX	Delineated Time Location of T wave
MDV-Fe-LVH	Output MF for Diagnosing LVH in Female Patients
MDV-Ma-LVH	Output MF for Diagnosing LVH in Male Patients
Gender-CRT	Gender Criterion
Expr1	1 st Traditional Diagnostic Criterion in Proposed FIS Diagnosing Approach
Expr2	2 nd Traditional Diagnostic Criterion in Proposed FIS Diagnosing Approach
MDV-Normal	Output MF for Diagnosing Normal and Non-LVH Patients

Reka Bentuk dan Pembangunan Sistem Teguh Fuzzy Baru untuk Pemprosesan Serta Merta Isyarat ECG 12 Penunjuk

ABSTRAK

Isyarat elektrokardiagram (ECG) menggambarkan prestasi jantung manusia dalam bentuk isyarat elektrik. Ia terdiri daripada tiga gelombang utama iaitu P, komplek QRS, dan T serta direkodkan oleh mesin ECG dalam bentuk 12 penyadap (*lead*) termasuk maklumat penting mengenai fungsi jantung manusia dan sistem kardiovaskular. Ia dianotasi secara manual oleh pakar kardiologi untuk mendiagnosis penyakit jantung. Namun, untuk mendapatkan kajian mengenai kadar perubahan jantung yang lebih berkesan, rakaman ECG yang lebih panjang diperlukan. Data ECG yang dijana adalah bersaiz besar dan kebarangkalian penganalisa membuat analisa yang salah atau salah baca semasa membuat anotasi secara manual semakin meningkat. Oleh itu, terdapat banyak teknik berasaskan komputer telah dicadangkan dalam kajian literatur untuk menganalisis dan mengesan gelombang ECG dan juga kadar yang lebih rendah untuk mendiagnosis penyakit jantung. Dalam tesis ini, sistem pintar baru yang mantap telah dicadangkan untuk melakukan diagnosis yang lebih tepat bagi penyakit jantung yang berisiko tinggi dikenali sebagai hipertropi Ventrikel kiri (LVH). Empat pendekatan dicadangkan untuk membangunkan sistem ECG bagi meningkatkan prestasi pemprosesan isyarat ECG berbanding kaedah yang sedia ada untuk mendiagnosis penyakit jantung berdasarkan teknik pintar berkomputer. Pendekatan pertama yang dicadangkan adalah sistem pemulihan digital yang menekankan pembatasan data ECG 12 penyadap secara digital dengan membina semula mereka daripada imej warna yang diimbas dari carta ECG tercetak. Pendekatan ini dilaksanakan oleh empat langkah pemprosesan imej dan mengambil data ECG mentah berdasarkan garis dasar yang dikesan oleh pendekatan yang sama. Tambahan pula, morfologi ECG yang berbeza dan carta-carta cetakan merupakan data yang boleh dipercayai. Data yang dibina semula dinilai secara kualitatif dan kuantitatif dengan menggunakan beberapa ciri-ciri piawaian yang telah ditetapkan. Keputusan analisis menunjukkan ketetapan dan keteguhan pendekatan ini untuk menjana data ECG 12 penyadap dengan ketepatan yang tinggi (98%). Pendekatan yang kedua dan ketiga adalah dicadangkan untuk mengesan gelombang ECG dan kemudian menggambarkan semua ciri-ciri masa gelombang ini. Berbeza dengan kaedah yang sedia ada, kedua-dua pendekatan adalah berdasarkan algoritma secara terus vang memproses isyarat ECG secara serta merta. Akibatnya operasi pengesanan dilaksanakan dalam kelajuan yang tinggi mencapai 4.5s per 650,000 degupan untuk QRS kompleks dan 2.7 s per 225,000 degupan untuk gelombang P&T. Teknik asas bagi kedua-dua pendekatan pengesanan menggunakan kelebihan mutasi pinggir menaik dan menurun sesuatu gelombang sebagai peraturan asas untuk menggambarkan subjek. Teknik ini dapat mengurangkan degupan yang tidak dapat dikesan dan menghasilkan pengesanan yang lebih tepat berbanding kaedah terkini yang sedia ada. Pendekatan keempat yang dicadangkan adalah sistem untuk mendiagnosis penyakit jantung LVH berdasarkan kriteria diagnostik. Berbeza dengan kriteria diagnostik LVH konvensional, cadangan keputusan mengambilkira tiga ungkapan logik; dua daripadanya adalah ditentukan oleh gabungan kriteria klasik manakala ketiga dapat ditentukan oleh lapan voltan ECG dan mengambilkira dua paras voltan yang berbeza bagi setiap jantina. Ungkapan ini diwakili oleh fungsi keahlian dalam reka bentuk