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cadangan sistem fuzzy inference. Sistem diagnosis yang dicadangkan itu dapat disahkan 
oleh lima puluh rekod ECG dan keputusan pengesahan mencapai seratus peratus 
(100%) bagi sensitiviti, kejituan, dan ketepatan manakala ketepatan mendiagnosis 
terbaik yang boleh dicapai dengan menggunakan kriteria diagnostik tradisional tidak 
melebihi 90%. 
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A New Fuzzy Based Diagnosing System for Instantaneous Processing 12 Lead 
ECG Signal 

 

ABSTRACT 
 

The Electrocardiogram (ECG) signal reflects the performance of the human heart as an 
electrical signal. It consists of three main waves (P, QRS complex, and T), and is 
recorded by an ECG machine in the form of 12 leads which include valuable 
information about the functional activities of the human heart and cardiovascular 
system. It is annotated manually by a cardiologist to diagnose cardiac disease, but for a 
long time ECG recordings were performed to get an effective measure of heart rate 
variability. The generated ECG data is huge and the probability of wrong analysis or 
misreading by manual annotation is increased. Therefore, many computerized based 
techniques have been proposed in literature for analyzing and detecting ECG waves, 
and at a lower rate for diagnosing cardiac diseases. In this thesis, a new robust 
intelligent system has been proposed to perform an accurate diagnosis of a high risk 
cardiac disease named left ventricular hypertrophy (LVH). Four approaches are 
developed within the proposed ECG system to improve the performance of processing 
the ECG signal with respect to the existing methods and to discover new system for 
diagnosing cardiac disease based on the computerized intelligence technique. The first 
proposed approach is a digital recovery system which addresses the limitation of digital 
12 lead ECG data by reconstructing it from the colour scanned image of the ECG 
printed chart. This approach is implemented by four image processing steps and 
captures raw ECG data with respect to the baseline which is detected by the same 
approach. Furthermore, it is reliable for different ECG morphologies and printout 
charts. The reconstructed data is evaluated qualitatively and quantitatively using some 
predefined standard features. The analytic results demonstrate the consistency and 
robustness of this approach to generate 12 lead ECG data with high precision (98%). 
The second and third approaches are proposed to detect ECG waves and then delineate 
all time characteristics of these waves. In contrast to the existing methods, both 
approaches are based on straightforward algorithms that perform instantaneous 
processing for the ECG signal. As a result, detection operation is executed in a high 
speed which reaches (4.5s per 650,000 beats) for QRS complex and (2.7s per 225,000 
beats) for P&T waves. The based technique in both detection approaches has the 
advantage of rising falling edge mutation as a base rule for delineating subject. This 
technique reduces undetected beats and provides accurate detection results exceeding 
ones in up to date existing methods. The fourth proposed approach is a diagnostic 
system for LVH cardiac disease based on proposed diagnostic criterion. In contrast to 
the conventional LVH diagnostic criteria, the decision in the proposed criterion is 
computed by three logical expressions; two of which are determined by a combination 
of classic criteria, whereas the third is obtained by eight ECG voltages and takes two 
different levels for each gender. These expressions are represented by the membership 
functions in the proposed design of the fuzzy inference system. The proposed 
diagnosing system is validated by fifty ECG records, in which the validation results 
score were perfect (100%) in terms of sensitivity, specificity, and accuracy, while the 
best diagnosing accuracy achieved by traditional diagnostic criteria does not exceed 
90%. 
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CHAPTER 1 

INTRODUCTION 

 

1.1    Background 

 

The electrocardiogram (ECG) represents the electrical activity of the human 

heart (HH), as well as showing the systematic contraction and relaxation of the HH 

muscle. Electrocardiography is a significant tool in diagnosing the state of HH (Güler, 

2005). Moreover, it provides precise information to doctors about the functional aspects 

of the HH and the cardiovascular system which can help them to make a correct heart 

diagnosis (Ghongade & Ghatol, 2007; Mariano Llamedo & Martínez, 2011; 

Maglaveras, Stamkopoulos, Diamantaras, Pappas, & Strintzis, 1998; Mehta & Lingayat, 

2008). The early detection of cardiac diseases/abnormalities can prolong human life and 

enhance the quality of life through appropriate treatment. On the other hand, it is very 

difficult and time consuming for doctors to make an accurate analysis for long time 

ECG recordings, if we take into account that the possibility of misreading (or the wrong 

analysis) in manual diagnosis of the enormous volume of ECG data is high. Therefore 

computerized based techniques for ECG signal analysis and beat classification can be 

very helpful in diagnosing different cardiac diseases (Addison et al., 2000; Dokur & 

Ölmez, 2001; Güler, 2005; Kundu, Nasipuri, & Kumar Basu, 2000; Özbay & Tezel, 

2010; Rajendra Acharya, Subbanna Bhat, Iyengar, Rao, & Dua, 2003; Sternickel, 2002). 

Many methods with computerized based techniques have been proposed in literature for 

this subject. The main concepts of such methods are based on different adopted 
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techniques of pattern recognition. (Korürek & Doğan, 2010; Mehta & Lingayat, 2008). 

The general block diagram of ECG signal processing is shown in Figure 1.1. In this 

figure, the time characteristic information that is delineated by the QRS complex 

detector can be fed to the data compression and noise filtering operations (marked with 

gray arrows) to enhance their performance. In addition, the time characteristics of the 

QRS complex are mainly used to delineate related temporal information of other ECG 

waves (P and T waves) including boundaries (onset and end) and peak time locations 

(Sörnmo & Laguna, 2006). According the valuable information which is extracted from 

dynamic processing of the ECG signal, this represents one of the most significant 

applications in the signal processing field.      

 

 

 

 

 

 

 

Figure 1.1: General Block Diagram of ECG Processing Signal (Sörnmo & Laguna, 
2006). 

 

Various methodologies with computerized based techniques have been proposed 

in literature for the purpose of automated ECG diagnosis (Addison et al., 2000; Chang, 

Lin, Hsieh, & Weng, 2012; Doğan & Korürek, 2012; Rai, Trivedi, & Shukla, 2013). 

However, the entire ECG diagnosis process can generally be partitioned into a number 

of disjoint processing steps: ECG beat detection, diagnostic features/parameters 

extraction or selection, and classification as shown in Figure 1.2.  
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Figure 1.2: General Block Diagram of Classifying/ Diagnosing ECG Signal using 

Computerized Based Technique (Güler, 2005). 
 

Most computerized based techniques developed for analyzing the ECG signal to 

detect electrocardiographic changes use autocorrelation function, frequency domain 

features, time frequency analysis, and wavelet transform (WT) to transform the ECG 

signal to a more objective quantitative for extracting diagnostic features (Kundu et al., 

2000; Nugent, Webb, Black, Wright, & McIntyre, 1999; Sternickel, 2002). The reported 

results in related methods proposed in literature demonstrate that WT is the most 

trustworthy transformation to extract valuable features from ECG signals (Addison et 

al., 2000; Dokur & Ölmez, 2001; Güler, 2005). The greatest WT efficiency comes from 

the capability of wavelet coefficients which are used as feature vectors to identify 

further ECG characteristics that are not apparent inside the original ECG signal in the 
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time domain, as well as its capability to address the problem of non-stationary ECG 

signals (Daubechies, 1990; Unser & Aldroubi, 1996). Additionally, the multi-resolution 

that is generated from WT allows the decomposition of the ECG signal a number of 

scales, each of which can be represented as a particular feature of the ECG signal under 

test (Choi, 2008; Kutlu & Kuntalp, 2012). 

 

1.2    Problem Statements  

 

Many studies found in literature deal with processing and analyzing the 12 lead 

ECG signal to detect ECG waves (P, QRS complex, and T) waves and then delineate 

the time characteristics of these waves, which are most significant to compute many 

diagnostic criteria that are mainly used in ECG beat classification and diagnosing 

different cardiac diseases. Most of the studies are validated with different ECG records 

that are collected from free online ECG databases while several studies have used 

private ECG data which is collected from clinical centres. The online ECG databases 

present single or multi-lead ECG data with different morphologies moreover, most of 

these databases are annotated manually by cardiologists with significant information 

about heart status and time location events of the ECG waves, which are mostly used to 

evaluate the findings obtained by the ECG approaches. Finally, it should be noted that 

most of the current ECG detectors are applied to ECG data after transforming them 

using certain frequency or time transformations like (WT, Walsh Transform, etc). As a 

result more time is needed to process ECG data.   

On the other hand, very few studies of computerized based techniques found in 

literature for the purpose of diagnosing general cardiac diseases exist. However, for 

high risk diseases that cause sudden cardiac death for many people at a young age 

(under 40 years old) no more systems with computerized based techniques have been 
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adopted for this subject. Two main reasons can be given for the limitation in this field of 

research. First, it is related to the limited amount of 12 lead ECG data in digital form for 

people who suffer from certain cardiac diseases. The second reason is related to clinical 

subjects, that many cardiac diseases must be diagnosed by cardiologist after doing 

additional heart tests like (stress tests, echocardiography, etc) due the difficulty in fixing 

certain ECG parameters or diagnostic criteria to perform accurate diagnosis with high 

percent of accuracy.  

Regarding the previous presentation, some problems can be seen as follows: 

1- The limited amount of digital 12 lead ECG data suitable for the computerized 

processing technique which is originally recorded from patients who suffer from 

certain high risk cardiac diseases. 

2- The incompatibility of most of adopted ECG waves detection methods for real time 

applications because their based technique is applied on transformed versions of the 

ECG signal not on the original signal itself. In addition, because some other 

techniques are applied through the series of mathematical estimation operations with 

complicated calculations, more processing time is spent.      

3- Systems coupled with computerized intelligent based techniques are not found in 

literature for the purpose of diagnosing high risk cardiac diseases with high precision 

based on 12 lead ECG signal analysis. 

 

1.3    Research Objectives 

 

In this thesis, a new ECG system is proposed for processing the ECG signal, 

detecting entire ECG waves (P, QRS complex, and T waves) and delineating their time 

characteristics, and diagnosing specific high risk cardiac disease based on the  
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diagnostic features/parameters which computed from the delineated time characteristics 

of the detected ECG waves. Thus, three objectives are considered in the proposed ECG 

system which can be summarized as follows: 

1- To propose a new approach for the digital recovery of 12 lead raw ECG data by 

reconstructing it from scanned images of the ECG printed chart, thus an open bank of 

12 lead ECG data in digital form is generated from the ECG paper printout recording 

that can be collected from expert hospitals or clinical centres.    

2- To propose new high speed algorithms for detecting ECG waves (P, QRS complex, 

and T), and the ability to delineate their time locations with high precision. The 

proposed detection and delineation algorithms take a straightforward flow with 

instantaneous processing techniques on the ECG input signal itself without the need 

for any mathematical transformation or estimation process.   

3- To design a diagnosis system of computerized intelligent techniques for specific high 

risk cardiac diseases with high levels of sensitivity, specificity, and accuracy for both 

genders based on the proposed diagnostic criteria that is computed by analyzing the 

12 lead ECG signal.  

      

1.4    Scope of Research  

 

The aim of this thesis is to propose a new system for processing the 12 lead ECG 

signal to detect all ECG waves P, QRS complex and T wave, to delineate their time 

characteristics, and to diagnose specific high risk cardiac diseases. The implementation 

of these aims will be performed through four proposed approaches inside the proposed 

ECG system. In each of these approaches, a completely new algorithm of processing 

ECG signals is proposed to improve the entire performance of each approach in term of 
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the processing time considerations, the capability of processing different ECG 

morphologies, and the precision of final outcomes in comparison with the adopted 

works. Moreover, different evaluation scenarios are conducted for each approach using 

standard sets of evaluation metrics to compute precision levels of final outcomes. The 

proposed approaches are validated with different categories of ECG data in order to 

prove the capability of these approaches in adapting with various ECG morphologies.  

The first approach is proposed to address the limitation in digital 12 lead ECG 

data especially for some high risk cardiac diseases. However, huge amount of this data 

is available as paper printout in specialist hospitals and general clinical centres around 

the world and become more beneficial if they are converted to digital version. The 

proposed approach applies a sequence of image processing operations on the scanned 

image of the printed ECG chart to reconstruct the digital raw ECG data that is ready to 

be used by different computerized based techniques of processing and analyzing the 

ECG signal.  

A second approach is proposed to delineate the time characteristics of the QRS 

complex using a proposed straightforward algorithm of instantaneous processing for 

ECG input signal (beat by beat) without the need for any mathematical transformation 

or estimation operations. According to this type of processing, the whole QRS complex 

detection operation is performed at high speed, thus considering this approach for real 

time clinical applications becomes more realistic.  

Similarly, the third approach is proposed to delineate P and T time 

characteristics (boundaries and peak time locations) based on pre detected time 

locations of the QRS complex using proposed algorithms which apply conditional 

scanning operations in both sides of the QRS complex, but in the same processing type 

used in the QRS complex algorithm. 
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The fourth approach is proposed for accurate diagnosis of one particular high 

risk cardiac disease called left ventricular hypertrophy. This diagnosing approach is 

based on proposed criterion expressed by the voltage parameters of eight ECG leads to 

maximize the probability of detecting the abnormality within the 12 lead ECG. The 

proposed diagnostic criterion is designed to get different decision levels for each 

gender. The overall diagnosis approach is implemented using one of the computerized 

intelligent systems named "fuzzy inference system". Therefore, this approach can be 

integrated as a portable hardware unit added to the ECG machine as a diagnosis module. 

                                    

1.5    Summary of Main Contributions  

 

The main contributions of this research can be summarized as follows:  

1- To propose a new digital recovery approach to reconstruct raw ECG data from 

scanned colour image of ECG paper printout recording. This approach is designed 

to reconstruct all 12 leads of the ECG signal and detect the ECG baseline to ensure 

the final plotting of reconstructed ECG data with the correct reference level. 

Additionally, the proposed digital recovery approach is capable of processing ECG 

paper printout with different paper size, different printing colours, and different pen 

size of the printed ECG chart.  Finally, different evaluation scenarios are performed 

to prove the robustness of the proposed digital recovery approach to produce raw 

ECG data with high precision  

2- To propose a new approach for QRS complex detection with high processing speed. 

This approach is designed to delineate all time characteristics of QRS complex 

including boundaries and peak time locations of Q, R, and S waves that are formed 

by this complex using a straightforward algorithm with instantaneous processing 

techniques without the need to use additional transform or mathematical 
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estimations.  The proposed detection approach is validated with standard online 

ECG records with different ECG morphologies to evaluate the overall performance 

of this approach with respect to the adopted methods. A property of high processing 

speed in this approach proves the usefulness of considering this approach in future 

real time applications of ECG signal processing.  

3- To propose a new approach for P and T wave detection with high processing speed. 

This approach is designed to delineate all time characteristics of P and T waves 

including boundaries and peaks time locations of these waves based on pre detected 

time locations of the QRS complex. Moreover, it includes two proposed algorithms 

(one for each wave) with the same processing type followed in the proposed QRS 

complex detector. The proposed detection approach is validated with standard 

online ECG records from different ECG categories to prove the ability of this 

approach to perform accurate delineation of all time characteristics for different 

shapes of P and T waves.   

4- To design a new system for diagnosing specific high risk cardiac disease called left 

ventricular hypertrophy (LVH) using a computerized intelligent technique. A new 

diagnostic criterion for LVH cardiac disease is proposed in this system, which 

includes eight parameters that are extracted from analyzing 12 lead ECG data. The 

final decision to diagnose LVH cardiac disease is prepared according to proposed 

diagnostic criterion and two traditional criteria to increase the sensitivity and 

specificity of the final diagnosed results. The proposed system is designed to 

perform accurate diagnosis of LVH cardiac disease based on analyzing 12 lead data 

from both genders. In addition, it is validated by 50 ECG records from both 

genders. Only 42% of this data is from LVH patients, while other data is from other 

cardiac diseases and some normal patients. This selection is made to prove the 
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 10 

robustness of the proposed diagnostic system to overcome any interference in 

diagnosing between different cardiac diseases. Additionally, some evaluation 

scenarios are performed to compute the accuracy of the diagnosed results.  

                

1.6    Thesis Outline 

 
Chapter 1 introduces an overview of processing the ECG signal using a computerized 

system and extracting significant features and time characteristics events of ECG waves 

to interpret and describe the heart status and diagnosing cardiac diseases. Additionally, 

it provides the problem statement, the objectives of thesis, a summary of main 

contribution, and thesis outline.          

  

Chapter 2 introduces the basic concepts of the ECG signal through the brief 

descriptions of cardiac conduction system, ECG components, and types of ECG lead. 

Additionally, all resources of 12 lead ECG data are reported. The second part of this 

chapter provides a literature review of well-known published works related to the main 

contributions that are presented in this thesis in terms of four subjects (digital recovery 

of raw ECG data, QRS complex detection, P and T wave detection, and diagnosing high 

risk cardiac diseases). 

 

 Chapter 3 introduces the general block diagram of the proposed system for pre-

processing the 12 lead ECG signal, detecting (P, QRS complex, and T) waves and 

delineating their time characteristic events, and diagnosing one particular high risk 

cardiac disease. Additionally, four proposed approaches corresponding to the four 

contributions in this thesis are presented in this chapter. The methodology of each 

proposed approach is discussed in more detail through the description of the basic idea, 
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 11 

the applied algorithms, the block diagrams, and the mathematical definitions which are 

related to each approach. 

 

Chapter 4 introduces the results that are obtained by each proposed approach, as well 

as the scenarios that are considered to evaluate the performance of these approaches 

with the mathematical definitions of all evaluation metrics used in each evaluation 

scenario. Additionally, the validation of the obtained results with respect to another that 

are reported by well-known published works in literature if found is performed also in 

this chapter.      

 

Chapter 5 introduces the general discussion for all proposed approaches and new 

findings through their originality, the ability to address the present problem and their 

activity to perform designated objectives. Additionally, significant topics and 

suggestions for future work are presented in this chapter. 
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CHAPTER 2 

LITERATURE REVIEW 
 

2.1    Introduction  

 

The development of a computerized intelligent system in medical applications is 

a significant challenge faced by physicians, engineers and computer scientists. The 

ability to process medical signals by such expert systems is combined mainly with the 

availability of medical data in a digital form, also with a sufficient amount of different 

morphologies. 

 One of the most popular medical signals that can be recorded for both genders in 

all ages, even the fetus, is an ECG signal. As a part of periodic medical tests, many 

cardiologists advise healthy people to have this test every six or twelve months, 

especially for the people over forty. The ECG signal is a graphical registration of the 

electrical signal generated by the HH against time (Gacek & Pedrycz, 2012; Suri & 

Spaan, 2007). The ECG is used to interpret some types of abnormal heart cases like 

conduction disturbances, arrhythmias and heart morphology (e.g., hypertrophy, and 

evolving myocardial ischemia or infarction). The clinical practices show that some 

cardiac diseases can be diagnosed accurately, depending on ECG test, while other 

diseases are estimated with an acceptable probability (Malmivuo & Plonsey, 1995). The 

ECG diagram is also helpful when assessing the performance of portable pacemaker 

devices to control abnormal heart rhythms. For example, in the United States more than 

50% of hundred-million ECGs recorded annually are identified and diagnosed by 

computer systems (Drazen, Mann, Borun, Laks, & Bersen, 1988).    
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2.2    The Basic Concepts of ECG signal 

  

Simply, the HH is a muscle that works continuously to pump the blood 

throughout the different parts of the human body. The HH is partitioned into right and 

left units segregated by a septum. It consists of four chambers (right/left atrium and 

ventricle, respectively), and four valves to manage the flow of blood between the 

chambers of the heart to/from arteries (Hampton, 2008). All parts of the HH are marked 

clearly in Figure. 2.1.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Structure of the Human Heart.  

 

2.2.1    The Cardiac Conduction System 

 

The cardiac conduction system shown in Figure 2.2 controls all activities 

performed when the HH pumps the blood. Thus this system is termed as the electrical 
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control system of the HH, as well as the provider of its repeated rhythmic beat. These 

electrical activities are recorded by the machine as a signal variation against time, this  

signal is called ECG or EKG (this abbreviation is used in some countries (Hampton, 

2008)), which is printed onto grid paper or viewed on the monitor.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Cardiac Conduction of the HH (Assadi et al., 2011).   

 

The first event in the cardiac conduction system starts when the sinoatrial node 

(SA) node generates an impulse (when the right atrium is full of blood) and then 

circulates as a depolarization over the cells of the right and left atria until it arrives the 

atrioventricular (AV) node (Foster, 2007) as shown in Figure 2.3.a. The upper right 

corner of this figure contains a diagram which simulates one complete cycle of the ECG 
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signal. A position of the circle remark indicates the start of the cardiac conduction 

system (first beat in the ECG cycle).  

It should be noted that the AV node is the unique pathway for conducting the 

electrical impulse from the right and left atrium to the right and left ventricle, 

respectively (Foster, 2007). The next step in the cardiac conduction cycle is started 

when the first impulse generated by the SA node reaches the AV node and spreads 

across the atria to contract it. The contraction of the atria pumps the blood through 

release valves (the tricuspid and mitral valve in the right and the left side of the HH, 

respectively) into corresponding ventricles; this contraction is expressed in the ECG by 

the P wave as shown in Figure 2.3.b.  When the blood passes to ventricles, there is a 

period time needed to fill both ventricles with blood. This time interval is represented 

on the ECG by the PQ segment (limited between P and Q wave) as shown in Figure 

2.3.c.  

In the next step of the cardiac conduction system, the electrical signal is moved 

to the bundle of His (which is discovered by German cardiologist Wilhelm His (1836-

1934)) and separated to the right and the left bundle branch through the septum of the 

HH. This progress is represented in the ECG by the Q wave as shown in Figure 2.3.d. 

The electrical signal then leaves the right and the left bundle branches and passes 

through the Purkinje fibers that are diffused around the walls of the ventricles (Foster, 

2007). Consequently, the muscles of both ventricles are stimulated by the electrical 

impulse moving down the Purkinje fibers  but not at the same moment (the left ventricle 

precedes the right ventricle) (Azeem, Vassallo, & Samani, 2005) as shown in Figure 

2.3.e. On an ECG, the R wave represents the contraction of the left ventricle, while the 

S wave represents the contraction of the right ventricle as shown in Figure 2.3.f and g, 

respectively. It should be noted that the contraction of the right ventricle pumps the 

 

 

 

 

 

 

 

©
 T

his 
ite

m
 is

 p
ro

te
ct

ed b
y o

rig
in

al
 co

pyr
igh

t 



 16 

blood to the lungs through the pulmonary valve, while the contraction of the left 

ventricle pumps the blood to the rest of the human body through the aortic valve. When 

the electrical signals of these contractions are passed, the walls of both ventricles are 

relaxed gradually. This process includes a time period where the ventricles do not 

respond to further electrical catalysts (Azeem et al., 2005), which is represented in the 

ECG by the ST segment as shown in Figure 2.3.h. this occurs continuously, when the 

walls of ventricles are reverted completely to its resting state. This process is 

represented in the ECG by the T wave as shown in Figure 2.3.i.  
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Figure 2.3: Representation the Electrical Conduction System of the HH by the 
ECG Signal. 
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(f) (e) 
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2.2.2    The ECG components  

 

A typical ECG recording from a normal patient is shown in Figure 2.4.  The 

ECG signal consists of six waves (P, Q, R, S, T, and U). Three waves (Q, R, and S) are 

usually expressed as a single composite wave called the QRS-complex (Suri & Spaan, 

2007). In addition, between the ECG waves there are two time intervals and one 

segment. The first time interval is termed the PR interval and is computed from the 

starting point of the P wave to the starting point of the QRS complex. The second time 

interval is termed the QT interval and is measured from the starting of the QRS complex 

to the end of the T wave. However, the standard time segment on the ECG is the ST 

segment, which is the time portion between the termination of the QRS complex (J-

point) and the starting of the T wave. 

 

 

 

 

 

 

 

 

 

 
Figure 2.4: The Waves, Intervals, and Segments of Typical ECG Signal 

(Suri & Spaan, 2007) 
 

In addition to the above intervals and segments, another time interval is 

considered in the ECG signal and termed the RR interval. This interval is measured 
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between the peaks of two consecutive R waves. The RR interval represents one 

complete cardiac cycle and is mainly used to compute the heart rate. What is more, a 

small time portion, termed as the PR segment, is measured from the end of the P wave 

until the starting point of the QRS complex. It should be noted that the PR segment does 

not include the duration of the P wave, while the PR interval includes it (Luthra, 2011). 

Another ECG component termed QTc is measured by the modern ECG machine 

in addition to the QT interval mentioned above. The QTc interval represents the 

corrected value of the original QT interval and is determined by Bazett's formula as 

defined in Equation (2.1). In this formula the observed QT interval is divided by the 

square root of RRsuccessive intervals (i.e. the distance variation between the present and 

the next RR interval) (Azeem et al., 2005; Gacek & Pedrycz, 2012). 

 

𝑄𝑄𝑄𝑄𝑐𝑐 =
𝑄𝑄𝑄𝑄

�𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
                                                                                                               (2.1) 

 

2.2.3    The 12 Lead ECG 

 

As mentioned previously, the ECG registers the electrical activities of the HH 

against time. The ECG is recorded by the electrodes that are attached directly to the 

surface of the human body on the chest and on the limbs. The electrical activities of the 

HH are sensed by electrodes and are passed through the connecting cables to the ECG 

machine. In addition, the potential difference between two electrodes (one with positive 

polarity and other with negative polarity) is expressed by a single ECG lead to assess 

the average cardiac activity in a specific portion of the HH at a specific time (Aehlert, 

2012). 
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Figure 2.5: The Transverse and Frontal Planes of the 12 Lead ECG (Foster, 
2007). 

 

The ECG leads view the electrical activity of the HH in two planes: the 

horizontal plane (transverse) and the fontal plane (coronal) as shown in Figure 2.5. 

There are two types of ECG leads: the first are limb leads and the second are chest 

leads. The standard leads in the ECG are twelve; six of them are the chest leads and the 

others are the limb leads. 

 

2.2.3.1    The Limb leads 

 

  The limb leads sense the electrical activity of the HH in the frontal plane. There 

are six limb leads which are labeled as: I, II, III, aVR, aVL, and aVF. The electrical 

connections of these leads with respect to the human body are shown in Figure 2.6. The 

limb leads are composed of two groups: bipolar leads and augmented (unipolar) leads. 
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Figure 2.6: The Electrical Connection of the Limb Leads to the Human Body. 

 

2.2.3.1.1 The Bipolar Leads  

 

The ECG leads in this group assess the electrical activity between two electrodes 

(one acts as a positive and other as a negative polarity) that are connected to the limbs 

(left arm, right arm, and left leg). As viewed in Figure 2.6, this group includes three 

ECG leads as follows:  
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• Lead I is the potential difference between the (positive) left arm (LA) electrode and 

right arm (RA) electrode. 

• Lead II is the potential difference between the (positive) left leg (LL) electrode and 

the right arm (RA) electrode. 

• Lead III is the potential difference between the (positive) left leg (LL) electrode and 

the left arm (LA) electrode. 

 

2.2.3.1.2 The Augmented (Unipolar) Lead 

 

The second group of limb leads is the augmented leads. The basic concepts of 

these leads were described firstly by Frank Wilson in 1931. Wilson introduced three 

leads obtained from the mean of potential difference between any two bipolar leads 

described above. Moreover, he produced a connection reference point termed as the 

"Wilson Central Terminal" (WCT) of the limb electrodes (LA, RA, and LL) to obtain an 

average potential difference across the HH (Bowbrick & Borg, 2006). Additionally, the 

WCT represents the electrical centre of the HH (Suri & Spaan, 2007). The new 

produced leads are: 

• Lead aVR is the potential difference of the RA with respect to the average of the LA 

and LL. 

•  Lead aVL is the potential difference of the LA with respect to the average of the LL 

and RA. 

•  Lead aVF is the potential difference of the LL with respect to the average of the LA 

and RA. 

The voltage obtained from Wilson's three leads was very small. Thus, 

Emmanuel Goldberger in 1942 was able to increase the resultant voltage by 50%. The 
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names of the new leads were changed slightly to aVR, aVL, and aVF, respectively 

where (letter "a" refers to augmented). The augmented leads are also termed as unipolar 

leads because they are determined by a single positive electrode with respect to the 

combination of the other limb leads. The electrical polarity diagram of the augmented 

leads incorporated into the Einthoven's triangle is shown in Figure 2.7.a. This figure 

shows that the limb electrodes (LL, LA, and RA) are the vertices of the Einthoven's 

triangle. Also, the final representation of bipolar and augmented (unipolar) leads with 

respect to the central terminal (which are referred virtually to the negative polarity of 

the augmented leads) is shown in Figure 2.7.b.       

 
 
 
 
 
 
 
 
 
 
 

Figure 2.7: (a) Polarity Diagram of the Augmented (Uni-polar) Leads 
Incorporated into Einthoven's Triangle (Bowbrick & Borg, 2006), (b) View of the 

Limb Leads with Respect to the Common Central Terminal (Aehlert, 2012). 
  

2.2.3.2    The Chest (Precordial) Leads 

In addition to the limb leads that assess the electrical activity of the HH from the 

frontal plane as shown in Figure 2.5, there are six precordial chest leads named (V1, V2, 

V3, V4, V5, and V6). Each chest lead is determined by the potential difference between 

the positive electrode termed as the chest lead and a virtual negative electrode which is 

represented by WCT. Thus the chest leads are known as the unipolar leads. The 

placement of the chest leads on the HH is shown in Figure 2.8.a.     

(a) (b) 
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The chest leads assess the ECG in the transverse plane as shown in Figure 2.5. 

Leads V1 and V2 are placed above the anterior wall of the right ventricle. For this 

reason, they are referred to as right ventricular leads as shown in Figure 2.8.b. When the 

heart is normally oriented along the long axis, leads V5 and V6 are placed above the 

lateral wall of the left ventricle, therefore known as the left ventricular leads. The 

transitional zone between the left and right ventricles (interventricular septum) is found 

at the level of lead V3 and V4 (equal amplitudes of the R-wave and S-wave) (Gacek & 

Pedrycz, 2012). 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

Figure 2.8: (a) The Placement of ECG Chest Leads in the HH (Bowbrick & Borg, 
2006), (b) Top View of the Chest Leads (Aehlert, 2012). 

 
 

The different placements of the chest leads produce dissimilar patterns in the 

ECG output diagram. In other words, the ECG waves (P, QRS, and T) have a different 

amplitude and direction due to the placement of the chest lead in the left, right, or 

septum side of the HH, Figure. 2.9 shows an ECG diagram of the six chest leads. 

(a) (b) 
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Figure 2.9: The ECG Patterns of the Chest Leads. 
 

2.3    The Data Resources of the 12 lead ECG  

 

A basic investigation and clinical diagnosis of the ECG signal are dependent on 

the availability of the ECG data with different morphologies. Moreover, can this data be 

found in a digital raw form? To process it easily by the expert computerized system. 

The main data resources of the ECG signal are highlighted in the following text. 

 

2.3.1    The ECG machine 

 

The ECG machine assesses and amplifies the small electrical variations on the 

skin that are caused when the heart muscle is released during each heartbeat. The 

electrical signal of the HH is detected as a tiny rising and falling voltage between two 

ECG electrodes placed either side of the HH and displayed as a wavy line either on a 

screen or on paper. The ECG signal is printed on paper as a graph; its time is 

represented on the x-axis, while the voltage is represented on the y-axis of the print-out 

paper.  

The ECG machine must be calibrated to represent each 1 mV on the y-axis as 1 

cm and each 1 second as 25 mm on the x-axis. What is more, the ECG paper contains a 

background pattern of a 1mm small square and every 5 mm in both horizontal and 

vertical directions as a large square. The standard speed of moving paper from the ECG 
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machine is 25 mm/s. At this speed, one small square on the ECG paper is translated as 

40 ms of the ECG signal as shown in Figure 2.10.a. A standard calibration signal of 1 

mV is included with the ECG record and must cover vertically 20 small squares (2 large 

squares) of the ECG paper as shown in Figure 2.10.b (Aehlert, 2012; Azeem et al., 

2005).   

 

 

 

 
 
 
 
 

Figure 2.10: The ECG Grid Paper; (a) The Time Event is Represented by the 
Horizontal Axis and the Voltage is Represented by the Vertical Axis, (b) In the 
Calibration of ECG Machine, a 1 mV Electrical Signal of Square Shape Will 

Produce a Deflection Measuring Exactly 10 mm Height (Aehlert, 2012).  
  

 

2.3.2    The ECG Database 

 

Most researchers in the field of ECG signal processing need a huge amount of 

ECG data to validate their work. In addition to the healthy (or normal patients), in some 

specialists studies, some patients with high risk cardiac diseases are needed to develop 

different techniques to diagnose these diseases. It is very difficult to collect enough 

volume of this data from the clinical centres or general hospitals. Therefore, most 

studies found in literature have validated their works with certain groups of ECG 

records which were collected from one or more online ECG databases.   

The ECG database simply is a list of some ECG signals which are recorded by 

one or more clinical centres and characterized specifically by certain pathological 

(a) (b) 
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conditions or the affiliation of data resources. There are many ECG databases found in 

specialist clinical interpretation websites. The largest and well-known archive of 

characterized digital recordings of biomedical signals around the world is the 

PhysioBank, which was created under the sponsorship of the National Centre for 

Research Resources of the National Institutes of Health. It contains more than 50 

databases of multi-parameter signals from different healthy topics and patients with 

satisfactory cases that have a significant impact on public health like myocardial 

infarction movement disorders, congestive heart failure sleep apnea, sudden cardiac 

death, aging, etc (Goldberger et al., 2000).  

In the PhysioBank ECG databases, the raw digital data for each ECG record is 

stored in a single file. Additionally, one or more sets of annotations about this record 

like heart rate, RR interval, beat by beat annotations, time locations of the ECG waves, 

etc are available on the same database in separate files. In addition, in some PhysioBank 

ECG database, a complete diagnosis of cardiac disease in each record is available as a 

separate description file. These annotations provide more facilities for researchers to 

evaluate the analytic performance of new algorithms. Finally, it should be noted that all 

databases of the PhysioBank are available to the community of scientific researchers via 

a PhysioNet website (http://www.physionet.org/).   

 

2.3.2.1    The MIT-BIH Arrhythmia Database 

 

The MIT-BIH Arrhythmia Database was created under the auspices of the 

Massachusetts Institute of Technology (T. Lin & Tian, 2012). It was the first standard 

dataset available around the world to evaluate the performance of arrhythmia detectors. 

Additionally, it has been used for basic research into the analysis and diagnosis of the 

ECG signal at more than 500 sites worldwide since 1980 (G. B. Moody & Mark, 2001). 
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This database contains 48 ECG recordings which were obtained from 47 subjects and 

sampled at 360 Hz. Each record contains two ECG leads (limb lead II and one of the 

chest lead V1, V2, V4, or V5) for 30 minutes duration. The ECG records in this 

database were annotated by two or more cardiologists. The annotation information 

include gender, age, R-peak time location, R-R interval, and beat by beat annotations 

(G. B. Moody & Mark, 1990). 

 

2.3.2.2    The QT ECG database 

 

Another annotated reference ECG database from the PhysioNet is the QT 

database. This database contains 105 ECG recordings of 15 minutes. They were selected 

from seven well-known databases in PhysioNet (MIT-BIH arrhythmia, European ST-T, 

ST change, supraventricular arrhythmia, normal sinus rhythm, sudden death, and long 

term). Thus, the existing database includes a wide variety of ECG waves in different 

morphologies. Also, all records were sampled at 250 Hz and annotated by cardiologists 

with onset, peak, and end time locations of P-wave, QRS complex, and T-wave, while 

the cardiac disease for all records was not diagnosed  (Laguna, Mark, Goldberg, & 

Moody, 1997).  

Through the valuable annotations and variation of ECG morphologies in the QT 

database, the ECG records of this database can be mostly used by researchers to validate 

the new techniques of detecting entire ECG waves.  

 

2.3.2.3    The Diagnostic 12-lead ECG Databases 

 

Unlike the ECG databases mentioned in the previous sections, some of the ECG 

databases in PhysioNet were available with the conventional 12 leads. The cardiac 
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disease of all records was diagnosed by cardiologists. The first database in this form 

was the St. Petersburg Institute of Cardiological Technics 12-lead Arrhythmia Database 

(INCART). It includes 75 ECG recordings of 30 minutes duration and each was 

sampled at 257 Hz. In addition, each record contains 12 standard leads. The original 

records were collected from patients undergoing tests for coronary artery disease (most 

had ventricular ectopic beats). The INCART database contains preferential cardiac 

diseases whose ECG was consistent with ischemia, coronary artery disease, 

arrhythmias, and conduction abnormalities. In addition to the valuable diagnosis 

information, a detail clinical summary (including age, gender, and blood pressure where 

necessary) was also available for each record (M Llamedo, Khawaja, & Martínez, 2010; 

G. Moody, 2008). 

Another diagnostic ECG database from PhysioNet was the Physikalisch-

Technische Bundesanstalt (PTB) database. The PTB database contains 549 recordings 

selected from 290 subjects. Each single subject was expressed by (1 to 5) ECG records. 

Only 268 subjects were diagnosed successfully and distributed into 9 diagnostic classes 

(Myocardial infarction, Cardiomyopathy/Heart failure, Bundle branch block, 

Dysrhythmia, Myocardial hypertrophy, Valvular heart disease, Myocarditis, 

Miscellaneous, and Healthy controls) while the diagnostic details of the other (22) 

subjects were not available (PTB Diagnostic ECG Database).   

Through the valuable diagnosis information found in the INCART and PTB 

databases, many studies deal with ECG beat classification and a diagnosis of cardiac 

diseases were used these datasets as a reference for the quantitative evaluation and 

validation of final analytic results (J. Martínez, Almeida, Olmos, Rocha, & Laguna, 

2006; G. B. Moody, Koch, & Steinhoff, 2006).   
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2.3.3    Digital Recovery of the Raw ECG Data from Paper Printout Recording 

 

Many techniques for analyzing and diagnosing ECG signals have been 

proposed. Certainly, they need huge amount of digital ECG data for processing, as well 

as special kind of data for quantitative evaluation. The ECG data found in the online 

databases is not sufficient to perform this purpose, especially for ECG data with specific 

high risk or generic cardiac diseases. At the same time, huge amounts of historical ECG 

recordings for different ages, ECG morpholgies, cardiac diseases, etc can be collected 

from old hospital information systems. These recordings are usually stored in paper 

printouts or in a non-digital format, thus they must be converted into digital format to 

facilitate their processing by computerized techniques. Generally, this process of 

converting is called "Digital Recovery". Most methods for the digital recovery of 

biomedical signals from printout charts follow a four steps structure (Mitra & Mitra, 

2003; Sanromán-Junquera et al., 2012): 

Step 1: scanning ECG paper printout recording. 

Step 2: correcting the orientation of the scanned image. 

Step 3: grid line, annotation symbols, and printed text cancellation. 

Step 4: sampling drawing signal in a two-dimensional image with actual units. 

The process of digital recovery provides an open bank of ECG data and other 

biomedical signals, which can be used to develop further medical analysis and diagnosis 

techniques. However, few studies have dealt with digital recovery of biomedical signals 

in literature. An integral framework based on basic principles of digital image 

processing techniques was proposed by (Sanromán-Junquera et al., 2012) for 

biomedical signal digital recovery from binary black and white (BW) chart printout 

recordings. In this approach, a new algorithm was developed for improving each of the 

usual four steps. First, the scanned image was complemented for the purpose of easy 
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interpretation, thus both the biomedical signal and gridlines pixels were foreground. 

Second, correcting the orientation of the scanned image was performed by a 

combination of two stages: estimating the tilt angle by decomposing the eigenvectors of 

the foreground pixels coordinates, and then refining the estimated angle using standard 

Hough transform (SHT). Third, the grid line cancelation was tackled using binary 

morphological filters in a horizontal and vertical direction, while the grids in both 

directions were detected using discrete cosine transform (DCT). Fourth, the final signal 

waveform was sampled by analyzing all image columns from left to right and using one 

trace representative pixel per column. The performance of this approach was evaluated 

using the time synchronization between the original signal in the scanned image and the 

recovered biomedical signals. The results proved the capability of this approach in 

terms of automatically reconstructing the biomedical signal from the BW chart printout 

recording from old hospital information systems. However, this approach was limited 

for BW paper printout recordings and no technique was proposed for detecting the 

signal base line. Additionally, all the validated recordings had one lead only, thus there 

is no evidence that this approach was reliable for recovering multi ECG leads. 

Few studies pay attention to the digital recovery for reconstructing the ECG 

signal from the trace printout recordings. In (Swamy, Jayaraman, & Chandra, 2010), a 

new algorithm for recovering the digitized ECG time series from the scanned ECG 

recordings was proposed. In this algorithm, the orientation angle of the scanned image 

was detected using random transformation based on the maximum variance. An 

adaptive threshold technique using Otsu’s algorithm  (Petrou & Petrou, 2010) was  then 

applied to convert the scanned image into binary form. Finally, the sampling process or 

as termed by this study, envelop detection was performed by scanning the image 

columns and recording both upper and lower non-zero values. The digitization accuracy 
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of this approach was evaluated by computing the heart rate for both the original and the 

recovered data of six single lead ECG records. The resultant accuracy achieved by this 

approach did not exceed 95%; moreover, no additional technique has been reported to 

digitize multi-leads in a single scanned image.   

An improvement to the ECG digital data recovery was proposed by (Chebil, Al-

Nabulsi, & Al-Maitah, 2008) to tune suitable image resolution for the scanning process. 

Also, the median and neighbourhood techniques were applied for the reconstruction and 

digitization of the ECG signal. For each image resolution, four measurable features 

(heart rate, PR interval, QRS duration, and QT interval) were determined for both 

original and digitized signals. The results show that the highest accuracy for the 

digitized ECG data was obtained when the image resolution was 2400 dot per inch 

(dpi). However, this resolution uses a higher rate of computational cost and more 

processing time.  

A software based approach was proposed by (e Silva, de Oliveira, & Lins, 2008) 

using eight digital signal processing (DSP) steps (digitalizing the paper strip, image 

binarization, skew correction, salt-and-pepper filtering, axis identification, converting 

pixel-to-vector, removing the header and trailer of the acquired signal, and splitting the 

ECG chart and re-assembling it) for digitalizing the ECG printout chart. All steps were 

developed by MATLABTM as the software tools without the need for additional 

dedicated hardware. Some ECG strips were collected from the ECG databank (Jenkins 

& Gerred, 2009).  All records in this databank were stored in low resolution. At the 

same time, no measured metrics were considered in this study to evaluate the accuracy 

of the reconstructed ECG waveform. In addition, spatial and frequency techniques were 

applied separately by (T. Shen & Laio, 2009) for the ECG signal recovery. The 

performance of both techniques was evaluated by calculating the percentage root mean 
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square difference (PRD) of 23 ECG charts which were collected from the MIT/BIH 

Sudden Cardiac Death Holter Database. The PRD was determined for five interpolation 

functions in each technique. The PRD results show that linear interpolation was the best 

(45.46% for spatial and 54.33% for frequency technique). However, these results need 

more improvement in order to minimize dispensable interpolation.       

Finally, a simple procedure for digitizing ECG paper printout recordings was 

proposed by (Paterni, Belardinelli, Benassi, Carpeggiani, & Demi, 2002) using the first 

order absolute moment (FOAM) as a mathematical rule to locate the ECG trace points. 

This procedure was validated by 50 ECG printed recordings of 10 seconds from 

different ECG morphologies. In addition to the classical measure PRD, two mean 

opinion score (MOS) tests were used to evaluate this procedure. The results of these 

three tests showed a positive correlation between the original and reconstructed signal. 

However, this procedure needs further enhancements (as reported in the article) to 

remove the wrinkles, handwriting, and printed text that were found on the original ECG 

graph paper.  

 

2.4    ECG Signal Analysis 

 
The ECG signal analysis is a widely used and restful way to interpret different 

functions of the HH. Amplitudes, time intervals, and ECG wave morphology are used to 

obtain most of the clinically useful parameters in ECG signals (Petrutiu et al., 2006; 

Sörnmo & Laguna, 2005). The advancement of robust and precise techniques for ECG 

wave delineation is a very attractive challenge for cardiologists and biomedical 

engineers in order to classify ECG arrhythmia types and have a better solution for 

diagnosing specific ECG phenomenon such as T-wave alternans, atrial fibrillation, and 

QT-extension (Minhas & Arif, 2008).  
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2.4.1    ECG Waves Detection    

 

In recent years, the process of analyzing ECGs takes more attention due to its 

essential role in diagnosing many cardiac diseases. As a result, the development of an 

efficient and intensive method for ECG wave detection and delineating their time 

characteristics is a subject of major importance (Zigel, Cohen, & Katz, 2000).  

Generally, the process of diagnosing cardiac diseases of the HH based on 

analyzing the 12-lead ECG signal is performed by computing some features called 

diagnostic features. There are three main types of diagnostic features: duration, 

amplitude, and shape features (Zigel et al., 2000). The duration and amplitude features 

are extracted from certain time location points which are located on boundaries and 

peak time locations of P, QRS, and T (P-QRS-T) waves; Figure 2.11 shows these time 

location points, as well as the diagnostic features limited by these points in a single 

cardiac cycle.  

 

 

 

 

 

 

 

 

 
 
 

Figure 2.11: The Diagnostic Features Limited by the Time Location Points 
in a Single ECG Cycle. 
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Figure 2.4 shows all the intervals and segments which are limited by these 

locations. Differently, the calculations of shape features depend entirely on the texture 

of the ECG waves (C. Lin, Mailhes, & Tourneret, 2010; J. P. Martínez, Almeida, 

Olmos, Rocha, & Laguna, 2004; Mneimneh, Povinelli, & Johnson, 2006; Zigel et al., 

2000). 

 

2.4.1.1    QRS Complex Detection 

 

The QRS complex represents heart ventricular depolarization and has the highest 

frequency component in the ECG signal. Therefore, most significant strategies for 

detecting ECG waves start by finding time location points of the QRS complex then 

representing these points as a reference to find other locations for P and T waves (C. Lin 

et al., 2010). The QRS complex constructed from three sequential (Q, R, and S) waves, 

and the time location points in these waves are QON, QOFF, RPEAK, SON, and SOFF (J-

point). These time location points are used to obtain duration and amplitude features 

related to the QRS complex, as well as the segments and intervals of P and T waves like 

PR, QT interval, and ST segment (Chesnokov, Nerukh, & Glen, 2006; Mneimneh et al., 

2006; Wu & Chiu, 2006). 

In general, the extracted features from the QRS complex are mainly used to 

diagnose many high risk cardiac diseases like ventricular hypertrophy, cardiac 

arrhythmia, myocardial infarction, etc (Hadj Slimane & Naït-Ali, 2010), also as 

mentioned previously the RR interval obtained by the duration between two consecutive 

RPEAKs is used to compute heart rate of the HH.   
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Many studies are found in the literature survey dealing with QRS complex 

detection. A new method named the difference operation method (DOM) was proposed 

by (Yeh & Wang, 2008) to detect the QRS complex in the ECG signal. This method 

was applied using a simple algorithm of two stages. The first stage was to detect RPEAK 

by means of the difference (differentiation) between the current and previous beat, 

while the second stage was to detect Q and S waves by applying the search operation for 

maximum amplitudes at dual intervals to the right and left side of the RPEAK position 

detected in the first stage. This method does not need complex mathematical 

computations, thus the time required to process 10 minutes of ECG data does not 

exceed 30 seconds. The 48 ECG records from MIT-BIH were used to validate the DOM 

detector. The validation results show that the DOM detector performed in perfect 

specificity and low sensitivity in comparison with the other two detection methods  (Li, 

Zheng, & Tai, 1995; Pan & Tompkins, 1985). Another approach for QRS complex 

detection was proposed by (Saini, Singh, & Khosla, 2013) using the K-nearest neighbor 

(KNN) algorithm. In this approach, the ECG signal was filtered using a digital band 

pass filter to minimize the false detection generated by power line interference. The 

gradient of the ECG signal was then used to extract many features which were used by 

the KNN classifier for QRS complex detection. This detection approach was validated 

by 48 ECG records from the MIT-BIH arrhythmia database and 125 original 12-lead 

ECG records from the diagnostic CSE database. The validation results show that the 

detection rate for CSE database was excellent, while for the MIT-BIH arrhythmia 

database, it was limited (also less than the DOM detector). Additionally, the time 

considerations for processing ECG data were not reported in this study.  

The empirical mode decomposition (EMD) technique is mostly used for ECG 

noise reduction (Kabir & Shahnaz, 2012; Kasturiwale & Deshmukh, 2009; Tang & Qin, 
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2008). The same technique was also used for the purpose of QRS complex detection. In 

(Hadj Slimane & Naït-Ali, 2010) , a new EMD based algorithm was proposed to detect 

the QRS complex. The EMD algorithm includes 5 steps to perform subject detection: 

applying a 5th order high pass Butterworth filter to remove any frequencies within the 

ECG signal between 0-1 Hz and reducing the influence of the baseline wander, 

decomposing the filtered ECG signal into a sum of three intrinsic mode functions (IMF) 

that handle enough information about the slope of the QRS complex, applying nonlinear 

transform on the resulted IMF, integrating the resulted components, and then applying a 

1st order low pass Butterworth filter to compute a unique maximum value for each QRS 

complex event. The EMD algorithm was validated by 48 ECG records from the MIT-

BIH arrhythmia database. The validation results show better performance for the EMD 

algorithm compared to ones that were determined by the real time QRS complex 

detection method proposed by (Christov, 2004) and based on comparing the adaptive 

threshold value with the absolute sum of differentiated ECG signals in one or more 

leads. A new RPEAK detection method was proposed by (Manikandan & Soman, 2012). 

This method was applied in four stages: firstly, the QRS complex in the entire ECG 

signal was emphasized and the noise was removed by three processing steps (band pass 

filtering, 1st order forward differentiation, and amplitude normalization). In the second 

stage, the approximate locations of RPEAK in the ECG signal were obtained by applying 

Shannon energy (SE) estimation and zero-crossing filtering. In the third stage, the local 

RPEAK was identified by detecting positive zero-crossing points in the Hilbert transform 

of the SE envelop. Finally, the final true RPEAK time locations were obtained by 

applying a simple search for the largest amplitude within 25 ECG beats of the candidate 

RPEAK in the previous stage. The performance of this method was validated with the 

same set of ECG records used in previous studies. The RPEAK detection results obtained 
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by this method improve performance compared to ones in (Hadj Slimane & Naït-Ali, 

2010) and the other five detection methods. 

In general, a WT is widely used by researchers to detect ECG signals due to its 

flexibility and adaptability. Additionally, the structural design of this transformation 

addresses the problem of non stationary ECG signals (Güler, 2005). In (Zahia Zidelmal, 

Amirou, Adnane, & Belouchrani, 2012), a new method of detecting the QRS complex 

was proposed using the wavelet  detail  coefficients in fourth and fifth wavelet 

resolution (d4 and d5) due to the highest QRS energy in these resolutions compared 

with the first three resolutions (d1..d3). Therefore this energy property was used to 

distinguish between the false beats and the normal and abnormal true beats. This 

method was validated with the same set of ECG records as in the previous studies. The 

detection accuracy was slightly lower than ones that were performed by previous 

studies. 

Lately, a new method of detecting RPEAK time location based on S-transform 

(ST) and SE has been proposed by (Z Zidelmal, Amirou, Ould-Abdeslam, Moukadem, 

& Dieterlen, 2014). This method exploits the advantages of ST to extract the QRS 

complexes in the time-frequency domain. The energy of each local spectrum computed 

with ST was then determined using SE to localize the RPEAK time location in the time 

domain. This method was validated with the same set of ECG records used in the 

previous studies. The obtained results proved the performance in terms of detection 

accuracy compared with the previous studies. As happened in previous studies (except 

the DOM detector) (Yeh & Wang, 2008), there is no estimation of the processing time 

required to compute the SE and ST which were used in this method. As a result, any 

decision about its validity for real time ECG processing cannot be made clearly. 

Additionally, this method was validated with 48 ECG records of MIT-BIH arrhythmia 
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database, while many QRS complex detectors found in literature were tested alongside 

2 or 3 other ECG databases to prove the ability of suggested methods to process 

different morphologies of ECG patterns. 

2.4.1.2    P and T waves Detection  

As mentioned in the previous section, most strategies of ECG detection start 

with QRS complex detection, then P and T waves that have lower amplitude than the 

QRS complex are detected sequentially, depending on the pre-detected time location 

points of the QRS complex. The time location points of P and T waves can be 

summarized by the boundary points (onset and end), as well as the peak point, which 

are labeled as PON, PPEAK, PEND, TON, TPEAK, and TOFF respectively, as shown in Figure 

2.11. These time characteristics are mostly used to obtain many diagnostic criteria 

related to P and T waves alone, as well as some other criteria correlated with QRS 

complex characteristics. 

The process of detecting P and T waves has been addressed by many studies in 

literature. A new method for delineating time characteristics of P, QRS, and T waves 

was proposed by (J. P. Martínez et al., 2004) based on WT. Firstly, the QRS time 

characteristics were detected by searching for “maximum modulus lines” that exceeded 

some thresholds at wavelet scales, and then marking the pair limited by positive 

maximum and negative minimum with respect to the zero crossing of the 1st WT scale 

as the QRS interval. T wave detection was then performed by looking for local 

maximum WT coefficients of certain morphologies within a search window that was 

defined relative to the QRS position and its obtained RR interval. Similarly, the P wave 

was detected, except that the RR dependent search window was defined on the other 

side of the QRS position with different morphologies than ones for the T wave. The 
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performance of this detection system was validated using four ECG databases (MIT-

BIH Arrhythmia, QTDB,  European ST-T (Taddei et al., 1992), and CSE (Willems et 

al., 1987)) databases, which were mostly used by other detection techniques according 

to the manual annotation information inside them. The time characteristics of ECG 

waves that were obtained by this system were PON, PPEAK, PEND, QONSET, SONSET, TPEAK, 

and TEND. The greatest detection accuracy was found in TEND, while the others time 

characteristics were comparable to those found in the literature.  

Another method of detecting ECG waves was proposed in (Ghaffari, 

Homaeinezhad, Akraminia, Atarod, & Daevaeiha, 2009) using discrete wavelet 

transform (DWT) to delineate onset, peak, and end time locations of P, QRS complex, 

and T waves. In this method, a window with a fixed length was slid sample to sample 

on the fourth wavelet scale then the curve length in each window was multiplied by the 

area under the curve. Finally, a designated variable thresholding criterion was applied to 

delineate the time locations of the ECG waves. This method was validated with the 

same sets of ECG databases used in the previous study. In contrast to the previous WT 

based detector, the most significant performance was found in the detection results of P 

wave time locations compared with those in the QRS complex and T wave.  

A new method of delineating time locations in P, T, and the QRS complex was 

proposed  by (A. Martínez, Alcaraz, & Rieta, 2010) based on Pahsor transform (PT). In 

this method, each instantaneous ECG sample was converted to complex form; the real 

part was represented with a constant value, while the original ECG sample was 

considered as an imaginary part. The detection of the P and the T wave was performed 

by considering the instantaneous phase deviation in successive ECG samples of PT. The 

phase angles caused by P and T waves in the pahsor form are maximized, regardless of 

their eventually small amplitude in the original ECG signal, thus making the delineation 
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of their time locations easier. The performance of this method was validated with the 

same sets of ECG records used in previous studies. The detection results of P and T 

waves for all time locations were lower or compatible with those computed by similar 

studies in the literature.  

 

2.5    Diagnosing Cardiac Disease Based on 12-Lead ECG Signal Analysis 

 

The most important objective of ECG signal processing is diagnosing the 

cardiac disease of the HH based on the diagnostic features which were extracted from 

analyzing and detecting ECG waves as mentioned in Section 2.4.1. The precision of 

these features is responsible for the correct diagnosis cardiac diseases. The results of the 

studies that were proposed in literature for diagnosing cardiac diseases demonstrate that 

WT is the most promising method to perform feature extraction from 12 lead ECG 

signals (Addison et al., 2000; Dokur & Ölmez, 2001; Saxena, Kumar, & Hamde, 2002; 

Sternickel, 2002).  

While, there are many cardiac diseases, some of them can be diagnosed 

extremely accurately based on the extracted diagnostic features from the time 

characteristics of 12 lead ECG records (Malmivuo & Plonsey, 1995). Also, the ECG test 

performs estimation with accepted probability compared to other cardiac diseases 

because they need additional clinical heart tests like Echocardiography (ECHO), which 

uses sound waves to generate a series of moving pictures that describe the size and 

shape of the HH and how well its chambers and valves are working.  

Additionally, the areas of the HH muscle that do not contract normally and the 

areas of poor blood flow to the HH can be captured by this test. Other clinical heart tests 

were recommended by cardiologist to get more valuable information about the status of 

the HH and can make an accurate diagnosis easily. 
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2.5.1    Diagnosing High Risk Cardiac Diseases 

 

Among cardiac diseases, there are some which mainly cause sudden cardiac 

death (SCD), thus these diseases are called high risk cardiac diseases. The simplest 

accepted interpretation of SCD is death caused by unexpected circulatory arrest due to 

HH causes that leads to sudden loss of consciousness within 1 hour from the starting of 

acute symptoms in a person with/without existence of specific cardiac disease 

(Vasiliadis, Kolovou, Mavrogeni, Nair, & Mikhailidis, 2014). Hypertrophic obstructive 

cardiomyopathy (HOCM) is the most common cardiac disease that causes SCD in 

young athletic persons. The pathophysiology of SCD that is caused by HOCM involves 

complex arrhythmogenic substrate that prepares the person to fatal ventricular 

fibrillation (Kelly & Galvin, 2010). Additionally, arrhythmogenic right ventricular 

cardiomyopathy  (ARVC), Wolf Parkinson White syndrome (WPW), LVH, long QT 

corrected syndrome (LQTcS), and brugada syndrome are classified as the high risk 

cardiac diseases that cause SCD with a lower percentage (low risk) than for HOCM. 

The risk percentage of SCD for some high risk cardiac diseases were presented in a 

form of pie chart by (Maron, 2009) according the well known standard guidelines of the 

American College of Cardiology (Graham et al., 2005) and the European Society of 

Cardiology (Pelliccia et al., 2005). In this study, the risk percentage that causes SCD for 

HOCM was 35%, 8%, 4%, and 2% for LVH, ARVC, and WPW, respectively. 

Many diagnostic criteria that were found in different well-known cardiology 

references can be used to perform a diagnosis of high risk cardiac diseases, but with 

limited accuracy. These criteria were obtained originally by the time characteristics that 

resulted from analyzing P, QRS, and T waves in 12-lead ECG and the standard ECG 

intervals limited by these time characteristics. Some diagnostic criteria were based on 

the shape of the ECG waves themselves. However, most of these criteria take the form 
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of simple logical conditions or basic mathematical definitions which can be computed 

easily by computerized systems using programming languages or modern intelligent 

systems like fuzzy logic, artificial neural network (ANN), etc. In spite of these facilities 

to design an intelligent diagnosis system using different computerized techniques, most 

studies found in literature that deal with diagnosing high risk cardiac diseases based on 

12-lead ECG signal take the form of statistical medical studies on selected group of 

patients to develop new diagnostic criterion or to get the detailed medical reports about 

the most causes of cardiac disease and the correct ways of treatment. 

On the other hand, few studies have been proposed in literature for the purpose 

of diagnosing generic cardiac diseases using successive computerized systems. In 

(Chang et al., 2012), a new diagnosing system was proposed for myocardial infarction 

(MI) classification based on multi-lead ECG (V1, V2, V3, and V4). These four leads 

reflect the MI infection in the anterior and septum wall of HH, therefore they were 

considered in this system to determine four corresponding sets of ECG features using 

hidden Markov models (HMMs). These 4 HMMs  are  used  not  only  to  find  the  

ECG  segmentations  but  also  to compute  the  probability  value  (or  likelihood  value  

in  HMM). The probability for each heartbeat will be transferred to logarithm, log-

likelihood,  and  adopted  as  statistical  feature  data  of  each  heart-beat’s ECG 

complex. These likelihood values are adopted as statistical different features for each 

heart-beat’s ECG complex.  Then,  the  two  well-known  classification  methods,  

support vector machines (SVMs) and  Gaussian  mixture  models  (GMMs)  are  applied  

to classify  a  set  of  testing  data represented by four sets of HMMs feature into  

myocardial  infarction  and  normal classes. This system was validated with 1129 ECG 

samples collected from private clinical centres, including 582 MI samples and 547 
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normal samples. The final diagnosis results of sensitivity, specificity, and accuracy were 

85.71%, 79.82%, and 82.50%, respectively. 

Additionally, the precise detection and classification of different types of ECG 

arrhythmias is crucial for the correct medical treatment of cardiac patients, so the 

detection of the ECG arrhythmia using the ECG signal was the most significant subject 

(Kutlu & Kuntalp, 2011; Nasiri, Naghibzadeh, Yazdi, & Naghibzadeh, 2009; Özbay & 

Tezel, 2010). Many computer based approaches have been proposed in literature for the 

purpose of detecting and classifying various arrhythmia types. An intelligent diagnosis 

system of adaptive neuro-fuzzy inference systems (ANFIS) was proposed by (Nazmy, 

El-Messiry, & Al-Bokhity, 2010) to classify ECG beats into six types of arrhythmias; 

normal sinus rhythm (NSR), ventricular premature contraction (VPC), atrial premature 

contraction (APC), ventricular tachycardia (VT), ventricular fibrillation (VF), and 

supraventricular tachycardia (SVT), based on a feature vector that was extracted from 

independent component analysis ICA, power spectrum, and RR interval. A simple and 

reliable method named "range overlaps method" was proposed by (Yeh, Wang, & 

Chiou, 2010) for classifying cardiac arrhythmia into five types; NORM, VPC, APC, and 

left/right bundle brunch block (LBBB and RBBB), respectively.    

 

2.5.2    Predication of Sudden Cardiac Death using ECG Signal Analysis  

 

However, SCD in young people is rare, but it is a tragedy which threatens all 

families and communities around the world (Maron, 2009; Maron, Doerer, Haas, 

Tierney, & Mueller, 2009). The incidence of SCD in any population varies due to many 

reasons including: nationality, age, gender, ethnic group, clinical techniques to detect 

SCD, and facilities to obstruct or overcome SCD pharmacologically, surgically, and the 

use of clinical implantable devices. There are 80 incidences of sudden death (SD) 
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(fewer than 40 years old) per year in New Zealand; and 427 incidences of SD from 1995 

to 2004 in Australia. However, the statistical clinical studies performed by experts 

estimate that at least eight incidence of SD happen weekly in the United Kingdom 

(Fishbein, 2010). Additionally, the reported information in (Noseworthy & Newton-

Cheh, 2008) shows that there are more than 300,000 incidences of SD in the United 

States annually. Most of these people (about 80%) suffered from coronary artery 

diseases; fewer cases (15%-20%) were associated with non-ischemic myopathic 

processes like HOCM, and approximately 5% were related to a primary defect of 

cardiac electrophysiology like (LQTcS or brugada syndrome) (Zipes, 2005).      

The process of SCD predication using a 12-lead ECG takes in a wide area of 

research due to the seriousness of this subject. A large number of studies found in 

literature survey deal with SCD predication as an attempt to get an early warning about 

this problem and surviving cardiac incidences, then thinking about possible ways to 

overcome it. Numerous approaches and methods to detect and predict SCD have been 

proposed in literature. These studies have been based on certain parameters like heart 

rate turbulence (HRT), heart rate variability (HRV), T wave alternans (TWA), and 

signal averaged electrocardiogram (SA-ECG), which can be obtained by the same set of 

time characteristics related to ECG waves that were presented in Section 2.4.1.1 and 

Section 2.4.1.2.  

In (E. Ebrahimzadeh & Pooyan, 2011), a new algorithm was proposed to detect 

and predict SCD based on HRV and two sets of features were extracted by processing 

two minutes of ECG beats before SCD. The first set of features was extracted from the 

ECG signal itself using time and frequency domain, while the second set was extracted 

by applying a time-frequency transformation on the resultant HRV signal .The decision 

to classify healthy persons and others who are liable to SD was performed by multilayer 
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perceptron (MLP) and K-Nearest Neighbour (KNN) with neural networks based on the 

two sets of features after reducing their dimensions by principle component analysis 

(PCA).  This predication method was evaluated by 35 SCD patients from the MIT-BIH 

SCD Holter database in PhysioBank. The behaviour of the ECG signal of one patient 

from this database before two minutes of SCD and few seconds after is shown in Figure 

2.12. The resulted prediction accuracy of SCD with this method was 91.42% which was 

better than the percentage obtained by another method (T.-W. Shen, Shen, Lin, & Ou, 

2007). This made a prediction of SCD with 87.5% accuracy by applying ANN on the 

features of HRV in Lead I from the ECG patients of the same database used in the 

previous method.  

 

 

 

 

 

 
 
 
 
 
 

Figure 2.12: The ECG Signal of SCD Patient Before 2 minutes of SCD Event and 
Several Seconds After that (E. Ebrahimzadeh & Pooyan, 2011). 

 

 

Finally, a review study was presented by (Murukesan, Murugappan, & Iqbal, 

2013) about the methods and techniques based on HRV to detect and predict SCD. 

Many important recommendations were made in this study. The first was that the 
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predication accuracy of SCD based on HRV was limited because HRV factors cannot 

be accurately evaluated in the patients with frequent Premature Ventricular Contractions 

(PVC) or Atrial Fibrillation (AF). Moreover, these factors were influenced by many 

parameters like age, gender, and the medicines taken by patients. The second conclusion 

made by this study was that the HRV factors must be combined with other ECG 

parameters like HRT and TWA to produce a highly precise SCD predication. The last 

conclusion made by this study was that statistical tools were a processing way of 

predicting SCD in comparison with classifier based tools. 

 

2.6    Summary 

  
Chapter two has been divided into two main parts; in the first part, a detailed 

interpretation of the basic concepts of ECG signal including the cardiac conduction 

system of HH and its representation in the ECG signal and the standard components of 

the ECG signal have been presented and discussed. Moreover, the main groups of 12 

leads considered in ECG signal and adopted sources of ECG data have been explained.  

A literature review of the latest researches and studies that are related to the 

main contributions of this thesis, which include the methods of digital recovery raw 

ECG data from printed charts, QRS complex detection methods, P and T wave detection 

methods, and the methods of diagnosing high risk cardiac diseases were presented in the 

second part of this chapter.    

Table 2.1 summarized all the literature survey related to the main contributions 

of this research. 
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Table 2.1: Summary of Literature Review 
 

Reconstructing Digital Raw ECG Data From ECG Paper Printout Recording 
# Authors Year Description of based technique 

1 

M. 
Sanroma 
´n-
Junquera 

2012 

An integral automatic approach for recovering biomedical signals 
from BW grid paper printouts based on digital image processing 
principles (Image orientation correction, Pre processing and grid 
cancellation, Signal waveform extraction, Conversion from the 
waveform in the image plane to 1D biomedical signal). 

2 Prashanth 
Swamy 2010 

an improved methodology to extract the digitized version ECG time 
series using the Radon transform for de-skewing the scanned 
images. Even though the conventional Furthermore, a simple and 
useful way of axis identification is proposed. 

3 Jalel 
Chebil 2008 

A new method for converting ECG paper printout recording of into 
digital form using neighbourhood and median approaches. In 
addition, the relationship between pixels and time-voltage values is 
automatically determined. 

4 
A.R. 
Gomes e 
Silva 

2008 

A new software-based approach using Matlab environment through 
8 image processing tools Digitalization of the paper strip, Image 
binarization, Noise filtering, Axis identification, Pixel-to-vector 
conversion, Removing the header and trailer of the acquired signal, 
Splitting the ECG chart and re-assembling it. 

5 TW Shen 2009 
A new method of recovering ECG signal using spatial and frequency 
techniques separately.  

6 M  Paterni 2002 
a simple procedure for digitizing ECG paper printout recordings 
using the FOAM as a mathematical rule to locate the ECG trace 
points. 

 

Delineating Time Characteristics of The QRS Complex 

# Authors Year Description of based technique 
1 

Yun-Chi 
Yeh 2008 

A new method named the difference operation method (DOM) 
which be applied using a simple algorithm of two stages: 
• Detect RPEAK time location by means of the difference 

(differentiation) between the current and previous beat 
•  Detect Q and S waves by applying the search operation for 

maximum amplitudes at dual intervals to the right and left side of 
the RPEAK position. 

2 

Indu Saini 2013 

A new approach for detecting QRS complex using the K-nearest 
neighbor (KNN) algorithm. In this approach, the ECG signal was 
filtered using a digital band pass filter to minimize the false 
detection generated by power line interference. The gradient of the 
ECG signal was then used to extract many features which were used 
by the KNN classifier for QRS complex detection. 

3 
Zine-
Eddine 
Hadj 
Slimane 

2010 

a new EMD based algorithm  to detect the QRS complex. This 
algorithm includes 5 steps to perform subject detection:  
• Applying a 5th order high pass Butterworth filter. 
• Decomposing the filtered ECG signal into a sum of three (IMF).  
• Applying nonlinear transform on the resulted IMF. 
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• Integrating the resulted components. 
• Applying a 1st order low pass Butterworth filter to compute a 

unique maximum value for each QRS complex event. 
4 M.Sabari

malai 
Manikand
an 

2012 

A new RPEAK detection method based on the SEE  estimator  and  a  
simple  peak-finding logic  using  the  HT  and  moving  average  
filter to address the problem of detecting unusually shaped QRS 
complexes  and  noises. 

5 

Z. 
Zidelmal 2012 

a new method of detecting the QRS complex using the wavelet  
detail  coefficients in 4th and 5th wavelet resolution (d4 and d5) due 
to the highest QRS energy in these resolutions compared with the 
first three resolutions (d1..d3). Therefore this energy property was 
used to distinguish between the false beats and the normal and 
abnormal true beats. 

6 

Z.Zidelma
l 2014 

A new RPEAK detection method based on ST and SE. This method 
exploits the advantages of ST to extract the QRS complexes in the 
time-frequency domain. The energy of each local spectrum 
computed with ST was then determined using SE to localize the 
RPEAK time location in the time domain. 

 
Delineating Time Characteristics of P and T Waves 

# Authors Year Description of based technique 
1 Juan 

Pablo 

2004 

A new method for delineating time characteristics of P, QRS, and T 
waves based on WT. Firstly, the QRS time characteristics were 
detected by searching for “maximum modulus lines” at wavelet 
scales. T wave detection was then performed by looking for local 
maximum WT coefficients of certain morphologies within a search 
window that was defined relative to the QRS position and its 
obtained RR interval. Similarly, the P wave was detected, except 
that the RR dependent search window was defined on the other side 
of the QRS position 

2 

A. 
Ghaffari 2009 

A new method of detecting ECG waves using DWT to delineate 
onset, peak, and end time locations of P, QRS complex, and T 
waves. In this method, a window with a fixed length was slid sample 
to sample on the fourth wavelet scale then the curve length in each 
window was multiplied by the area under the curve. 

3 

Arturo 
Mart´ 
ınez 

2010 

A new method of delineating time locations in P, T, and the QRS 
complex based on PT. In this method, each instantaneous ECG 
sample was converted to complex form. The detection of P and T 
waves were performed by considering the instantaneous phase 
deviation in successive ECG samples of PT. The phase angles 
caused by P and T waves in the PT are maximized, regardless of 
their eventually small amplitude in the original ECG signal 

 
Diagnosing Generic Cardiac Diseases 

# Authors Year Description of based technique  

1 
Pei-
Chann  
Chang 

2012 
a new diagnosing system was proposed for MI classification based 
on 4 sets of ECG features which were extracted from (V1, V2, V3, 
and V4) leads using HMMs, then the  two  well-known  
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classification  methods SVMs and GMMs are  applied  to classify  a  
set  of  testing  data represented by 4 sets of HMMs feature into  
myocardial  infarction  and  normal classes. 

2 
Nazmy 
El-
messiry 

2010 

An intelligent diagnosis system of ANFIS to classify ECG beats into 
six types of arrhythmias; NSR, VPC, APC, VT, VF, SVT based on a 
feature vector that was extracted from ICA, power spectrum, and RR 
interval. 

3 
Yeh 
Wang 

2010 A simple and reliable method named "range overlaps method" to 
classify cardiac arrhythmia into five types; NORM, VPC, APC, 
LBBB, and RBBB. 

 
 

 

 

 

 

 

 

 

 

 

©
 T

his 
ite

m
 is

 p
ro

te
ct

ed b
y o

rig
in

al
 co

pyr
igh

t 



 51 

CHAPTER 3 

RESEARCH METHODOLOGY 
 

3.1    Introduction 

 

Many computerized based techniques have been proposed in literature for the 

purpose of analyzing, detecting ECG waves, and delineating the time characteristics of 

these waves to extract many valuable parameters and diagnostic features to interpret 

different functional activities of the HH. Most of these techniques were validated with 

the online ECG data that was downloaded from specialist physiological websites like 

PhysioNet as mentioned in Chapter 2 Section 2.3.2. However, many of these techniques 

provide acceptable results, but need further improvements to generate perfect outcomes 

especially the incompatibility of these techniques for real time applications.  This is due 

to the fact that the greatest numbers of these techniques were applied to the transformed 

version of ECG data (not on the ECG data itself) using certain mathematical transform 

like DWT, PT, etc or using the series of mathematical estimations like SE. EMD. As a 

result, more time was spent on arriving of these calculations. 

As mentioned in Chapter 2 Section 2.5.1, a limited number of computerized 

based techniques have been proposed in literature for the purpose of diagnosing cardiac 

diseases based on diagnostic features that were extracted from analyzing a 12 lead ECG 

signal. This limitation has many reasons, the first of which is the limitation of digital 12 

lead ECG data as it is only persons who suffer from certain cardiac diseases who are 

suitable to process in a computerized system. Second, many cardiac diseases, especially 

high risk cardiac diseases, need more specialist cardiac information and more HH tests 

than that normally reported by cardiologists.   

 

 

 

 

 

 

 

©
 T

his 
ite

m
 is

 p
ro

te
ct

ed b
y o

rig
in

al
 co

pyr
igh

t 



 52 

In this chapter, an intelligent system is proposed for analyzing a 12 lead ECG 

signal and diagnosing LVH high risk cardiac disease. The proposed system includes 

three main stages: pre-processing the ECG signal, analyzing and detecting ECG waves, 

and diagnosing LVH high risk cardiac disease. The general block diagram for the 

proposed ECG system is shown in Figure 3.1. 

In the first stage of proposed ECG system, a new digital recovery approach is 

proposed to address the limitation of digital ECG data by reconstructing it from the 

scanned image of the ECG paper printout recording.      

In the second stage of the proposed ECG system, two approaches are proposed 

to detect the QRS complex and P, T waves, respectively, and then delineates the 

boundaries and peak time locations of these waves which are used to compute 

diagnostic parameters for various cardiac diseases. Both proposed approaches are 

designed to apply a straightforward algorithm with an instantaneous processing 

technique on the ECG input signal.  

As mentioned in Chapter 2 Section 2.5.1, LVH cardiac is one of the high risk 

cardiac diseases that cause SCD in young people. In the third stage of the proposed 

ECG system, a new approach is proposed for diagnosing LVH cardiac disease based on 

some voltage parameters determined from the previous detection stage and some 

traditional diagnostic criteria. The proposed diagnosis approach is modelled by the new 

design of the fuzzy Inference system (FIS), and it is designed to test any 12 lead ECG 

data and provide an accurate diagnosis of LVH cardiac disease for both genders. 
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Figure 3.1: General Block Diagram of Proposed System for Analyzing and 
Diagnosing 12-lead ECG Signal. 

 

3.2    12-Lead ECG Data 

 

As mentioned in Chapter 2 Section 2.1, the ability to interpret any medical data 

using a computerized system is related mainly to the availability of this data in a digital 

form with various morphologies. In this section, the resources of ECG data used to 

validate the proposed approaches for analyzing, detecting and diagnosing are discussed 

in more detail. 

  

3.2.1    Online ECG Data 

 
Most studies found in the literature survey for analyzing, classifying, and 

diagnosing ECG signals were validated by ready data that was downloaded from 

specialist databases on the internet. The online ECG data was arranged as groups of 

databases with different subjects in a digital form. In addition, the original ECG 
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recordings for this data were collected from many specialist clinical centres around the 

world.  

As mentioned in Chapter 2 Section 2.3.2, the Physionet website is a great 

resource for different physiological signals. It contains a huge bank of data called 

PhysiBank which is organized into more than 50 ECG databases with different numbers 

of records, and most databases are annotated manually by cardiologists with important 

analysis information like RR interval, time characteristics of ECG waves, ECG beat 

classification, etc. Additionally, some ECG databases in this bank include a complete 

diagnosis of cardiac disease and all data inside this bank is free of charge. Therefore, 

these databases have become the main resources of ECG data for all studies presented in 

the literature survey which is concurred with ECG analysis, classification, and 

diagnosis. 

In the second stage of the proposed ECG system shown in Figure 3.1, two 

approaches have been proposed to detect ECG wave characteristics; one for detecting or 

delineating the QRS complex and other for P and T waves. Selecting the suitable ECG 

database to validate any detector depends mainly on the annotated information available 

in this database. The first detector for the QRS complex is validated with the ECG 

records in the MIT-BIH database from Physiobank which was discussed in Chapter 2 

Section 2.3.2.1. Also, in the same data bank, the ECG records from the QT database 

discussed in Chapter 2 Section 2.3.2.2 are used to validate the second detector of P and 

T waves. Additionally, some ECG records from diagnostic 12 lead ECG database 

INCART discussed in Chapter 2 Section 2.3.2.3 are used to validate the proposed 

approach for diagnosing LVH cardiac disease in the third stage of the proposed ECG 

system shown in Figure 3.1. The limited amount of ECG records in these databases 

which are suitable for diagnosing validation, especially for high risk cardiac diseases 
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like LVH, opens the way for other ECG record resources like reconstructing 12 lead 

ECG data from the printed ECG chart. 

       

3.2.2    Digital Recovery of 12-lead ECG data from Paper Printout Recordings 

 

As mentioned in Chapter 2 Section 2.3.3, the digital recovery of ECG data from 

paper printout recordings has become essential, especially for the ECG data of high risk 

cardiac diseases. Moreover, it is very difficult to assemble sufficient amounts of this 

data through online databases. At the same time, unlimited ECG records as the paper 

printout recordings can be collected from different clinical centres, even if they have 

been recorded using a traditional ECG machine. Thus, a new approach for the digital 

recovery of 12 lead ECG data has been proposed to reconstruct this data from the digital 

image scanned from the ECG paper printout recording (printed ECG chart). The 

proposed digital recovery approach is based on the basic principles of image processing 

techniques and is applied in four stages. The general block diagram of this approach and 

a sample result for each step is shown in Figure 3.2. 

 

3.2.2.1    Proposed Approach for Digital Recovery of 12-Lead ECG from Paper 
Printout Recordings 
 

The final shape of the ECG chart depends mainly on the ECG machine that has 

recorded it. Traditional ECG machines use long roll paper to print the ECG. In this 

machine, the 12 lead ECG is printed one after another in a sequential form, while in 

modern machines, all 12 lead ECG are printed on single paper. 
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Figure 3.2: General Block Diagram of Proposed Approach for Digital Recovery of 
12 lead ECG Data from Colour Scanned Image of ECG Paper Printout Recording. 
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Additionally, certain types of these machines are programmed to make basic 

analysis and pre diagnosis for the ECG signal recorded but their accuracy is limited 

because many parameters in these machines must be adjusted before reuse. One sample 

of ECG printout recording from a traditional machine is shown in Figure 3.3.a, and two 

samples of ECG recordings which are recorded by different modern ECG machine 

models are shown in Figure 3.3.b and c, respectively.  
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Figure 3.3: (a) Classical 12-lead Paper Printout Recording, (b), (c) Modern Forms 
of 12-lead Paper Printout Recordings with Automatic ECG Interpretation.  

 
In the first step of the proposed digital recovery approach, the 12-lead ECG 

paper printout is scanned with high resolution (600 to 1200 dpi) to maintain the most 

accurate details of the ECG drawing, which means that the final recovered raw ECG 

data is very accurate. Next, each row region of the ECG drawing that contains four 

different leads is grouped separately as an image slice with (WS) width and (HS) height, 

while the remaining area in the scanned image is excluded from the following 

calculations as shown in the 1st step of Figure 3.2.  

The resulting image slices from the previous step are converted to black and 

white colour mode by removing background colour which is viewed as small and large 

(c) 
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squares. The background colour is usually light (light green, orange, red, or blue). This 

background colour must be erased and only the dark colour (usually black) of the ECG 

chart stays (alone) within the image slice. To perform this subject analysis, an adaptive 

high pass filter is applied on each slice including three colour layers (RGB) for each 

point.  As is known, the value of each (RGB) component is limited between (0  ... 255) 

and each colour filter applied on this pattern must be fixed exactly with an adaptive 

threshold value for component for each colour to make a decision to pass or reject 

(erase) the tested point. The special colour filter is designed to erase all points within the 

image slice that verify the mathematical rule expressed in Equation (3.1), which at the 

same time passes all points elsewhere. The threshold values (Rth, Gth, and Bth) must be 

determined accurately according to the components of the background colour; this is 

done by applying a simple analysis on the (RGB) components of some points found in 

small selected segments inside the tested slice, however, the selected segment must be 

empty (from any drawings).  

 

∃�Erase Xij�:  𝑅𝑅𝑠𝑠𝑒𝑒�𝑋𝑋𝑠𝑠𝑖𝑖 � < 𝑅𝑅𝑡𝑡ℎ  𝐴𝐴𝐴𝐴𝐴𝐴 𝐺𝐺𝑟𝑟𝑠𝑠𝑠𝑠𝑟𝑟�𝑋𝑋𝑠𝑠𝑖𝑖 � < 𝐺𝐺𝑡𝑡ℎ  𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵𝑙𝑙𝑠𝑠𝑠𝑠� 𝑋𝑋𝑠𝑠𝑖𝑖 � < 𝐵𝐵𝑡𝑡ℎ  ,  

∀ 𝑠𝑠, = 1, … ,𝐻𝐻𝐻𝐻;    ∀ 𝑖𝑖, = 1, … ,𝑊𝑊𝐻𝐻                                                                                         (3.1) 

 

The resultant image slices from the previous step contain the ECG chart and 

some printed text around this chart. The enlarged segment in the 2nd stage of Figure 3.2 

shows that some blank spaces are found within the ECG chart. These gaps in the 

drawing will be considered as missing data in the next steps, which will have an effect 

on the accuracy of the final recovered data.  

The third step in the proposed digital recovery approach overcomes this problem 

by applying an intelligent technique to track the resulting ECG chart' points and fill any 
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blank spaces within them. As well as, removing any printed text or lines around ECG 

chart. The delineation value of the new data added must be computed accurately to 

remove any distortion which occurs in the final ECG drawing. The new intelligent 

technique takes four (3 x 3) masks (left, right, up, and down) around the tested point as 

a base rule to make a decision to contact two neighbouring end points if at least one 

mask (M) from the four contains more than two black points (pixels) as expressed in 

Equation (3.2).  

  

∃�𝐹𝐹𝑠𝑠𝑙𝑙𝑙𝑙 𝑋𝑋𝑠𝑠𝑖𝑖 �:�𝑀𝑀𝐿𝐿𝑠𝑠𝐿𝐿𝑡𝑡 ≥ 2 𝑜𝑜𝑟𝑟 �𝑀𝑀𝑅𝑅𝑠𝑠𝑅𝑅ℎ𝑡𝑡 ≥ 2 𝑜𝑜𝑟𝑟  �𝑀𝑀𝑈𝑈𝑈𝑈 ≥ 2 𝑜𝑜𝑟𝑟  �𝑀𝑀𝐴𝐴𝑜𝑜𝐷𝐷𝑟𝑟 ≥ 2 (3.2) 

 

The contact decision takes the form of replacing the blank point by a designed (3 

x 3) mask, which makes the contact with four possible end points in four directions as 

shown in Figure 3.4.  

  

 

 

 

 

 

 

 

 
Figure 3.4: A Process of Replacing Test Point with Designed Mask to Fill Blank 

Spaces between Two Neighbouring Points.  
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In addition to contacting two end points spaced by a blank space within the ECG 

chart, other advantages are gained from applying the previous technique. First, the 

resulting ECG chart takes a smooth form, thus the enlarged segment shown in the 3rd 

stage of Figure 3.2 is smoother than the resulting ECG chart when the previous 

intelligent technique was applied. Second, the testing of the blank spaces is limited to 

the points that fall inside the four tested masks (MUp, MDown, MLeft, and MRight). This 

means that any points outside these masks are not considered in the resulting smoothed 

image and, as a result the unwanted printed text and the handwritings outside the ECG 

chart are removed.     

The final step in the proposed digital recovery approach is focused on detecting 

the ECG baseline and reconstructing useful raw ECG data. The proposed technique of 

computing the level of the ECG baseline is performed by partitioning the complete area 

of each image slice resulting from the previous step into small horizontal segments with 

the same heights equal to 5 points (pixels) and the same widths equal to the width of the 

image slice (WS).  

The baseline position is allocated in the centre of the segment that has a 

maximum number of black points as expressed in Equation (3.3). The baseline detection 

process is applied once in each image slice (i.e. all four leads in single image slice take 

same baseline level). 

 

∃! [𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠𝐿𝐿𝑠𝑠𝑟𝑟𝑠𝑠 ← 𝑠𝑠 + 2]:𝑀𝑀𝐴𝐴𝑋𝑋��𝑋𝑋(𝑠𝑠. . 𝑠𝑠 + 4,
𝑠𝑠

 

 1. .𝑊𝑊𝐻𝐻)�  

,∀ 𝑠𝑠 = 1, 6, 11 … , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐻𝐻𝐻𝐻 − 5)                                                                                           (3.3) 
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The second operation which will be applied in this step is the digital recovery of 

raw ECG data. In general, sampling any continuous signal must be processed with a 

certain frequency. The output frequency of the ECG signal is related directly to the 

speed of the ECG device. As standard, this speed is equal to 25 mm/s, thus the time 

interval for one ECG beat is (40 ms). These basic principles are reported in most 

cardiology resources (Azeem et al., 2005; Bowbrick & Borg, 2006; Hampton, 2008; 

Luthra, 2011; Wagner, 2008). 

As the time interval of a single ECG beat is represented by a small square in the 

final ECG paper printout, the sampling process of the ECG chart must be applied to 

each small square. However, the difference here is that the small square is represented 

by a number of image pixels, not as a time interval.  

The size of a small square in pixels (PS) can be determined easily by computing 

a number of pixels with the same colour which forms the square shape in any clear 

region from the original scanned image. The complete area of the image slice is 

partitioned into vertical segments with the same widths equal to PS pixels and the same 

heights equal to the height of the image slice (HS). The width of the vertical segments 

(PS) can be reduced to 50% or more in order to increase the resolution of the final 

reconstructed data, especially for the low printed quality of the ECG chart.  

The sampling or digitizing process is applied according to the proposed 

algorithm mentioned in Algorithm I. In this algorithm, each vertical segment is scanned 

from the bottom in an upward direction to find the first column mask of 5 points which 

has more than 2 black points. When this mask is reached, the scanning process in this 

segment is terminated and the centre point of this mask is fixed as a digitizing point. 

This point represents primary voltage amplitude of the raw ECG data in this segment;  

the final voltage amplitude level is determined by shifting it with the baseline level 
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computed in the first operation of this step, and then normalizing it by a certain 

amplitude factor determined by the number of pixels in the two large squares which 

simulate 1mV in a real ECG signal (Aehlert, 2012; Azeem et al., 2005; Hampton, 2008, 

2013; Jenkins & Gerred, 2011; Luthra, 2011). 

 

 

Algorithm I  Proposed Algorithm for Sampling  Raw ECG Data from Slice Image 
  
BEGIN 

   Read FS_image  = Image Slice (ki, kj) ,∀ki=1, … ,HS; ∀kj=1, … ,WS  

                                /* WS, HS are width and height of testing Image Slice  */                        

   PS = Calculate (No. of Pixels in each small Square of ECG chart)  

   Amp_Fact = Calculate (Scaling Factor from Total Height HS with respect to PS) 

   Raw_Data=Zeros (1...WS/ PS )   /* Generate an empty matrix of  Raw ECG Data  */  

  

   for j=1 to WS STEP PS do 

     for i=3 to HS-2 do 

        Sum_Rg= ∑ Fs_image (i -2…i+2, j) /* Calculate No. Of Black Pixels in Mask  

                               Column Vector of Five Points that is cantered by tested point (i,j)   */   

        if Sum_Rg >  3 then         

           Raw_Data(j)= i + (Sum_Rg/2)  /* Store Centre Position of First Verified Column   

          Mask with 5 points That includes more than two Black Pixels into  Raw ECG Data  

          Vector  */   

           Break loop(i);  

        end if  

     end for      /* end of loop i*/   

   end for      /* end of loop j*/   

   Final_Raw_Data = (Raw_Data - Baseline Level) / Amp_Fact     /* shifting Resulted    

    Raw ECG Date by the baseline level and scaling them with amplitude factor */     

END  
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3.3    Detection Time Characteristics of ECG Waves  

  

As mentioned in Chapter 2 Section 2.4.2, most approaches for detecting and 

delineating P, the QRS complex, and T waves were applied using certain mathematical 

transformation like wavelet, Walsh, cosine, Fourier, etc, adaptive filtering techniques 

like low pass differentiation, nested median filtering, etc, or intelligent classifier like 

fuzzy theory, ANN, etc (C. Lin et al., 2010). In these approaches, the detection of ECG 

waves is performed by processing the ECG data after converting it to another sampling 

or sequence form that makes the processing of the ECG signal simpler. However, the 

resulting detection rates which are obtained by these approaches are highly accurate. 

Nevertheless, the ability to apply them as a real time system becomes more difficult due 

to the complexity in the mathematical calculations needed for these approaches. On the 

other hand, the validity of the real time detecting approach becomes more realistic when 

the based technique tracks the ECG signal beat by beat and performs the entire subject 

detection by simple mathematical calculations. 

According to the last observation of processing the ECG signal instantaneously, 

two detection approaches have been proposed based on a straightforward algorithm that 

tracks the ECG signal beat by beat, and then delineates the time location points of P, the 

QRS complex, and T waves. The first approach is proposed to delineate the time 

characteristics of the QRS complex. While, the second approach is proposed to 

delineate the time characteristics of the P and T waves depending on the time location 

points of the QRS complex that are pre-delineated in the first approach.   
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3.3.1    Proposed Approach for Detecting QRS Complex 

 

As mentioned in Chapter 2 Section 2.4.2.1, the first step in detecting ECG waves 

in most detecting techniques found in literature survey is to delineate the time location 

points of the QRS complex, and then represent these locations as the reference points to 

delineate other time locations in the P and T waves. Additionally, the obtained 

diagnostic features from these locations are used to make a diagnosis for different 

cardiac diseases. Therefore, the detection of the QRS complex can be seen as the core of 

analyzing and interpreting ECG signals. As a result, developing new approach for 

detecting and delineating the QRS complex accurately is essential.   

In this section, a new approach to delineate the time characteristics of the QRS 

complex (QONSET, QEND, RPEAK, SONSET, and SEND) has been proposed using an 

instantaneous algorithm applied directly on the ECG signal without the need for any 

mathematical transform, additional filters, or classification with the intelligent 

technique. The proposed detection approach takes the advantage of mutation from tall 

rising to falling edge as the basis for delineating the time location points of the QRS 

complex. The proposed detection approach includes three steps as shown in Figure 3.5. 

In the following text, each of these steps is highlighted in more detail to interpret its 

main function in the final detection process.  

In the first stage which can be represented as a pre-processing unit, simple 

calculations are performed to compute two threshold values (Rth and Sth), which are 

used in the next steps to make a decision of considering R and S waves, respectively. 

These threshold values are determined by computing the maximum positive and 

negative difference along with the beats of two or three ECG cycles. Next, the largest 

two sequential sets are extracted as a maximum positive difference Rt and a maximum 
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negative difference St. Finally, the Rth and Sth are obtained by Rt and St values after 

scaling them with a factor (0.85 .. 0.95). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.5: General Block Diagram of Proposed RFEM Approach for Detecting 

Time Characteristics of QRS Complex. 
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Figure 3.6: Extremely Tall amplitude of T wave (Foster, 2007). 

 

This scaling factor is selected at a high level to make sure that the decision about 

detection is related to the QRS complex and not for the T wave because in some cardiac 

diseases, the T wave has a high amplitude level due to hyperkalemia (Foster, 2007) 

(asymptotic amplitude level of the QRS complex) as shown in Figure 3.6.  Another 

reason for this scaling factor comes from the fact that not all QRS complexes along the 

same ECG record take the exact same amplitude level.     

The second stage of the proposed QRS detection approach represents the first 

step in the QRS complex detection process by delineating the time location points of 

(QEND, RPEAK, SONSET) which are the vertices of a triangle that forms the QRS complex. 

These locations are delineated using a proposed algorithm named rising falling edge 

mutation (RFEM). The new algorithm includes two parts. The first starts when the ECG 

signal is mutated from the horizontal level or falling edge direction to the rising edge 

direction. This transition can be detected by comparing two voltage differences (AMPi 

and AMPi-1) defined in Equation (3.4) and Equation (3.5), which denote the amplitude 

difference between the next and current beat, and between the current and previous beat, 

respectively. In this case, the AMPi has a positive value, while the AMPi-1 has a zero or 

negative value. At this moment the time event of (Beati) is assumed to be temporary as a 

QEND time location.  

 

 

 

 

 

 

 

©
 T

his 
ite

m
 is

 p
ro

te
ct

ed b
y o

rig
in

al
 co

pyr
igh

t 



 69 

𝐴𝐴𝑀𝑀𝐴𝐴𝑠𝑠 = ∆𝑉𝑉𝑜𝑜𝑙𝑙𝑡𝑡𝐵𝐵𝑅𝑅𝑠𝑠(𝐵𝐵𝑠𝑠𝐵𝐵𝑡𝑡𝑠𝑠+1 − 𝐵𝐵𝑠𝑠𝐵𝐵𝑡𝑡𝑠𝑠)                                                                                (3.4) 

𝐴𝐴𝑀𝑀𝐴𝐴𝑠𝑠−1 = ∆𝑉𝑉𝑜𝑜𝑙𝑙𝑡𝑡𝐵𝐵𝑅𝑅𝑠𝑠(𝐵𝐵𝑠𝑠𝐵𝐵𝑡𝑡𝑠𝑠 − 𝐵𝐵𝑠𝑠𝐵𝐵𝑡𝑡𝑠𝑠−1)                                                                           (3.5) 

Where AMPi: Amplitude difference between next and current beat, AMPi-1: 

Amplitude difference between current and previous beat. 

The ECG signal within the actual QRS complex must continue in an upward 

direction until it reaches the RPEAK point. This behaviour can be interpreted with the 

positive signs of AMPi and AMPi-1 along this period; moreover, the number of beats 

within this period is determined as (rm). When the ECG signal reaches the peak point of 

the QRS complex, the direction of the signal is converted from upward to downward. At 

this moment the time event of (Beati) is assumed to be temporary as the RPEAK time 

location and the first part of the proposed delineation algorithm is finished. Finally, the 

left side of Figure 3.7.b shows a graphical representation of this part of the algorithm in 

a single ECG cycle which is labelled 1st step. In addition, all instruction sets of this 

operation illustrated in the first part are marked (check the occurrence of rising edge) in 

Algorithm II. As seen as, the second part of the proposed delineation algorithm is 

started, the first process performed here is the decision to consider the ECG period 

limited down by QEND and up by RPEAK, due to the verification of the compound 

condition expressed in Equation (3.6). This decision condition contains two criteria; 

first, that the voltage amplitude difference between the RPEAK and QEND is greater than 

or equal to Rth to make sure that this amplitude is related to the QRS complex, which 

takes the highest amplitude components, while at the same time excluding any 

amplitudes that are related to the P and T waves. Second, the number of beats in this 

time period rm is at least two beats.  

∃! [𝑄𝑄𝐸𝐸𝐴𝐴𝐴𝐴 → 𝑅𝑅𝐴𝐴𝐸𝐸𝐴𝐴𝑃𝑃 ] ∶ (∆𝑉𝑉𝑜𝑜𝑙𝑙𝑡𝑡𝐵𝐵𝑅𝑅𝑠𝑠(𝑅𝑅𝐴𝐴𝐸𝐸𝐴𝐴𝑃𝑃 − 𝑄𝑄𝐸𝐸𝐴𝐴𝐴𝐴) ≥ 𝑅𝑅𝑡𝑡ℎ  𝐵𝐵𝑟𝑟𝑒𝑒 𝑟𝑟𝑟𝑟 ≥ 2)                     (3.6) 
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Figure 3.7: Graphical Representation of RFEM Approach, (a) Original ECG 
Signal [SEL16483 from MIT-BIH Normal Sinus Rhythm], (b) Delineation of QEND, 
RPEAK, SONSET Time Location Points  (c) Delineation of QONSET, SEND Time Location 

Points. 

(a) 

(b) 

(c) 
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The last criterion is based on the information reported in most cardiology 

resources that the duration of the QRS complex in normal ECG does not exceed 120 ms 

(3 ECG beats as a maximum) (Azeem et al., 2005; Bowbrick & Borg, 2006; Gacek & 

Pedrycz, 2012). Therefore, the R wave which represents the left half of the QRS 

complex takes a half of this duration.  

Beside the decision of (QEND → RPEAK), this part of the algorithm still 

determines the continuity of the falling edge which can be interpreted with negative 

signs of AMPi and AMPi-1 along this period. This sequence continues until the ECG 

signal reaches the next mutation point; at this moment the time event of (Beati) is 

assumed temporary at the SONSET time location due to the verification of compound 

condition is expressed in Equation (3.7). The same criteria for the previous decision are 

used here, except that the threshold value is Sth and the number of required beats within 

this period is (sm). The right side of Figure 3.7.b shows a graphical representation of 

this part of the algorithm in single ECG cycle which is labelled 2nd step. Moreover, all 

instruction sets of this operation are illustrated in the second part which is marked 

(Check the occurrence of Falling Edge) in Algorithm II.    

        

∃! [𝑅𝑅𝐴𝐴𝐸𝐸𝐴𝐴𝑃𝑃 → 𝐻𝐻𝑂𝑂𝐴𝐴𝐻𝐻𝐸𝐸𝑄𝑄 ] ∶  (∆𝑉𝑉𝑜𝑜𝑙𝑙𝑡𝑡𝐵𝐵𝑅𝑅𝑠𝑠(𝑅𝑅𝐴𝐴𝐸𝐸𝐴𝐴𝑃𝑃 − 𝐻𝐻𝑂𝑂𝐴𝐴𝐻𝐻𝐸𝐸𝑄𝑄 ) ≥ 𝐻𝐻𝑡𝑡ℎ  𝐵𝐵𝑟𝑟𝑒𝑒 𝑠𝑠𝑟𝑟 ≥ 2)               (3.7) 
 

The third stage of the proposed approach is performed to delineate a start time 

location point of the QRS complex QONSET and the end time location point SEND (J-

point) that makes the connection between the QRS complex and T wave in the ECG 

cycle. 

In general, the Q wave in an ECG signal is expressed by a negative deflection 

that precedes the occurrence of the R wave. This deflection represents the left to right 

depolarization of the inter-ventricular septum of the HH. 
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The amplitude of the Q-wave is small in left leads (I, aVL, V5, and V6); 

however, its amplitude becomes deeper (greater than 2mm) in leads (II, III, and aVR). 

Additionally, the Q wave is not seen in the right side leads (V1, V2, and V3) (Alfaouri 

Algorithm II  Proposed Algorithm to Delineate QEND, RPEAK, and SONSET Time 
Locations 

BEGIN 

X  = [BEAT1,…,BEATi]   , ∀i=1,….,N   /* N : total No. of beats in ECG  input signal */   

for I =1 to N do  

   AMPdif =∆ Voltage (Xi+1 - Xi) /* Determine the voltage difference between current and  
                                                            next beats  */    
   /* Check the occurrence of Rising Edge */ 

   if  AMPdif > 0 then  

       rm=rm+1        /*  rm is the counter of beats in Rising Edge */           

       iFIRST = Xi          /*  store first Rising Edge point in iFIRST  */                        

       if  sm > 2 and  ∆ (AMP(XR-PEAK ) – AMP(Xi-1) ) > Sth   and  Rflag =1   then  

         SONSET =Xi-1    /*  record the existence of  S-wave start point  */ 

         Reset Rflag=0    /* reset Rflag when successive falling  edge is detected  */ 

       endif 

       sm=0 

   endif     
   /* Check the occurrence of Falling Edge */ 

   if  AMPdif < 0 then  

       sm=sm+1        /* sm is the counter of beats in Falling Edge   */           

       if  rm > 2 and  ∆ (AMP(XR-PEAK ) – AMP(Xi-1) ) > Rth   then  

         QEND = Xi-FIRST   /*  QEND point is the first point in successive Rising Edge  */ 

         RPEAK = Xi 

         Set Rflag=1    /*  set Rflag when successive Rising edge is detected  */ 

       endif 

       rm=0 

   endif  

endfor    

END 
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& Daqrouq, 2008; Azeem et al., 2005; Bowbrick & Borg, 2006). According to the 

variation in the amplitude of the Q wave in different ECG leads, a simple search process 

is performed from the QEND time location towards the upper left corner. This search 

process checks the voltage amplitude difference between the QEND point determined in 

the previous stage and the previous beat (BeatQend-i), as well as the number of beats 

within this period is determined. The search operation is terminated when one of the 

conditions expressed in Equation (3.8) is verified. The first condition limits the 

amplitude difference that does not exceeds 2mm (0.2mV) (the maximum amplitude for 

a normal Q wave) (Azeem et al., 2005), and the second condition limits the time 

duration of the detected Q wave less than 2 beats, which limits the duration of the Q 

wave and is reported in most cardiology references (Aehlert, 2012; Azeem et al., 2005; 

Bowbrick & Borg, 2006; Hampton, 2008). In the same manner, another search process 

is performed on the upper right corner of the SONSET time location point to detect the end 

time location of the S wave (SEND). The same search process which is used in the Q 

wave is implemented to locate (SONSET→SEND) time interval, except that the start beat is 

the (SONSET) time location point and the assuming threshold for the time duration does 

not exceeds 3 beats as expressed in Equation (3.9). 

 

∃! [𝑄𝑄𝑂𝑂𝐴𝐴𝐻𝐻𝐸𝐸𝑄𝑄 → 𝑄𝑄𝐸𝐸𝐴𝐴𝐴𝐴 ] ∶ �∆𝐴𝐴𝑟𝑟𝑈𝑈�𝐵𝐵𝑡𝑡𝑄𝑄𝑠𝑠 − 𝐵𝐵𝑡𝑡𝑄𝑄𝑠𝑠−𝑠𝑠� ≤ 2𝑟𝑟𝑟𝑟 𝑜𝑜𝑟𝑟 𝑄𝑄𝐴𝐴𝑄𝑄𝑂𝑂→𝐸𝐸 < 2 𝑏𝑏𝑠𝑠𝐵𝐵𝑡𝑡𝑠𝑠�  (3.8)  
 
 
∃! [𝐻𝐻𝑂𝑂𝐴𝐴𝐻𝐻𝐸𝐸𝑄𝑄 → 𝐻𝐻𝐸𝐸𝐴𝐴𝐴𝐴 ] ∶ (∆𝐴𝐴𝑟𝑟𝑈𝑈|𝐵𝐵𝑡𝑡𝐻𝐻𝑜𝑜 − 𝐵𝐵𝑡𝑡𝐻𝐻𝑜𝑜+𝑠𝑠| ≤ 2𝑟𝑟𝑟𝑟 𝑜𝑜𝑟𝑟 𝑄𝑄𝐴𝐴𝐻𝐻𝑂𝑂→𝐸𝐸 < 3 𝑏𝑏𝑠𝑠𝐵𝐵𝑡𝑡𝑠𝑠)     (3.9)  
 
 

3.3.2    Proposed Approach for Detecting P and T waves 

 

As mentioned in Chapter 2 Section 2.4.2.2, most detector approaches of P and T 

waves found in the literature survey mainly depend on the time characteristics of the 
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QRS complex which are pre-detected by another detection approach. In this section a 

new high speed approach for delineating time characteristics of P and T waves 

(HSDPTW) has been proposed. The new approach includes two algorithms to delineate 

time locations (onset, peak, and end) of P and T waves, respectively. Both delineated 

algorithms scan the target ECG signal within the adaptive interval that can be identified 

relative to the time characteristics of the QRS complex which are pre-detected by 

another detector. In the following text, each algorithm is discussed in a single section in 

order to highlight the details for each algorithm separately.  

  

3.3.2.1    Delineating the Time Characteristics of P wave  

 

The P wave represents the depolarization of the atrial muscle in the HH. 

According to the small mass of atrial muscle, the P wave is represented as low voltage 

in the ECG diagram (Foster, 2007). In this section, a new algorithm for detecting the 

time characteristics of the P wave is proposed. Firstly, this algorithm takes the time 

characteristics of the QRS complex in the left side as a reference point to delineate the 

peak time location, and then use this location as a reference point to delineate the onset 

and the end time locations of the P wave. As, the delineation processes of the peak and 

the boundaries time locations are performed with a different processing technique, each 

one is discussed separately in the following sections. 

 

3.3.2.1.1 Delineating the Peak Time location of P wave 

 

The proposed approach to delineate the peak time location of the P wave 

includes four steps. The first step is a pre-processing unit that involves the process of 

extracting time characteristics of the QRS complexes using another detector. The 
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proposed QRS detector RFEM is considered for this issue. The second step allocates a 

small search segment in the left side of QRS complex in a limited period called the 

"search period", thus delineating the peak time location of the P wave which is limited 

within this period only. The start and end time limits of the search period are marked 

Pstart and Pend, respectively as shown in Figure 3.8.a. However, the most difficult 

problem is to allocate these limits correctly.  

In the P wave detection method, proposed by (Espiritu-Santo-Rincon & 

Carbajal-Fernandez, 2010), two search periods were suggested; the first was a narrow 

period and defined as 0.81*RR(i)-7 to Q(i)-18, the second was the wide period and 

defined by 0.71*RR(i)-7 to Q(i)-18. Additionally, another approach (Tan, Chan, & 

Choi, 2000) suggests a single search period which is limited by 0.1 to 0.3 s back from 

the QRS complex.     

The PR interval, which was discussed in Chapter 2 Section 2.2.2, varies from 

0.12 to 0.20 s (Azeem et al., 2005), and the number of ECG beats within the PR interval 

depends mainly on this time duration, as well as the frequency used in sampling the 

ECG signal as defined in Equation (3.10). A standard frequency used by most ECG 

machines to record the ECG signal is 25 Hz, but most ECG databases found online use 

a higher frequency for sampling to maintain the smallest details in the ECG record, for 

example the sampling frequency in QTDB is 250 Hz, and in the MIT-BIH arrhythmia 

database, it is 360 Hz. The proposed detection approach can be applied to any ECG 

records with a different sampling frequency.  

 

𝐴𝐴𝑜𝑜 𝑜𝑜𝐿𝐿 𝐸𝐸𝐸𝐸𝐺𝐺𝐵𝐵𝐸𝐸𝐴𝐴𝑄𝑄𝐻𝐻 = 𝑄𝑄𝑠𝑠𝑟𝑟𝑠𝑠 𝐼𝐼𝑟𝑟𝑡𝑡𝑠𝑠𝑟𝑟𝑠𝑠𝐵𝐵𝑙𝑙 (𝑠𝑠) ∗ 𝐻𝐻𝐵𝐵𝑟𝑟𝑈𝑈𝑙𝑙𝑠𝑠𝑟𝑟𝑅𝑅 𝐹𝐹𝑟𝑟𝑠𝑠𝐹𝐹𝑠𝑠𝑠𝑠𝑟𝑟𝑐𝑐𝐹𝐹 (𝐻𝐻𝑠𝑠)         (3.10)  
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Figure 3.8: Graphical Representation of Proposed Approach for Detecting P and 
waves, (a) Search Period Limits Utilized by Proposed Algorithm for P and T Peak 

Delineation in Single ECG Record of Dataset "SEL307" From ST Change 
Category in QTDB, (b) P-wave Segment Marked with Angles and Intervals 
Utilized by PWONOFF Subroutine to Extract the Onset and the End time 

locations of P wave and (c) T-wave Segment Marked with Three Sequential Stairs 
Utilized by TWONOFF Subroutine to Extract the Onset and the End of T wave ( 

|3| : time interval of three beats, Hdif : Height Difference ( ∆ amplitude) of  |3| ). 
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In most well known cardiology references, the normal duration of the P wave 

does not exceed 0.1 seconds, its amplitude does not exceed 0.25 mV, and its boundaries 

are 0.1 to 0.2 seconds relative to the QRS complex (Azeem et al., 2005; Gacek & 

Pedrycz, 2012). According to these parameters, the limits of the search period Pstart and 

Pend must be 25 and 50 samples back from the beginning of the QRS complex. In the 

proposed approach, the search period is assumed to be wider as defined in Equation 

3.11 and Equation 3.12. Therefore, the duration of this search period is 45 samples and 

started before 20 samples from the beginning of the QRS complex. The idea of 

enlarging the search period utilizes the process of detecting the P wave in every position 

even if any shifting to the right or left occurs due to any instant abnormality in the heart 

rhythm. As a result, the probability of detecting the P wave within the assumption 

search period is increased.  

     

𝐴𝐴𝐻𝐻𝑄𝑄𝐴𝐴𝑅𝑅𝑄𝑄 = 𝑄𝑄𝐸𝐸𝐴𝐴𝐴𝐴 − 20                                                                                                         (3.11) 

𝐴𝐴𝐸𝐸𝐴𝐴𝐴𝐴 = 𝐴𝐴𝐻𝐻𝑄𝑄𝐴𝐴𝑅𝑅𝑄𝑄 − 45                                                                                                        (3.12) 

 

The third step of the proposed approach performs the main job of delineating the 

peak time location of the P wave using a proposed algorithm to process the ECG beats 

along the search period which was allocated in the previous step. The proposed 

algorithm allocates peak position at the mutation point between the conditional rising 

and falling interval sequentially because the search direction of starts from PEND towards 

PSTART. Algorithm III views all instruction codes for rising and falling conditions as well 

as the main iteration of the search operation. The peak time location delineated by the 

previous operation is reported as a primary peak. In some cases, different forms of 

concavity appear near the actual peak of the P wave in both sides that lead to an 

 

 

 

 

 

 

 

©
 T

his 
ite

m
 is

 p
ro

te
ct

ed b
y o

rig
in

al
 co

pyr
igh

t 



 78 

incorrect peak time location point. The final step in this approach overcomes this 

problem by applying multi-scan iterations on both sides of the primary peak time 

location. The first iteration Frwindex scans a limited interval on the right side of three 

translation steps allocating the odd beats, while the second iteration Bakindex scans a 

same interval in the reverse direction but passes on the even beats. The graphical 

representation of the last correction operation is shown in Figure 3.9. Additionally, its 

instruction codes are mentioned in the second part of algorithm III and labelled 

(/*Delineating correct peak time location of P wave */). 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.9: The Effect of Correcting the Delineated Primary Peak of the P 

Wave, (a) Three ECG Cycles of Dataset "SEL39" From the Sudden Death 
Category in QTDB; (b) Right/Left Scan Iteration. 
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The previous correction operation is the last part of the proposed approach to 

delineate the peak time location of the P wave. When it is finished, the process of 

Algorithm III  Proposed Algorithm of Delineating Peak Time Location of P wave 

BEGIN 
    Read QRS=[QRS1,..,QRSN] /* N is total No. of  pre-detected QRS complexes by RFEM*/  
                                                                             
    for I=1 to N do  
      QSTART = time(Q[ I ]); /* QSTART is a pre detected onset time location of Qwave by RFEM*/                                               
       
      PEND = QSTART - 20 ; PSTART = PEND – 45;  /*PSTART and PEND are the start and end limits  
                                                                                  of  P wave Peak search period */                                                                             
      FLP=0;                    /*Status Flag*/  
      PUP=0 ; PDW=0    /* PUP, PDW are counting of rising and falling interval in P wave */ 
      Wf=0;  PMX =0 ;    /*PMX is the primary time location of P-wave Peak*/  
        
        /* Delineating primary peak time location of P wave */ 
 
      for KT = PEND to PSTART do  
         if Xkt  < Xkt-1  then PDW = PDW+ 1; FLP = 1; PUP = 0;         
                               else    PUP = PUP + 1;           
                                 if (FLP equal 1 and PDW > 10 and PUP > 10) then   
                                                                                                                PMX = Wf (Kt-1) ;  
                                                                                                                PDW = 0;   
                                                                                                                FLP   = 0;      
                                                                                                                Break loop (KT);  
                                 endif 
         endif               
      end for      /* end of loop KT*/   
        
        /* Delineating correct peak time location of P wave */ 
       MPMX  = PMX; 
      for MP = PMX+2 to PMX+10 STEP +3 do 
          if XMPMX  < XMP  then  MPMX = MP; endif 
      end for      
        
      for MP = MPMX downto MPMX-9 STEP -3 do  
         if XMPMX  < XMP   then  MPMX = MP; endif 
      end for 
       
      PPeak [I] = MPMX;                /* Store corrected Peak time location of P wave (MPMX) in  
                                                     PPeak Matrix */  
    end for /* end of loop I */ 
 
    Call PSON~OFF(MPMXi);   /* Call a subroutine for determining start PON and end POFF time  
                                                      location of P-wave*/   
END 
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delineating the onset and end time locations of the P wave is started directly by calling a 

proposed subroutine named PSON~OFF in the last part of algorithm III. 

 

3.3.2.1.2 Delineating the Onset and the End Time Locations of P wave 

 

In this section, a new algorithm to delineate the onset and end time locations of 

the P wave has been proposed. The new algorithm takes a form of a subroutine which is 

called by the main P wave peak delineation algorithm mentioned in the previous 

section. The new subroutine uses the peak time location of the P wave as a base to 

delineate the P wave boundaries (onset and end) time locations by applying two scan 

iterations beginning from the peak time location point towards the boundary points of 

the P wave period.   

The first iteration (BG) scans the interval to the left of the P wave peak beat by 

beat, and two angles (ANG1 and ANG2) are determined continuously based on 

Equation (3.13) and Equation (3.14), respectively. This iteration continues until the 

determined angles match the condition mentioned in the PSON~OFF subroutine. The P 

wave segment shown in Figure 3.8.b elucidates the based technique used to determine 

these angles. Both angles represent the convexity degree in the rising interval of the P 

wave. At the same time, the ANG2 represents the flatness degree at the end points in the 

same wave. The time location allocated by this iteration represents the onset time 

location of the P wave and is labelled PON in Figure 3.8.b. 

 

𝐴𝐴𝐴𝐴𝐺𝐺1 = 180° − 𝑡𝑡𝐵𝐵𝑟𝑟−1 �
𝑋𝑋𝐵𝐵𝐺𝐺 − 𝑋𝑋𝐴𝐴𝐸𝐸𝐴𝐴𝑃𝑃

𝐸𝐸𝐶𝐶𝐶𝐶
�                                                                             (3.13) 

𝐴𝐴𝐴𝐴𝐺𝐺2 = 𝑡𝑡𝐵𝐵𝑟𝑟−1 �
𝑋𝑋𝐵𝐵𝐺𝐺 − 𝑋𝑋𝐵𝐵𝐺𝐺−2

3
�                                                                                           (3.14) 
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where XPEAK: Amplitude voltage (mV) of the pre-detected PPEAK, XBG, XBG-2: 

Amplitude voltage (mV) of current and previous beat is separated by 3 time units, 

respectively, BG: 1st Iteration index of the interval on the left side of PPEAK.   

Through the same technique applied in the first iteration (BG), the second 

iteration (EF) scans the right interval of the P wave peak; however, the ANG1 and 

ANG2 are determined using different sets of equations, which are defined in Equation 

(3.15) and Equation (3.16), respectively. The time location allocated by this iteration 

represents the end time location of the P wave which is labelled with POFF in Figure 

3.8.b. The ANG1 angle represents the angular obliquity between the line segment 

limited by the peak point (XPEAK) and the test point in both iterations (XBG and XEF) with 

respect to the horizontal axis. Therefore, the determined ANG1 yields a pure obtuse 

angle, but it takes a different sign in both iterations because the arctangent angle 

computed by (XBG-XPEAK)/CKK is allocated in the third quadrant and has a positive sign. 

On the other hand, the corresponding angle in second iteration computed by (XEF-

XPEAK+3)/CKK is allocated in the fourth quadrant and has a negative sign.    

The final decision to delineate the P-wave onset and end time locations depends 

mainly on the determined ANG1 and ANG2 value in the boundary points of the P-

wave. At the same time, it is very difficult to specify certain threshold values for these 

angles due to the variety of P-wave texture in various ECG categories, but an 

assumption value can be obtained by analyzing some ECG signals with different P 

waves' morphologies, and then taking the average limits for two angles on both sides. 

The overall instruction codes for the previous two iterations and all related calculations 

of delineating PON and POFF are illustrated in Algorithm IV. 

 

 

𝐴𝐴𝐴𝐴𝐺𝐺1 = 180° + 𝑡𝑡𝐵𝐵𝑟𝑟−1 �
𝑋𝑋𝐸𝐸𝐹𝐹 − 𝑋𝑋𝐴𝐴𝐸𝐸𝐴𝐴𝑃𝑃+3

𝐸𝐸𝐶𝐶𝐶𝐶
�                                                                         (3.15) 
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𝐴𝐴𝐴𝐴𝐺𝐺2 = 𝑡𝑡𝐵𝐵𝑟𝑟−1 �
𝑋𝑋𝐸𝐸𝐹𝐹+2 − 𝑋𝑋𝐸𝐸𝐹𝐹

3
�                                                                                            (3.16) 

 
where XPEAK+3: Amplitude voltage (mV) of the ECG beat separated by 3 time 

units from the right of PPEAK, XEF, XEF+2: Amplitude voltage (mV) of the current and 

next beat separated by 3 time units, respectively, EF: 2ndIteration index of the interval in 

the left side of PPEAK.  

 

Algorithm IV  PSON~OFF Subroutine of Delineation Onset and End Time Locations in 
the P Wave 
BEGIN 

     Ckk = 1;  pw = 0; FLKP = 0; 

     for BG =MPMX downto MPMX-15  do   
       /* MPMX is the modified peak location after the correcting operation  */ 

       ANG1 = 180o - tan-1[(XBG -   XMPMX) / Ckk]; 

       ANG2 = tan-1[(XBG -   XBG-2) / 3]; 

       if ANG1 < 120o  and ANG1 > 100o then FLKP = 1; endif 

       if │ANG2 │>  5 then  pw  =  pw+1; endif  

       if pw > 3  and  (FLKP equal 1) then Break loop(BG); endif 

       Ckk  = Ckk+1 ;   

     end for  /* end loop (BG) */ 

     Ckk=1;   

     for EF =MPMX+3 to MPMX+15  do  

        ANG1=180o + tan-1[(XEF -   XMPMX+3) / Ckk]; 

        ANG2=tan-1[(XEF+2 -   XEF) / 3]; 

        if ANG1 < 110o  and ANG1 > 95o and │ANG2 │>  5  then Break loop(EF);           

        endif 

        Ckk  = Ckk+1 ; 

     end for     :    /* end loop(EF) */    

     PON[ I ] = BG;   /* Store onset time location of P-wave PON (BG) Matrix at I index  */ 

     POFF[ I ] =EF;    /* Store end time location of P-wave POFF (EF) Matrix at I index */  

RETURN 
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3.3.2.2    Delineating the Time Characteristics of T wave  

 

The T wave corresponds to ventricular repolarisation of the HH. Normally, it has 

the same direction as the predominant deflection of the QRS complex (Foster, 2007; 

Morris, Brady, & Camm, 2009). The normal shape of the T wave is in a positive 

direction and its amplitude must not exceed half the amplitude of the preceding QRS 

complex. The abnormalities of the T wave take three shapes, and each of these shapes is 

caused by certain/many cardiac disease(s) or some general diseases in the human body. 

The first abnormal shape is flat which is caused by Myocardial Ischemia, 

Hypothyroidism, and Pericarditis. The tall amplitude of the T wave is the second 

abnormal shape, which is caused by hyperkalemia as shown in Figure 3.6. Finally, the 

inverted T wave is the abnormal shape of the T wave which occurs most frequently and 

is caused by many cardiac diseases like Ventricular Hypertrophy, complete heart block, 

right bundle brunch block, etc (Azeem et al., 2005; Foster, 2007; Gacek & Pedrycz, 

2012). At the same time, the T wave is normally inverted in aVR and V1 lead, and 

sometimes in III, V2, and V3 leads in some black people (Hampton, 2008). 

      According to the different shapes of the T wave mentioned above, it is very difficult 

to detect this wave with a single algorithm (Espiritu-Santo-Rincon & Carbajal-

Fernandez, 2010). A new approach for detecting the T wave with different shapes has 

been proposed in this section. Like the P wave detector which was mentioned in the 

previous section, the proposed T wave detector includes a main algorithm to delineate 

peak time location of the T wave, and then calling a small subroutine to delineate 

boundaries time locations based on the delineated peak time location. Each part of the 

proposed T wave detector is discussed separately in the following sections in order to 

highlight each in more detail. 
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3.3.2.2.1 Delineating the Peak Time Location of T wave 

 

As happen with the P wave detection approach, the first process is delineating 

the peak time location, which is considered as reference point to delineate other 

boundaries of the T wave (onset and end). A new approach of delineating the peak time 

location of the T wave has been proposed in this section based on the same strategy that 

was used in the P wave peak delineation algorithm mentioned in the previous section, 

except that the search period is allocated on the right side of the QRS complex.  

Through the basic concepts of the ECG signal that are found in most well known 

cardiology references, the normal period of the QT interval is 0.44 seconds (Azeem et 

al., 2005; Foster, 2007; Gacek & Pedrycz, 2012; Gupta, Mitra, & Bera, 2013). As a 

result, the total number of ECG samples obtained by Equation (3.10) along the QT 

interval is 110 beats, and each T wave must start and end within these beats.  

In the proposed algorithm, the T wave search period is assumed to be 75 ECG 

beats according to Equation (3.17) and (3.18).  

 

𝑄𝑄𝐻𝐻𝑄𝑄𝐴𝐴𝑅𝑅𝑄𝑄 = 𝐻𝐻𝐻𝐻𝑄𝑄𝐴𝐴𝑅𝑅𝑄𝑄 + 30                                                                                                           (3.17) 

 𝑄𝑄𝐸𝐸𝐴𝐴𝐴𝐴 = 𝑄𝑄𝐻𝐻𝑄𝑄𝐴𝐴𝑅𝑅𝑄𝑄 + 75                                                                                                             (3.18) 

 

The TSTART and TEND represent the lower and the upper limits of the search 

period, respectively. It is different from that of the S wave which has 30 ECG samples 

as shown in Figure 3.8.a. Therefore, the entire search period takes 105 ECG samples in 

addition to the normal duration of the QRS complex defined in most cardiology 

references (20 - 25 ECG samples).  
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According to the previous calculation, the assumed QT interval from the onset 

of the QRS complex to the end of the search period is 125 to 130 ECG samples, which 

is wider than the normal QT interval by 15 to 20 ECG samples. This wider range of the 

QT interval utilizes the ability to detect the T wave period, even those with a long 

duration and those that shift to the right or left due to any disturbance in the 

performance of the HH. 

The same pre-processing step of detecting QRS time characteristics in P wave 

peak delineation approach is applied in the proposed approach to delineate the peak 

time location in the T wave. Moreover, the second step focuses on determining the 

lower limit TSTART and upper limit TEND of the search period according the definition in 

Equation (3.17) and (3.18) based on the S wave time characteristics that are predefined 

in the pre-processing step. The third and final step in this approach performs the 

delineating of the peak time location of the T wave using a new algorithm that allocates 

peak time location when the ECG signal within the search period is mutated from the 

falling edge to the rising edge for negative T wave or vice versa for the positive T wave. 

The number of ECG samples within the first interval in both cases is determined by 

separate counters termed CUP and CDOWN, respectively. The decision about the peak 

event occurs when the counter value CUP or CDOWN exceeds 15 ECG samples (less than 

the half of the search period limited by TSTART and TEND) to consider the tipping event 

as a peak time location in the T wave which is labelled TPEAK.  

The instruction codes for the previous three steps are illustrated in Algorithm V. 

As another decision about the direction of T wave is computed in this algorithm, the 

total number of normal and inverted T waves along the ECG signal can be easily 

determined.   

 

 

 

 

 

 

 

 

©
 T

his 
ite

m
 is

 p
ro

te
ct

ed b
y o

rig
in

al
 co

pyr
igh

t 



 86 

Algorithm V   Proposed Algorithm of Delineating Peak Time Location of T wave 
 
BEGIN 

  Read QRS  = [Q1R1S1,…,QNRNSN]   /* N is total No. of QRS complexes which are pre- 
                                                                         detected by RFEM */                         
     
  for I=1 to N do  
    SEND = time ( S[I] );  /* SEND is the end time location of  S wave pre- detected by RFEM */ 

    TSTART= SEND + 30; TEND= TSTART + 75;  /*TSTART and TEND are the start and stop  

                                                                               time of  T wave peak search period*/                                                                                           

     FLT=0;    /*Status Flag of interval direction1 for rising, 2 for falling*/                        

     CUP=0 ; CDW=0  /* CUP , CDW are counting of rising and falling interval in T wave */ 

     TUP=0; TDW=0;  /* TUP,TDW are event counting of Up and Down direction in  

                                       T- wave */  

     TMX = 0 ;               /* TMX is the time location  of  T-wave Peak */  

      /* Delineating peak time location of T wave */ 

     for KT = TSTART to TEND do                     

       if Xkt  > Xkt-1  then   CUP= CUP + 1;   

                                 if ((FLT equal 2) and CDW>15) then  TMX  = kt; TDW=TDW+1; 

                                                                                               Break loop(KT);  

                                 end if                                         

                                 FLT = 1;  CDW = 0;  

                             else 

                                 CDW=CDW+1;  

                                 if ((FLT equal 1) and CUP>15) then  TMX  = kt; TUP = TUP+1; 

                                                                                                Break loop(KT); 

                                 end if        

                              FLT = 2;  CUP = 0;   

       end if                             

     end for  /* end of loop KT*/ 

    TPEAK[ I ] ← TMX;   /* Store Peak time location of  T-wave (TMX) in TPEAK Matrix */ 

    Call TSON~OFF(TMXi)   /* Call  TSON~OFF  subroutine for determining onset TON and end   

                                                  TOFF time location of T-wave*/   

END 
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3.3.2.2.2 Delineating the Onset and the End Time Locations of T wave 

 

In addition to the peak time location of the T wave delineated in the previous 

section, there are two time characteristics which are represented by the boundaries 

(onset and end) time locations of the same wave. The T wave has taller amplitude and a 

wider duration compared with the P wave in most ECG signal categories.  

In this section, a new approach to delineate the onset and the end time locations 

of the T wave has been proposed. The new approach maximizes the fact that the T wave 

constructs a semi-orthogonal angle with the ECG baseline at the end events of the T 

wave. The new approach considers this fact as the main criterion to delineate the 

boundaries time locations of the T wave.    

The new algorithm takes the form of a subroutine termed TSON~OFF, which is 

called by the main T wave peak delineation algorithm mentioned in the previous 

section. As in the P wave algorithm, the TSON~OFF subroutine uses the TPEAK time 

location as a base point to delineate the boundaries of the T wave (onset and end) time 

locations by applying two scan iterations (TN and TD) starting from the TPEAK time 

location point to the endpoints of the T wave period as shown in categories of the T 

wave segment in Figure 3.8.c. Each of these iterations is repeated up to 30 ECG 

samples. Therefore, the maximum duration for the detected T wave which is limited 

between the onset and the end time locations is 60 from 75 ECG samples, which is 

assumed to be the period for the T wave. Only one amplitude segment named Hdif is 

determined in both iterations as the difference between two successive ECG beats 

isolated by three time locations. The delineation decision of the onset and the end time 

locations is taken according the occurrence of three sequential segments with the 

smallest Hdif, which demonstrates the behaviour of the ECG signal at the endpoints of 

the T wave. This decision is more effective in delineating the end time location of the T 
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wave but not as effective in delineating the onset time location, especially when the 

starting segment of the T wave is merged with the previous S wave (i.e. takes the same 

slope). All instruction codes for the proposed subroutine to delineate the onset and end 

time locations of the T wave are illustrated in Algorithm VI. In addition, the resulting 

onset and end time locations of the T wave are labelled TON and TOFF, respectively in 

the T wave segment shown in Figure 3.8.c. 

 

Algorithm VI  TSON~OFF Subroutine of Delineation Onset and End Time Locations in 
the T wave 
BEGIN 
 
   Ckk = 1;   
   for TN =TMX+3 to TMX+30: STEP 3  do 
      Hdif =∆amplitude( XTN+2 -   XTN);  /* Amplitude difference between current beat XTN and  
                                                                 next beat spaced by three  time units XTN+2   */ 
      if │ Hdif │<  0.001 then  Ckk  =  Ckk+1;   
                                     if Ckk > 3  then Break loop(TN);   /* Decision for TOFF when  
                                                                  three continuous semi flat segment are verified */  
                                     endif         
      endif 
   end for  /* end loop (TN) */ 
 
   Ckk=1;   
   for TD =TMX-3 to TMX-30: STEP -3  do  
      Hdif =∆amplitude( XTD-2 -   XTD);   /* amplitude difference between previous beat spaced  
                                                                 by three time units XTD-2   and  current beat XTD */ 
      if │ Hdif │< 0.015 then  Ckk  =  Ckk+1;   
                                    if  Ckk  > 3  then Break loop (TD);  /* Decision for TON when  
                                                                        three continuous semi flat segment verified */   
                                    endif  
      endif   
   end for  /* end loop (TD) */ 
 
   TON[ I ] = TD+9;   /* Store time location of T-wave ON (TD+9) in TON Matrix */ 
   TOFF[ I ] = TN-9;   /* Store time of T-wave OFF (TN-9) in TOFF Matrix */  
 
RETURN 
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In the previous sections, two approaches have been proposed to delineate time 

characteristics (onset, peak, and end) time locations of P and T waves in the ECG 

signal. The general block diagram of these approaches is shown in Figure 3.10. 

 

 

 

 

 

 

 

 

Figure 3.10: General Block Diagram of Proposed Approaches to Delineate the 
Onset, Peak, and End Time Locations of P and T Waves in the ECG Signal. 

 

3.4    Diagnosing High Risk Cardiac Diseases 

 

As mentioned in Chapter 2 Section 2.5, most studies found in literature that deal 

with the diagnosis of high risk cardiac diseases take the form of statistical studies. On 

the other hand, several methods proposed in literature use the computerized system 

tools for the purpose of diagnosing cardiac diseases based on a 12 lead ECG signal (A. 

Ebrahimzadeh, Shakiba, & Khazaee, 2014). In the following text, the standard 

diagnostic criteria for diagnosing LVH cardiac disease are highlighted in more detail, 
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and an intelligent computerized system of diagnosing LVH cardiac disease based on 

new diagnostic criterion is proposed.    

 

3.4.1    Diagnosing Left Ventricular Hypotrophy 

 

As mentioned in Chapter 2 Section 2.5.1, LVH cardiac disease is one of the high 

risk cardiac diseases that causes SCD, and electrocardiographic evidence of LVH is a 

major indicator of cardiovascular morbidity and transience around the world (Levy et 

al., 1990). In LVH cardiac disease, the muscle mass of the left ventricle increases. This 

leads the main vector of ventricular depolarization more toward the left ventricle and 

enlarges its magnitude. As a result, the R wave in the lateral precordial leads (V5 and 

V6) becomes longer, the S wave in V1 becomes deeper, and the amplitude of the R 

wave in Lead (I or aVL). Figure 3.11 shows the 12 lead ECG record of a man with 

longstanding severe hypertension and LVH (Foster, 2007). 

 

 

 

 

 

 

 

 

 

Figure 3.11: A 12-lead ECG Record of a 38-year-old Man with Long-Standing 
Severe Hypertension and LVH (Foster, 2007). 
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Preparing an accurate and early diagnosis of LVH is a significant issue in the 

care of patients with hypertension (Pewsner et al., 2007). The process of diagnosing 

LVH from a 12-lead ECG depends mainly on several voltage and duration criteria 

related to each single lead with respect to another. The standard diagnostic criteria for 

diagnosing LVH cardiac disease based on ECG parameters are highlighted in more 

detail in the next section. 

 

3.4.1.1    Standard Diagnostic Criteria for LVH Cardiac Disease 

 

In general, the diagnostic criteria of LVH can be classified as either voltage or 

non-voltage criteria (Morris et al., 2009). Many criteria for diagnosing LVH have been 

proposed in literature. These diagnostic criteria are obtained by certain parameters in a 

12-lead ECG signal, many of them have remained anecdotal (Pewsner et al., 2007). On 

the other hand, there are some criteria that are commonly used to diagnose LVH, which 

are more suitable for computerized ECG (Casale, Devereux, Alonso, Campo, & 

Kligfield, 1987). Typically, high specifications are verified by these criteria (greater 

than 90%), while the sensitivities are low (20%-60%) (Devereux, Casale, Eisenberg, 

Miller, & Kligfield, 1984; Reichek & Devereux, 1981). 

The first standard criterion for diagnosing LVH was proposed in an early study 

and is usually referenced as "Sokolow-Lyon". This criterion uses the uni-polar limb and 

precordial leads to detect the atypical and early patterns of LVH (Sokolow & Lyon, 

1949). Another criterion used for diagnosing LVH was the "Cornell voltage" (Casale et 

al., 1985). This criterion takes two different forms of conditions to detect LVH in men 

and women, respectively. In (Molloy, Okin, Devereux, & Kligfield, 1992), a modified 

criterion based on the Cornell voltage product was developed and analyzed. Another 
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diagnostic criterion was proposed in an old study (GUBNER & UNGERLEIDER, 1943) 

termed the "Gubner criteria". A different approach is called "Romhilt-Estes scores" and 

diagnoses LVH using a point score system of multi-criteria (Romhilt & Estes Jr, 1968). 

The descriptions of the standard criteria for diagnosing LVH cardiac disease are 

illustrated in Table 3.1. Most of these criteria are considered in proposed diagnostic 

criterion for diagnosing LVH cardiac disease which is discussed in the next section. 

 

Table 3.1: Standard Diagnostic Criteria of LVH Cardiac Disease  
(M:Male, F:Female) 

# Criterion Name Description Gender 
1 Sokolow-Lyon S(V1) + R(V5 or V6) > 3.5 mV M and F 

2 Cornell voltage 
R(aVL) + S(V3) > 2.8 mV M 
R(aVL) + S(V3) > 2.0 mV F 

3 Cornell product 
(S(V3) + R(aVL)) × QRS duration ≥ 2440 ms M 
(SV3+(RaVL+8 mV)) × QRS duration>2440 ms F 

4 Gubner RI+SIII≥25 mV  M and F 

5 Romhilt-Estes 
scores 

Max( R or S (Limb Leads)) > 20 3 

M and F 

S(V1) or S(V2) > 30 3 
R(V5) or R(V6) > 30 3 
ST and T wave changes opposite to mean 
QRS  3 

ST and T wave changes opposite to mean 
QRS  3 

Left atrial involvement 3 
 

In addition to the standard diagnostic criteria mentioned above, other diagnostic 

criteria for LVH cardiac disease have been reported by various well known clinical 

websites. Most of these criteria show the limited accuracy of diagnosing LVH cardiac 

disease. This low rate of accuracy comes from the wrong diagnosis of LVH cardiac 

disease, especially in young people (aged <40 years), where the tall R wave and deep S 

wave are present in ECG leads in the absence of LVH cardiac disease. The additional 

criteria for diagnosing LVH cardiac disease are illustrated in Table 3.2. 
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Table 3.2 : Additional Diagnostic Criteria of LVH Cardiac Disease 
 

# Abbreviation  Description 
1 CRTA1 R(aVL)>13mm 
2 CRTA2 R(I)+S(III)>25mm 
3 CRTA3 R(aVF)>20mm 
4 CRTA4 S(aVR)>14mm 
5 CRTA5 R(V4 or V5 or V6)>25mm 
6 CRTA6 S(V1 or V2) + R(V5 or V6) >35mm 
7 Recommended Criterion (REC-CRTA) S(III) + Max(R,S(V1-V6)) >30 or R(aVL) >13mm 

 

3.4.1.2    Proposed Criterion for Diagnosing LVH Cardiac Disease 

 

In this section, a new criterion of diagnosing LVH cardiac disease has been 

proposed. The new criterion addresses the problems of previous diagnostic criteria in 

making an accurate diagnosis in terms of sensitivity and specificity. In contrast to the 

present diagnostic criteria found in literature, the new criterion considers eight voltages 

from eight ECG leads to compute the final diagnosis of LVH cardiac disease. The 

voltage parameters considered in new criterion are split into two groups; the first group 

includes the R wave amplitude in leads V4, V5, V6, and aVF. The second group 

includes the S wave amplitude in leads V1, V2, V3, and III. The idea of selecting eight 

ECG voltage parameters comes from maximizing the area to detect irregularities in all 

ECG categories (limb [standard, augmented] and precordial) leads. In the new 

diagnostic criterion, there is a polynomial equation defined in Equation (3.19) which is 

proposed to compute the main decision value (MDV) for diagnosing LVH cardiac 

disease. With respect to the chest leads in this equation, the left ventricular leads are 

most common due to their location on the left of the transitional zone in the HH to 

assess hypotrophy in the left ventricle (Gacek & Pedrycz, 2012). Thus, only left 

ventricular leads V5 - V6 (which are placed above the lateral wall of the left ventricle) 

are considered to have full voltage (weight=1) in the MDV equation, whereas the right 
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ventricular leads V1 - V2 and V3 - V4 (which are placed between the ventricles and the 

anterior wall of the left ventricle) are considered to have half voltage (weight=0.5) in 

the MDV equation. In addition to the chest leads, two of the limb leads (III and aVL) 

are considered in the same equation because these leads are mostly used in traditional 

LVH diagnostic criteria. The computed MDV values for the LVH patients are high 

compared with the normal or non-LVH patients; however, in a few cases, the computed 

MDV value is high in the absence of LVH cardiac disease. This drawback is solved 

logically in the final decision of the proposed criterion by successive logical expressions 

with some traditional diagnostic criteria.  

 

𝑀𝑀𝐴𝐴𝑉𝑉 = 0.5𝑅𝑅(𝑉𝑉4) + 𝑅𝑅(𝑉𝑉5) + 𝑅𝑅(𝑉𝑉6) + 0.5𝑅𝑅(𝐵𝐵𝑉𝑉𝐹𝐹) + 0.5𝐻𝐻(𝑉𝑉1) + 0.5𝐻𝐻(𝑉𝑉2)

+ 0.5𝐻𝐻(𝑉𝑉3) + 𝐻𝐻(𝐼𝐼𝐼𝐼𝐼𝐼)                                                                                  (3.19) 

 

In addition to the MDV equation, the proposed criterion for diagnosing LVH 

cardiac disease includes three logical expressions. The first expression (Expr1) defined 

in Equation (3.20) is true according to the verification of either the Cornell or the 

recommended criterion (REC-CRTA), whereas the second expression (Expr2) defined 

in Equation (3.21) is verified when the Sokolow and the Cornell criteria are true and at 

least five of six criteria (CRTA1...6) are true. The last expression defined in Equation 

(3.22) represents the main decision for diagnosing LVH cardiac disease based on MDV, 

Expr1, and Expr2, which were obtained previously. 

  

∃[𝐸𝐸𝐸𝐸𝑈𝑈𝑟𝑟1]:𝐸𝐸𝑜𝑜𝑟𝑟𝑟𝑟𝑠𝑠𝑙𝑙𝑙𝑙 𝑠𝑠𝑠𝑠 𝑡𝑡𝑟𝑟𝑠𝑠𝑠𝑠 𝑶𝑶𝑶𝑶 𝑅𝑅𝐸𝐸𝐸𝐸 − 𝐸𝐸𝑅𝑅𝑄𝑄𝐴𝐴 𝑠𝑠𝑠𝑠 𝑡𝑡𝑟𝑟𝑠𝑠𝑠𝑠                                                  (3.20) 

∃[𝐸𝐸𝐸𝐸𝑈𝑈𝑟𝑟2]: �𝐸𝐸𝑜𝑜𝑟𝑟𝑟𝑟𝑠𝑠𝑙𝑙𝑙𝑙  𝐀𝐀𝐀𝐀𝐀𝐀 𝐻𝐻𝐶𝐶𝑜𝑜𝑙𝑙𝑜𝑜𝐷𝐷 𝐀𝐀𝐀𝐀𝐀𝐀  � 𝑄𝑄𝑅𝑅𝑈𝑈𝐸𝐸(𝐸𝐸𝑅𝑅𝑄𝑄𝐴𝐴𝑠𝑠)
6

𝑠𝑠=1
≥ 5 �                   (3.21) 
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∃! [𝐿𝐿𝑉𝑉𝐻𝐻𝐸𝐸.𝐴𝐴]: �([𝑀𝑀𝐴𝐴𝑉𝑉𝐹𝐹 > 75 𝐎𝐎𝐎𝐎 𝑀𝑀𝐴𝐴𝑉𝑉𝑀𝑀 ≥ 105] 𝐀𝐀𝐀𝐀𝐀𝐀 𝐸𝐸𝐸𝐸𝑈𝑈𝑟𝑟1) 𝐎𝐎𝐎𝐎 𝐸𝐸𝐸𝐸𝑈𝑈𝑟𝑟2 �          (3.22)  

  

In the main expression defined in Equation (3.22), there are two different 

threshold levels of MDV for each gender. The threshold levels are computed 

statistically by analyzing a 12-lead ECG record of some patients who suffered from 

LVH and others with other cardiac diseases. A few normal patients are also considered 

for this test. The statistical results show that the suitable limit of MDV is 75 for females 

and 105 for males. However, some results satisfied the MDV limits in the absence of 

the LVH cardiac disease which leads to an incorrect diagnosis. Therefore Expr1 and 

Expr2 are added in the main diagnostic expression to overcome this drawback and to 

perform an accurate diagnosis of LVH cardiac disease.  

 

3.4.1.3    ECG Voltage Parameters for Proposed Diagnostic Criterion 

 

The overall voltage parameters required for the proposed criterion are eleven 

voltages which are obtained from the 12-lead ECG signal. The voltage parameters 

include the R wave amplitudes of I, aVL, aVF, V4, V5, and V6 leads and the S wave 

amplitudes of III, aVR, V1, V2, and V3 leads.  These voltages are determined directly 

using the time characteristics of the QRS complex. The proposed detection approach 

termed "RFEM" for QRS complex detection mentioned in Section 3.4.1 is considered to 

determine these characteristics. Because the RFEM approach, like other QRS detectors, 

works with ECG data in digital form, any ECG record available as a paper printout 

recording must be converted first. The other proposed approach for digital recovery 

mentioned in Section 3.2.2.1 is considered to reconstruct raw 12 lead ECG data from 

the printed ECG chart.  
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3.4.1.4    Proposed FIS for Diagnosing LVH Cardiac Disease  

 

In general, fuzzy inference is the process of formulating the mapping from a 

given input to an output using fuzzy logic. The mapping then provides a basis from 

which decisions can be made, or patterns discerned (Sumathi & Paneerselvam, 2010). 

The FISs are recently more familiar tools for solving engineering problems because of 

their unique features in computing complex phenomena. A fuzzy system is a non-linear 

mapping between inputs and outputs, in which the mapping of inputs to outputs is in 

part characterized by a set of ‘‘IF-THEN’’ rules. A typical fuzzy logic-based approach 

involves three main units: fuzzification unit, inference engine, and defuzzification unit 

as shown in Figure 3.12.  

 

 

 

 

 

 

Figure 3.12: Expert FIS System Model (Sivanandam et al., 2007; Sumathi & 
Paneerselvam, 2010). 

 

As with most traditional criteria used for diagnosing LVH cardiac disease, the 

computational equation of the proposed diagnostic criterion takes a conditional form. In 

reality, the final decision about diagnosing LVH is verified according the logical value 

of four conditions which are defined in Equation (3.22). Therefore, this logical structure 
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can be represented easily with a FIS according to the basic concepts of mapping rules 

used in FIS.  

In this section, a new FIS for diagnosing LVH cardiac disease has been 

proposed. The proposed FIS is constructed using fuzzy Mamdani method; in addition, it 

has seven input membership functions (MFs) which are determined mathematically by 

analyzing the logical expressions of diagnostic criteria that are defined in Equation 

(3.19), Equation (3.20), and Equation (3.21) to convert them into simple conditioning 

statements that can be easily expressed by FIS as the MFs. These MFs are used by 6 

fuzzy rules to obtain the decision values of three output MFs (Expr1, Expr2, and MDV) 

that construct the main parameters in the final diagnosis of LVH cardiac disease defined 

in Equation (3.22). The general diagram of the proposed FIS is shown in Figure 3.13 as 

it is viewed by MATLAB environments. Four input MFs are designed to simulate 

Sokolow-Lyon, Cornell voltage, CRTA1, and REC-CRTA diagnostic criteria. 

Additionally, the true occurrence of CRTA1 to CRTA6 diagnostic criteria is expressed 

by another input MF. The graphical diagrams of these MFs are shown in Figure 3.14.a-

e, respectively. The sixth input MF is designed to evaluate the MDV value defined in 

Equation (3.22). This MF is composed internally of two sub-MFs. The first MF is 

termed MDV-Female to compute the MDV criterion for females with respect to the 

designated threshold of the LVH diagnosis (75). The second MF is termed MDV-Male 

to compute the same criterion for males with respect to a determined threshold of the 

LVH diagnosing (105). The graphical diagram of the two sub-MFs is shown in Figure 

3.14.f. The last input criterion is termed Gender-CRT to specify the gender of the tested 

patient as shown in Figure 3.14.g.   
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Figure 3.13: The Proposed FIS for Diagnosing LVH Cardiac Disease. 
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Figure 3.14: Graphical Diagrams of the Input MFs in Proposed FIS. 

 

In general, fuzzification is the process of changing a real scalar value into a 

fuzzy value. This is performed with three types of fuzzifiers (Gaussian, singleton, and 

trapezoidal or triangular). All mathematical statements in the proposed diagnostic 

criterion defined in Equation (3.22) take the form of a single logical condition (greater 

than or less than the fixed threshold). The trapezoidal fuzzifier includes four scalar 

parameters (a, b, c, and d) (Hanss, 2005; Sumathi & Paneerselvam, 2010). The 

membership definition for a trapezoidal fuzzifier is defined in Equation (3.23). From 

this definition, there are five classification regions, while the logical condition requires 
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two classification regions. Thus, a small change must be applied on the original 

trapezoidal fuzzifier to convert it to handle two classification regions instead of five. To 

do this, a and b parameters are assigned to the fixed threshold level, while c and d take 

the upper limit for the input parameter. Consequentially, all logical statements in 

proposed diagnostic criterion are expressed with input MF using a modified trapezoidal 

fuzzifier.  

  

𝐹𝐹(𝐸𝐸) =

⎩
⎪
⎨

⎪
⎧

0 ,                   𝑠𝑠𝐿𝐿 𝐸𝐸 ≤ 𝐵𝐵                     
𝐸𝐸−𝐵𝐵
𝑏𝑏−𝐵𝐵  ,                   𝑠𝑠𝐿𝐿 𝐸𝐸 ∈ [𝐵𝐵, 𝑏𝑏]        

1 ,                   𝑠𝑠𝐿𝐿 𝐸𝐸 ∈ [𝑏𝑏, 𝑐𝑐]            
𝑒𝑒−𝐸𝐸
𝑒𝑒−𝑐𝑐  ,                   𝑠𝑠𝐿𝐿 𝐸𝐸 ∈ [𝑐𝑐,𝑒𝑒]              
0 ,                     𝑠𝑠𝐿𝐿 𝐸𝐸 ≥ 𝑒𝑒                  

�                                                                   (3.23) 

 

The final decision of LVH cardiac disease diagnosis in the proposed FIS is made 

by three MFs. These MFs compute the value of Expr1, Expr2, and MDV which are 

defined in Equation (3.20), (3.21), and (3.22), respectively. The output MFs are 

obtained by six fuzzy rules in such a manner that each MF is verified when the 

diagnostic criteria found in the input MF within its rule are true. The first and second 

output MFs include single sub-MF as shown in Figure 3.15.a-b, respectively. The third 

output MF handles three sub-MFs. The first is termed MDV-Fe-LVH and verifies when 

the input MF MDV-Female is true and the value of Gender-CRT is in the female area.  

Similarly, the second sub-MF is termed as (MDV-Ma-LVH) and verifies when the MF 

MDV-Male is true, and Gender-CRT is in the male area, while the third sub-MF is 

termed MDV-Normal and verifies when the first MFs are false. The graphical diagram 

of the third output MF is shown in Figure 3.15.c.  

In general, the defuzzification process represents the final step in each fuzzy 

system which is performed by aggregating the resulting value for all output MFs. In 
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proposed FIS, the final decision about LVH cardiac disease diagnosis represents the 

deffuzfication process by aggregating a resultant value for the three output MFs (Expr1, 

Expr2, and MDV) using the fuzzy rules related to each one. The defuzzification method 

used is centroid, which computes the defuzzified value at a very fast rate, as well as 

being able to produce very accurate results (Sumathi & Paneerselvam, 2010). The 

centroid method returns the centre of area under the curve. The active interval in Expr1 

and Expr2 is [0, 1] as shown in Figure 3.15.a-b, respectively, thus the aggregated value 

using the centroid defuzzification method is 0.5. However, in MDV there are two active 

intervals [0, 1] and [3, 4], and the aggregated value using the same defuzzification 

method is 0.5 or 3.5, respectively.  
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Figure 3.15: Graphical Diagrams of the Output MFs in Proposed FIS. 

 
 
3.5    Summary 

 

In this chapter, a new system of computerized based technique has been 

proposed for diagnosing LVH cardiac disease based on processing and analyzing a 12 

lead ECG signal. The new proposed system includes three main stages called: pre-

processing ECG signal, detecting and analyzing ECG waves, and diagnosing LVH high 

risk cardiac disease. The descriptions of these stages and their detailed operations were 

integrated in single graphical block diagram at the first part of this chapter.  

 Through the first stage of the proposed ECG system that handles all pre-

processing operations of reading, smoothing or filtering (if needed), and archiving ECG 

data. A new system called the digital recovery approach has been proposed to generate 

12 lead raw ECG data by reconstructing it from a scanned image (24-bit Bitmap) of the 

printed ECG chart. This approach includes four image processing steps to provide final 

12 lead ECG data in digital form. These steps were integrated in a single graphical 

block diagram in Section 3.2.2 Figure 3.2, and the theoretical concepts for each step 

were interpreted separately with related demonstrative diagrams and mathematical 
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definitions. The 4th step of this approach is the detection of the ECG baseline and 

reconstructing raw ECG data from the image pixels using the proposed sampling 

process. The instructions of this process were presented in detail in Algorithm I. The 

proposed digital recovery approach was designed to process various types of the printed 

ECG charts.   

The second stage of the proposed ECG system was focused on detecting ECG 

waves (the P wave, the QRS complex, and the T wave), and then delineating time 

characteristics of these waves which leads to the computing of more diagnostic 

features/criteria for different cardiac diseases. Two approaches were proposed in this 

stage. The first approach is named RFEM which performs the process of detecting the 

QRS complex in different ECG morphologies/ rhythms. The RFEM approach 

mentioned in Section 3.3.1 was applied by a straightforward algorithm using an 

instantaneous processing technique on the ECG signal (beat by beat), as a result, the 

overall processing speed becomes very high. In addition, it takes rising to falling edge 

mutation as a base rule to accomplish the QRS complex subject detection. All steps of 

applying RFEM approach on the ECG signal were presented in a single graphical 

diagram as illustrated in Section 3.3.1 Figure 3.5. The theoretical basis for each step was 

then interpreted in more detail with related demonstrative diagrams and mathematical 

definitions. Moreover, the based technique for delineating time characteristic of the 

QRS complex in the RFEM approach was represented by set of instructions in 

Algorithm II with quite interpretation for each instruction.  

The second proposed detection approach in the same stage of the proposed ECG 

system named HSDPTW, focused on detecting P and T waves to delineate the 

boundaries and peak time locations of these waves. The HSDPTW approach mentioned 

in Section 3.2.2.2 was applied by allocating two limited intervals in the left and right 
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sides of the QRS complex. Allocating the limits of both intervals was mainly based on 

the time characteristics of the QRS complex which were pre detected by the RFEM 

approach. At each interval, a main search algorithm was implemented to delineate the 

peak time location of the P and T waves based on conditional rising to falling edge 

mutation within the limits of the search interval. When the peak time location was 

allocated by the main algorithm, the process of delineating boundary time locations was 

started directly by another algorithm in a subroutine form called by the main algorithm. 

This subroutine takes the delineated peak time location as a base point to apply two 

search iterations towards the boundaries of the P and T waves to delineate the onset and 

end time locations of these waves. All instructions of the main algorithm and calling 

subroutine were presented with quite interpretation in Algorithm III, IV for P wave, and 

Algorithm V, VI for the T wave, respectively. 

  Through the third stage of the proposed ECG system which was focused on 

diagnosing high risk cardiac diseases. A new approach to diagnose LVH cardiac disease 

has been proposed using a proposed FIS design. This system is based on eight voltage 

parameters which were obtained by the time characteristics of the ECG waves, and two 

criteria (Skolow, Cornell) which were adopted for diagnosing LVH cardiac disease. The 

traditional and proposed diagnostic parameters were represented by seven input MFs, 

while the final diagnosis decision was represented by three MFs in the proposed FIS 

using the fuzzy Mamdani method.  

 

 

 

 

 

 

 

 

©
 T

his 
ite

m
 is

 p
ro

te
ct

ed b
y o

rig
in

al
 co

pyr
igh

t 



 106 

CHAPTER 4 

RESULTS AND DISCUSSION 
 

 

4.1    Introduction  

 

The general block diagram of the proposed system for analyzing a 12 lead ECG 

signal, detecting ECG waves and delineating their time characteristics, and diagnosing 

high risk cardiac diseases was presented in Chapter 3 Section 3.1 Figure 3.1. In each 

step of this system, there is one approach or more which have been proposed.  

In this chapter, each approach in the proposed ECG system is validated with 

some ECG records which are collected from one or more standard online databases or 

by the raw ECG data which is reconstructed from ECG paper printout recordings using 

the proposed approach of digital recovery. The findings from (digital recovery, 

detecting ECG waves, delineating their time characteristics, and diagnosing a specific 

high risk cardiac disease called LVH) approaches take different forms, thus many 

scenarios are suggested to evaluate the overall performance of these approaches. At the 

same time, these evaluation scenarios are compatible with those that were considered by 

well known published works in literature in order to facilitate the validation of the 

obtained results with ones found in existing works. 

 

4.2    Performance Evaluation of proposed Digital Recovery Approach  

 

In Chapter 3 Section 3.2.2.1, a new approach for digital recovery of 12 ECG 

data from the colour scanned image of ECG paper printout recording (printed ECG 
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chart) has been proposed. Two simulations are conducted to validate the performance of 

this approach. The first scenario is a graphical evaluation of the 12-lead raw ECG data 

that is reconstructed from the printed chart after scanning it with a high resolution (600 

dpi), and then saving the resulting image as 24-bit BMP standard format as shown in 

Figure 4.1. The second evaluation is performed analytically by validating some standard 

ECG parameters like heart rate, QT interval, QTc, etc which are computed 

automatically by the modern ECG machine and the corresponding values for these 

parameters that are obtained by the reconstructed ECG data.  

 

     

 

 

 

 

 

 

 

 
 
 
 
 
 

Figure 4.1: The Scanned Image of ECG Printed Chart Using 600 dpi. 
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4.2.1    Graphical Evaluation of the 12-lead ECG Data 

 

The graphical evaluation of the proposed digital recovery approach is performed 

by re-plotting the reconstructed 12-lead raw ECG data with respect to the baseline, 

which was pre detected by the same approach. All steps illustrated in the main block 

diagram of the proposed digital recovery approach shown in Chapter 3 Section 3.2.2 

Figure 3.2 are applied on the scanned ECG image shown in Figure 4.1 (the 1st ECG 

record from the validation data). The findings from the first step of the proposed digital 

recovery approach are three slices of rectangular image, each of these slices compounds 

four ECG leads. In the second step, these slices are digitized using the sampling 

algorithm presented in Chapter 3 Section 3.2.2.1 Algorithm I to generate twelve signals. 

These signals represent the reconstructed 12 lead ECG data.  

Each one of the reconstructed 12 lead ECG is plotted separately in a single graph 

with respect to the detected baseline as shown in Figure 4.2.a-l, respectively. In these 

graphs, the detected baseline level is labelled with a dashed red line. In addition, the y-

axis scale of all graphs is limited to (-1.5 mV - +1.5mV) or totally 3mV because the 

original drawing of ECG signal shown in Figure 4.1 varies to 6 large squares in all three 

row areas of the printed chart, and each large square represents an amplitude voltage of 

0.5mV as discussed in Chapter 2 Section 2.3.1.  
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Figure 4.2: Graphical Evaluation of Reconstructed 12 lead Raw ECG Data 
Resulted from Applying Proposed Digital Recovery Approach on Digital Scanned 

Image of Printed ECG Chart, Lead (a) I, (b) aVR, (c) V1, (d) V4, (e) II, (f) aVL, (g) 
V2, (h) V5, (i) III, (j) aVF, (k) V3, and (l) V6. 

 

Finally, to prove the ability of the proposed digital recovery approach to process 

various types of ECG printed chart, this evaluation is repeated for another ECG record 

(j) 
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with a different shape of printout paper, the original ECG record, as well as the 

drawings of the reconstructed 12 lead ECG data with respect to the ECG baseline 

detected are illustrated in Appendix A.  

As in all continuous signals, the reconstructed raw ECG data obtained by the 

proposed digital recovery approach is not adopted without true time considerations. The 

most significant challenge is how to convert graphical data that is represented by sets of 

pixels to a continuous signal with fixed sampling frequency.  This problem has been 

addressed successfully by computing a number of pixels that are restricted within a 

small square NP in the scanned image. These pixels correspond to the standard 

representation of each small square in the ECG recording. As a standard, each small 

square in the ECG recording represents 0.1 mV as voltage amplitude and 40 ms as a 

time period (Azeem et al., 2005; Bowbrick & Borg, 2006; Hampton, 2013). 

  

 

 

 

 

 

 

Figure 4.3: Scaling Factors of Time and Voltage Amplitude which are Represented 
by Number of Pixels in One Small Square of ECG Printed Chart. 

 

The previous presentation proves that the reconstructed ECG data must be 

scaled with time and voltage amplitude proportionate to the scaling factors that are 
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determined from the number of pixels in a small square inside a scanned image for the 

purpose of adopting this data as a true ECG signal. The image slice in Figure 4.3 shows 

the scaling factors of time and voltage amplitude that is corresponded to one small 

square within the scanned image. 

  

4.2.2    Analytical Evaluation of Single ECG Lead 

 

    In general, the main idea behind a digital recovery approach is to reconstruct 

digitally raw data from other media like a paper printout recording to facilitate the use 

of this data for modern archiving applications or for making an accurate analysis and 

diagnosis by expert computerized systems (Sanromán-Junquera et al., 2012). The 

process of digital recovery is extremely important if the reconstructed data has similar 

behaviour to the original ECG chart along the entire recording time of the ECG signal. 

Thus, the reconstructed raw ECG data must be evaluated accurately to know the ability 

of adopting this data in later application and processing issues. Two types of analytic 

evaluation are presented in the following sections to compute the precision of the 

reconstructed raw ECG data. 

 

4.2.2.1    Qualitative evaluation 

 

This type of evaluation aims to prove the quality of the reconstructed ECG data 

with respect to the original data represented by the printed chart. In this evaluation, the 

reconstructed raw ECG data is plotted in the same graph that contains the original ECG 

chart after scaling it in time and voltage amplitude. The printed chart of lead II in three 

ECG records is used as the testing data in this evaluation; the combined drawings for 

the tested ECG records are shown in Figure 4.4.a, b, and c, respectively. The visual 
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inspection comparison between the original ECG chart and another that was plotted 

using the reconstructed raw ECG data proves the highest degree of congruence between 

the reconstructed and original ECG signal in both voltage amplitude and time. This 

congruence covers all parts of the ECG signal, even those with high chattering 

variation. As a result, the significant congruence in graphical behaviour between the 

reconstructed raw ECG data and the original ECG signal gives great trusting to consider 

digital raw ECG data for future works of detecting ECG waves and diagnosing different 

cardiac diseases 
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Figure 4.4: Combined Drawing of Original and Reconstructed ECG Signal with 
Identical Distribution of Validation Points in Lead II Signals (a) 1st Patient, (b) 

2nd Patient, and (c) 3rd Patient. 

 
4.2.2.2    Quantitative Evaluation 

 

The header partition of the 12 lead ECG record shown in Figure 4.1 contains 

little information which are obtained automatically by the ECG machine itself. In this 

information, there are five significant parameters (Ventricular Rate, PR interval, QRS 

duration, QT interval, and QTc interval), which are mostly used for analyzing and 

diagnosing the ECG signal (C. Lin et al., 2010; Yeh et al., 2010; Zigel et al., 2000).  

Another type of analytical evaluation named "quantitative evaluation" is 

performed by recalculating these parameters using the reconstructed raw ECG data, and 

then comparing them with the corresponding values which were calculated 

automatically by the ECG machine. The 1st parameter is the ventricular rate or the heart 

rate, which is determined by computing a number of small squares between two 

consecutive QRS complexes then dividing them by 1500 (Azeem et al., 2005; Bowbrick 

& Borg, 2006; Foster, 2007). The reconstructed raw ECG data must be scaled first by 
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NP in order to maintain a similar sampling time of the standard ECG signal before the 

ECG rate is computed as defined in Equation (4.1).  

 

𝑉𝑉𝑠𝑠𝑟𝑟𝑡𝑡𝑅𝑅𝐵𝐵𝑡𝑡𝑠𝑠 =
1500

𝐴𝐴𝑠𝑠𝑠𝑠𝑡𝑡𝐵𝐵𝑟𝑟𝑐𝑐𝑠𝑠 𝑜𝑜𝐿𝐿 𝑡𝑡𝐷𝐷𝑜𝑜 𝑐𝑐𝑜𝑜𝑟𝑟𝑠𝑠𝑠𝑠𝑐𝑐𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠 𝑅𝑅𝐴𝐴𝑠𝑠𝐵𝐵𝐶𝐶𝑠𝑠 𝐴𝐴𝐴𝐴⁄ =
1500

(𝑅𝑅7 − 𝑅𝑅2) 𝐴𝐴𝐴𝐴⁄              (4.1) 

 

The 2nd parameter is the PR interval, which represents the interval that is limited 

from the beginning of the P wave to the beginning of the QRS complex (end of the Q-

wave). This interval can be determined with the reconstructed data by scaling the 

number of pixels which are limited within this interval by the NP value as defined in 

Equation (4.2). 

 

𝐴𝐴𝑅𝑅𝐼𝐼𝑟𝑟𝑡𝑡𝑠𝑠𝑟𝑟𝑠𝑠𝐵𝐵𝑙𝑙 =
𝐴𝐴𝑠𝑠𝑠𝑠𝑡𝑡𝐵𝐵𝑟𝑟𝑐𝑐𝑠𝑠(𝑄𝑄𝐸𝐸𝑟𝑟𝑒𝑒 , 𝐴𝐴𝐻𝐻𝑡𝑡𝐵𝐵𝑟𝑟𝑡𝑡 )

𝐴𝐴𝐴𝐴
=

(𝑅𝑅6 − 𝑅𝑅5)
𝐴𝐴𝐴𝐴

                                                       (4.2) 

 

Another interval named the QRS duration which represents the width of this 

complex and is determined in the same manner as the PR interval, except that this 

duration is limited between the two ends of the QRS complex (start and end) of the Q 

and the S waves, respectively, as defined in Equation (4.3). 

 

𝑄𝑄𝑅𝑅𝐻𝐻𝐴𝐴𝑠𝑠𝑟𝑟𝐵𝐵𝑡𝑡𝑠𝑠𝑜𝑜𝑟𝑟 =
𝐴𝐴𝑠𝑠𝑠𝑠𝑡𝑡𝐵𝐵𝑟𝑟𝑐𝑐𝑠𝑠(𝑄𝑄𝑅𝑅𝐻𝐻𝐻𝐻𝑡𝑡𝐵𝐵𝑟𝑟𝑡𝑡 ,  𝑄𝑄𝑅𝑅𝐻𝐻𝐸𝐸𝑟𝑟𝑒𝑒 )

𝐴𝐴𝐴𝐴
=

(𝑅𝑅8 − 𝑅𝑅6)
𝐴𝐴𝐴𝐴

                                        (4.3) 
 

The last parameters reported are QT and QTc (corrected) interval. The QT 

interval represents the total electrical duration of the ventricles. It is limited from the 

beginning of the QRS complex to the end of the T-wave as defined in Equation (4.4). 

The corrected QT interval (QTc) interval can be arrived at using Bassett's formula 

(Bazett, 1997) defined in Equation (4.5) to obtain the corrected value of the QT interval. 
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𝑄𝑄𝑄𝑄𝐼𝐼𝑟𝑟𝑡𝑡𝑠𝑠𝑟𝑟𝑠𝑠𝐵𝐵𝑙𝑙 =
𝐴𝐴𝑠𝑠𝑠𝑠𝑡𝑡𝐵𝐵𝑟𝑟𝑐𝑐𝑠𝑠(𝑄𝑄𝑅𝑅𝐻𝐻 𝑐𝑐𝑜𝑜𝑟𝑟𝑈𝑈𝑙𝑙𝑠𝑠𝐸𝐸 𝐻𝐻𝑡𝑡𝐵𝐵𝑟𝑟𝑡𝑡 ,  𝑄𝑄𝐸𝐸𝑟𝑟𝑒𝑒 )

𝐴𝐴𝐴𝐴
=

(𝑅𝑅4 − 𝑅𝑅1)
𝐴𝐴𝐴𝐴

                               (4.4) 

 

𝑄𝑄𝑄𝑄𝑐𝑐𝐼𝐼𝑟𝑟𝑡𝑡𝑠𝑠𝑟𝑟𝑠𝑠𝐵𝐵𝑙𝑙 =
𝑄𝑄𝑄𝑄𝐼𝐼𝑟𝑟𝑡𝑡𝑠𝑠𝑟𝑟𝑠𝑠𝐵𝐵𝑙𝑙

�𝑅𝑅𝑅𝑅𝐼𝐼𝑟𝑟𝑡𝑡𝑠𝑠𝑟𝑟𝑠𝑠𝐵𝐵𝑙𝑙 (𝑠𝑠𝑠𝑠𝑐𝑐)
=

(𝑅𝑅4 − 𝑅𝑅1)

�𝑅𝑅7 − 𝑅𝑅2
                                                                 (4.5) 

 

 

The results of computing theses parameters in the original and the reconstructed 

ECG data for the same ECG records that are used in qualitative evaluation are 

Table 4.1: Validation Results and Accuracy of Five Standard ECG parameters 
obtained in Lead II of  Three Patients ; 1 small square (SS) = 0.04 s (Standard 

Sampling Time of ECG signal) 
 

Pa
tie

nt
 

T
es

te
d 

L
ea

d 

Parameter 
Name 

Original Data Recovered Data 

Accuracy 
Parameter 

Value 
Referenced 

Period 
Parameter 

Value 

Referenced 
Period 

Estimated 
No. of SS 

Scaled 
No. of SS 

P1 

L
ea

d 
II

 

Ventricular 
Rate 

62 RPM X2↔ X7 61.5 RPM R2↔ R7 99.19% 
24.2 24.4 

PR Interval 158 ms X5↔X6 160 ms R5↔R6 98.73% 
3.95 4 

QRS duration 101 ms X6↔X8 98 ms R6↔R8 97.02% 
2.525 2.45 

QT  , QTc 
Interval 

454 ms , 
458 ms 

X1↔X4 460 ms , 
465 ms 

R1↔R4 98.67% 
11.35 11.5 

P2 

L
ea

d 
II

 

Ventricular 
Rate 

79 RPM X2↔ X7 77.72 RPM R2↔ R7 98.38% 
18.95 19.3 

PR Interval 171 ms X5↔X6 172.4 ms R5↔R6 99.18% 
4.275 4.31 

QRS duration 110 ms X6↔X8 112.4 ms R6↔R8 97.81% 
2.75 2.82 

QT  , QTc 
Interval 

389 ms , 
423 ms 

X1↔X4 392 ms , 
445 ms 

R1↔R4 99.20% 
9.725 9.8 

P3 

L
ea

d 
II

 

Ventricular 
Rate 

84 RPM X2, X7 85.22 RPM R2↔ R7 98.54% 
17.85 17.60 

PR Interval 190 ms X5↔X6 186.4 ms R5↔R6 98.10% 
4.75 4.66 

QRS duration 89 ms X6↔X8 85.6 ms R6↔R8 96.18% 
2.225 2.14 

QT  , QTc 
Interval 

378 ms , 
419 ms 

X1↔X4 373.2 ms , 
449.63 

R1↔R4 98.73% 
9.45 9.33 

Average Accuracy 98.31% 
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illustrated in Table 4.1. The analytic results illustrated in this table show that the 

average accuracy exceeds 98% which demonstrates the consistency and robustness of 

proposed digital recovery approach to generate accurate digital 12 lead ECG data. In 

addition, the scanned images of these records are presented in Appendix B including 

header information and details for the 12 lead ECG chart. 

 

4.3    Performance Evaluation of Proposed Approaches for Detecting ECG waves 

  

In this section, the performance of the proposed approach RFEM mentioned in 

Chapter 3 Section 3.3.1 for detecting the QRS complex and HSDPTW mentioned in 

Chapter 3 Section 3.3.2 for detecting P and T waves are evaluated by applying these 

approaches on some ECG samples which were collected from standard ECG databases 

such as MIT-BIH, QT, etc databases. A selection of suitable ECG databases for each 

detection approach depends mainly on the detailed annotated information in this 

database as mentioned in Chapter 2 Section 2.3.2.  

 

4.3.1    Performance Analysis of Proposed RFEM Approach 

 
In this section, two simulations were conducted to evaluate the performance of 

the proposed RFEM approach to delineate the time characteristics of the QRS complex 

in an ECG signal. The first simulation is performed to evaluate the delineation of RPEAK 

time location in the QRS complex, while the second simulation is performed to evaluate 

the delineation of other time characteristics in the QRS complex QONSET, QEND, SONSET, 

and SEND. The obtained results in both simulations are compared with other QRS 

complex detection methods proposed in literature to prove the robustness of the 

proposed approaches in the QRS complex detection subject.  
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4.3.1.1    Graphical Evaluation of RPEAK time locations  

   

In this section, the proposed RFEM approach for detecting the QRS complex is 

applied on the ECG records from MIT-BIH arrhythmia database (G. B. Moody & Mark, 

1990) to validate the delineation of RPEAK time location in the QRS complex. The 

selection of the ECG records in this database comes from the annotation information 

inside them, where each ECG record was annotated manually by cardiologists with the 

RPEAK time locations along the ECG recording time (G. B. Moody & Mark, 2001) as 

mentioned in Chapter 2 Section 2.3.2.1. Therefore, it is easily to validate the RPEAK time 

locations by comparing the obtained results with the manual annotations.      

The graphical evaluation of RPEAK time location is performed by applying the 

proposed RFEM approach on eight ECG records (100, 107, 111, 118, 122, 210, 232, 

and 234) from MIT-BIH. These ECG records were selected with different ECG 

morphologies to prove the ability of the proposed approach to delineate the RPEAK time 

location in various ECG signal rhythm changes. The delineation results of the RPEAK 

time locations obtained by the RFEM approach and the corresponding manual 

annotation time locations recorded in MIT-BIH of eight ECG records are shown in 

Figure 4.5.a to h, respectively. The closest match between the delineated RPEAK time 

locations marked with the green circular markers and the manual annotation time 

locations marked with the vertical dashed lines in Figure 4.5 prove the robustness of the 

proposed RFEM approach to give the correct position of the peak time locations in 

various ECG rhythms and obvious amplitude variations. 
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Figure 4.5: Delineation Results of RPEAK Time Locations in Eight ECG Records 
from MIT-BIH Arrhythmia Database,  (a) Record100, (b) Record107, (c) 

Record111, (d) Record118, (e) Record122, (f) Record210, (g) Record232, and (h) 
Record234. 

 

(g) 

(h) 

 

 

 

 

 

 

 

©
 T

his 
ite

m
 is

 p
ro

te
ct

ed b
y o

rig
in

al
 co

pyr
igh

t 



 123 

4.3.1.2    Graphical Evaluation of QRS time characteristics 

  

In this section, another graphical evaluation is provided to evaluate the 

delineation results of QRS complex time characteristics (QONSET, QEND, RPEAK, SONSET, 

and SEND). This evaluation is performed by applying the proposed RFEM approach on 

some ECG records which were collected from QTDB. As mentioned in Chapter 2 

Section 2.3.2.2, each ECG record in QTDB (Laguna et al., 1997) was annotated with 

QONSET, RPEAK, and SONSET time location, which meant that it is easily to validate the 

time characteristics of the QRS complex obtained by the proposed approach with those 

annotated inside QTDB. Five ECG records from five categories in QTDB were selected 

as the validation data for this evaluation. The delineation results of (QONSET, QEND, 

RPEAK, SONSET, and SEND) for these records are shown in Figure 4.6.a to f. All ECG 

charts in this figure are marked with the corresponding manual annotation by 

cardiologists, the peak time locations are marked with the vertical dash-dotted lines and 

the boundaries time locations are marked with vertical dotted lines.  
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Figure 4.6: The Manual Annotations by Cardiologists and Delineation Results of 

QRS Time Characteristics for Processing QTDB Records: (a) "SEL16256" 
Normal Sinus Rhythm DB, (b) "SEL853" Super Ventricular DB, (c) "SEL116" 
Arrhythmia DB, (d) "SEL14157" Long-Term DB, and (e) "SEL106" European 

ST-T DB. 
 
 

The significant congruence between the annotated time locations represented by 

vertical lines and the delineated time locations represented by small markers in Figure 

4.6 proves the capability of RFEM to track the ECG signals with different rhythm and 

wave morphologies, as well as delineating all time characteristics of QRS complex with 

highest accuracy. In addition, an evaluation of delineation accuracy in proposed 

approach can be performed by calculating the time deviation (TDV) between the 

manual annotation readings and the delineation results obtained by the proposed RFEM 

approach as defined in Equation 4.6. 

𝑄𝑄𝐴𝐴𝑉𝑉�𝑄𝑄𝑅𝑅𝐻𝐻𝑡𝑡_𝑙𝑙𝑠𝑠𝑟𝑟𝑠𝑠𝑡𝑡𝑠𝑠 � = 𝐴𝐴𝑟𝑟𝑟𝑟𝑜𝑜𝑡𝑡𝐵𝐵𝑡𝑡𝑠𝑠𝑒𝑒�𝑄𝑄𝑅𝑅𝐻𝐻𝑡𝑡_𝑙𝑙𝑠𝑠𝑟𝑟𝑠𝑠𝑡𝑡𝑠𝑠 � − 𝐴𝐴𝑠𝑠𝑙𝑙𝑠𝑠𝑟𝑟𝑠𝑠𝐵𝐵𝑡𝑡𝑠𝑠𝑒𝑒�𝑄𝑄𝑅𝑅𝐻𝐻𝑡𝑡_𝑙𝑙𝑠𝑠𝑟𝑟𝑠𝑠𝑡𝑡𝑠𝑠 �               (4.6) 
 

The histograms in Figure 4.7.a, b, and c show the distribution of (QONSET, RPEAK, 

and SONSET) time deviations for all delineated time characteristics in the five ECG 

(e) 
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records used in this evaluation. A total of 99.45%, 100%, and 99.30% of time deviations 

for QONSET, RPEAK, and SONSET, respectively are located within + 4 ms of time deviations 

(marked with red dashed lines) which represent + 1 ECG sample as a time deviation 

error between the annotated and the delineated time characteristics. This is due to the 

fact that the sampling frequency of all ECG records in QTDB is 250 Hz. Therefore, the 

time duration for a single ECG beat is 4 ms as mentioned in Chapter 2 Section 2.3.2.2. 

The lowest percentage time deviation error for (QONSET, RPEAK, and SONSET) gives 

another indication of the ability of the proposed RFEM approach to provide accurate 

delineations for all QRS time characteristics.     
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Figure 4.7:  Histogram of Time Deviations Between the Delineation Results of 
Proposed RFEM Approach and the Manual Annotation Results of Five ECG 

Records From QTDB for QRS Time Characteristics: (a) Onset of Q wave, (b) Peak 
of R wave, and (c) Onset of S wave. 

 

4.3.1.3    Validation of RFEM Proposed Approach 

 

As mentioned in Chapter 2 Section 2.4.1.1, many methods have been proposed 

in literature for the purpose of QRS detection. Most of these methods have been 

validated with standard 48 ECG records from MIT-BIH, which are described in Chapter 

2 Section 2.3.2.1, by calculating three statistical metrics. The first is sensitivity (Se) 

which is used to evaluate the ability of the applied detection method to detect true ECG 

beats according to the false negative beats FN (the QRS complex was present but was 

not detected) with respect to the total true positive beats TP (the correctly detected QRS 

complexes) as defined in Equation 4.7. The second metric is positive predictivity or 

(specificity) P+, which is used to evaluate the ability of the applied detection method to 

differentiate between true and false beats according the false positive beats FP (the QRS 

complex was  not present but was detected) with respect to the total true positive beats 

TP as defined in Equation 4.8. The third metric is the percent of failure detection (Fd) 

percentage, which is used to evaluate the detection accuracy of the applied detection 

(c) 
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method according to the summation of false positive and negative beats (FP and FN) 

with respect to the overall analyzed beats TB as defined in Equation 4.9 (Ghaffari et al., 

2009; C. Lin et al., 2010; J. P. Martínez et al., 2004; Z Zidelmal et al., 2014).   

 

𝐻𝐻𝑠𝑠 =
𝑄𝑄𝐴𝐴

𝑄𝑄𝐴𝐴 + 𝐹𝐹𝐴𝐴
× 100%                                                                                                                        (4.7) 

 

𝐴𝐴+ =
𝑄𝑄𝐴𝐴

𝑄𝑄𝐴𝐴 + 𝐹𝐹𝐴𝐴
 × 100%                                                                                                                      (4.8) 

 

𝐹𝐹𝑒𝑒 =
𝐹𝐹𝐴𝐴 + 𝐹𝐹𝐴𝐴

𝑄𝑄𝐵𝐵
× 100%                                                                                                                        (4.9) 

 

The simulation results of (Se, P+, and Fd) obtained by applying the proposed 

RFEM approach on 48 ECG records from MIT-BIH DB are illustrated in Table 4.2. 

  

 
Table 4.2: Simulation Results of Statistical Metrics of Applying 

Proposed RFEM Approach on 48 ECG Records from MIT-BIH DB.   
   

Record TB TP FP FN Se(%) P+(%) Fd(%) 
100 2273 2273 0 0 100.00 100.00 0.00 
101 1865 1865 0 0 100.00 100.00 0.00 
102 2187 2187 0 0 100.00 100.00 0.00 
103 2084 2084 0 0 100.00 100.00 0.00 
104 2229 2226 3 0 100.00 99.87 0.13 
105 2572 2561 2 9 99.65 99.92 0.43 
106 2027 2023 2 2 99.90 99.90 0.20 
107 2137 2133 0 4 99.81 100.00 0.19 
108 1763 1733 5 25 98.58 99.71 1.70 
109 2532 2524 0 8 99.68 100.00 0.32 
111 2124 2123 0 1 99.95 100.00 0.05 
112 2539 2539 0 0 100.00 100.00 0.00 
113 1795 1793 2 0 100.00 99.89 0.11 
114 1879 1879 0 0 100.00 100.00 0.00 
115 1953 1953 0 0 100.00 100.00 0.00 
116 2412 2406 0 6 99.75 100.00 0.25 
117 1535 1535 0 0 100.00 100.00 0.00 
118 2278 2278 0 0 100.00 100.00 0.00 
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Table 4.2: (Continued) 
 

Record TB TP FP FN Se(%) P+(%) Fd(%) 
119 1987 1987 0 0 100.00 100.00 0.00 
121 1863 1863 0 0 100.00 100.00 0.00 
122 2476 2476 0 0 100.00 100.00 0.00 
123 1518 1518 0 0 100.00 100.00 0.00 
124 1619 1619 0 0 100.00 100.00 0.00 
200 2601 2572 17 12 99.54 99.34 1.11 
201 1963 1953 3 7 99.64 99.85 0.51 
202 2136 2133 1 2 99.91 99.95 0.14 
203 2980 2944 11 25 99.16 99.63 1.21 
205 2656 2650 0 6 99.77 100.00 0.23 
207 1862 1847 3 12 99.35 99.84 0.81 
208 2955 2944 4 7 99.76 99.86 0.37 
209 3005 3005 0 0 100.00 100.00 0.00 
210 2650 2632 3 15 99.43 99.89 0.68 
212 2748 2748 0 0 100.00 100.00 0.00 
213 3251 3251 0 0 100.00 100.00 0.00 
214 2262 2259 1 2 99.91 99.96 0.13 
215 3363 3355 0 8 99.76 100.00 0.24 
217 2208 2204 1 3 99.86 99.95 0.18 
219 2154 2154 0 0 100.00 100.00 0.00 
220 2048 2048 0 0 100.00 100.00 0.00 
221 2427 2422 2 3 99.88 99.92 0.21 
222 2483 2483 0 0 100.00 100.00 0.00 
223 2605 2602 3 0 100.00 99.88 0.12 
228 2053 2050 0 3 99.85 100.00 0.15 
230 2256 2256 0 0 100.00 100.00 0.00 
231 1571 1571 0 0 100.00 100.00 0.00 
232 1780 1769 4 7 99.61 99.77 0.62 
233 3079 3075 0 4 99.87 100.00 0.13 
234 2753 2753 0 0 100.00 100.00 0.00 

Total 109496 109258 67 171 99.85 99.94 0.21 
Sum 

 
 

Moreover, the obtained statistical metrics (Se, P+, and Fd) are used by most well 

known ECG waves detection methods proposed in literature as the base rules to prove 

the robustness of these methods to provide accurate detection by comparing them with 

the corresponding metric values obtained by other detection methods using the same set 

of ECG records. The simulation results of (Se, P+, and Fd) obtained by applying the 
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proposed RFEM approach on 48 ECG records from MIT-BIH DB and eight other QRS 

detection methods are illustrated in Table 4.3. The validation results in this table show 

that the RFEM approach has the lowest Fd percentage: according to the minimum 

number of FN and FP beats obtained which proves the delineation accuracy provided by 

this approach. Moreover, the highest percentage of P+ was performed by the RFEM 

approach, which reflects the ability of this approach to minimize false positive beats, 

while the Se percentage obtained by the RFEM approach was compatible (with slightly 

improvement) to those in other methods proposed in literature for QRS complex 

detection.                   

 
Table 4.3: Simulation Results of Statistical Metrics (Se, P+, and Fd) obtained by 

Proposed RFEM Approach and Other Eight QRS Detection Methods.   
Method TB TP FP FN Fd(%) Se(%) P+(%) 
RFEM  

(Proposed Approach) 109496 109258 67 171 0.21 99.85 99.94 

Wavelet-Based ECG 
Delineator   (J. P. 

Martínez et al., 2004) 
109428 109208 153 220 0.34 99.80 99.88 

 Automatic Detection of 
ECG waves by PT (A. 
Martínez et al., 2010) 

109428 109111 35 317 0.32 99.71 99.97 

QRS Detection using 
EMD (Hadj Slimane & 

Naït-Ali, 2010) 
110050 109792 84 174 0.24 99.84 99.92 

QRS detection 
using combined 

adaptive 
threshold 

(Christov, 2004) 

Algo.1 110050 109548 215 294 0.42 99.69 99.66 

Algo.2 110050 109616 239 240 0.44 99.74 99.65 

KNN algorithm (Saini et 
al., 2013) 109966 109608 151 207 0.33 99.81 99.86 

QRS Detection using S- 
Transform & Shannon 

Energy (Z Zidelmal et al., 
2014) 

 

108494 108323 97 171 0.25 99.84 99.91 

Wavelet Coefficients 
based QRS Detection 
(Zahia Zidelmal et al., 

2012)  

109494 109101 193 393 0.54 99.64 99.82 
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Finally, as mentioned in Chapter 3 Section 3.3.1, the RFEM approach was 

designed to track the ECG signal and delineates time characteristics of the QRS 

complex using a straightforward instantaneous processing algorithm, thus processing 

the ECG signal becomes faster. The average processing time required to delineate the 

QRS time characteristics of each ECG record of 10 minutes is about 1.0 to 1.5 seconds. 

The processing time performed by the RFEM approach is much faster than the times of 

QRS complex detection methods as illustrated in Table 4.4.   

   

 
 
4.3.2    Performance Analysis of Proposed HSDPTW Approach  

 
Two simulations were conducted to validate the performance of the proposed 

HSDPTW approach. Both simulations are applied on the ECG records from QTDB. The 

ECG records in QTDB were selected from seven existing ECG databases; also each 

ECG record was annotated with onset, peak, and end time locations for P and T waves 

Table 4.4:  Comparison of Average Required Time of Processing ECG Signal Using 
Proposed RFEM Approach and Other Three QRS Complex Detection Methods. 

 
# Method Validation 

ECG Data 
Based Technique  Processing time of 

10 min ECG signal  

1 
RFEM  
(Proposed 
Approach) 

48 records 
from MIT-
BIH 
Arrhythmia 
Database 

New straight forward 
algorithm  1 – 1.5 s 

2 DOM (Yeh & 
Wang, 2008) 

Difference equation 
operation between current 
and previous ECG beat  

30 s 

3 

Detection of ECG 
characteristics 
points using WT 
(Li et al., 1995)  

Multi-scale feature 
extraction of WT  60 s 

4 

RPEAK Detection by  
Shannon energy 
envelope (SEE) 
(Manikandan & 
Soman, 2012) 

SEE estimator 2.24 s 
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as mentioned in Chapter 2 Section 2.3.2.2. The first simulation is performed to evaluate 

the delineation results of P and T waves graphically using seven ECG records selected 

randomly from the QTDB in different categories. The second simulation includes the 

analytic results of the boundaries and the peak time locations in P and T waves which 

are delineated by HSDPTW using twenty eight ECG records (four ECG records from 

each category). Finally, the delineation results obtained by HSDPTW is compared with 

similar results that were obtained by some well known P and T detection methods 

proposed in literature using the same ECG records to prove the robustness of HSDPTW 

to delineate accurate time characteristics of P and T waves in comparison with existing 

methods. 

 

4.3.2.1    Evaluation metrics of P and T waves delineation   

 

The performance evaluation of the proposed HSDPTW approach can be 

performed by determining four statistical metrics (Se, P+, mean (m), and standard 

deviation (s)). These four metrics were mostly used by other P and T wave detection 

methods (Ghaffari et al., 2009; C. Lin et al., 2010; Madeiro et al., 2013; A. Martínez et 

al., 2010; J. P. Martínez et al., 2004) to evaluate their delineations results. The first two 

metrics are the same as in the evaluation of the proposed QRS detection approach as 

mentioned in Section 4.3.1.3.     

Other statistical metrics (m and s) are used to determine the time deviation 

between delineated and annotated time locations of peak and boundaries in P and T 

waves as defined in Equation 4.10 and 11, respectively. The average values of (m and s) 

give a clear indication of the accuracy of the proposed detection approach due to its 

ability to perform peak and boundary time locations closest to the annotation time 

locations prepared by cardiologists.     
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𝑟𝑟 =
1
𝑄𝑄𝐴𝐴

�(𝑋𝑋𝑠𝑠𝑒𝑒𝑠𝑠𝑡𝑡 − 𝑋𝑋𝑠𝑠𝐵𝐵𝑟𝑟𝑡𝑡 )
𝑄𝑄𝐴𝐴

𝑠𝑠=1

                                                                                                (4.10) 

𝑠𝑠 = �∑ (𝑋𝑋𝑠𝑠𝑒𝑒𝑠𝑠𝑡𝑡 − 𝑟𝑟)2𝑄𝑄𝐴𝐴
𝑠𝑠=1

𝑄𝑄𝐴𝐴
                                                                                                      (4.11) 

 

where Xi indicates time locations of onset, peak and end time locations in the P 

and T wave and TP is the total number of true detected waves (either P or T waves).   

 

4.3.2.2    Graphical Evaluation of P and T wave Delineation in Various Categories 
 

 

In this section, a graphical evaluation of onset, peak, and end time locations of 

both P and T waves has been performed by applying the proposed HSDPTW approach 

on seven ECG records selected randomly from QTDB (one record from each category). 

The delineation results of the P and T wave time characteristics for these records are 

shown in Figure 4.8. All ECG charts in this figure are marked with the corresponding 

manual annotation time characteristics by cardiologists, the peak time locations are 

marked with vertical dash-dotted line, while the boundary time locations are marked 

with the vertical dotted lines. The significant match between the annotated time 

locations, which are marked by vertical line, and delineated time locations which are 

represented by small markers in Figure 4.8, prove the ability of the proposed HSDPTW 

approach to perform accurate time locations of boundaries and peak for P and T waves.      

From the selection of ECG records used in this evaluation from different ECG 

categories, it can be seen the P and T waves in these records have variant shape, 

amplitude, and wave duration. In addition, the T wave may be inverted in some ECG 

records. The P wave has tall amplitude in ECG records shown in Figure 4.8.c, e and f, 
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but normal amplitude in other ECG records except for the ECG record shown in Figure 

4.8.f which has low amplitude of the P wave. With respect to the T wave, the ECG 

records shown in Figure 4.8.a, b, d, and f have tall amplitudes. Additionally, the ECG 

records shown in Figure 4.8.a, b, d, and f have a wide T wave interval, while the T 

waves in the ECG records shown in Figure 4.8.g, were inverted. In spite of the previous 

variation in the different P and T wave parameters, the proposed HSDPTW approach 

tracks the ECG signal and provides accurate delineation of the boundaries and peak 

time locations for different ECG P and T wave morphologies.   
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Figure 4.8  Delineation Results of (Onset, Peak, and End) Time Locations of P and 
T waves in Seven QTDB Records: (a) "SEL-232" Arrhythmia DB, (b) "SEL-307" 
ST Change DB, (c) "SEL-808" Super Ventricular DB, (d) "SEL-16483" Normal 

Sinus Rhythm DB, (e) "SEL-122" European ST-T DB, (f) "SEL-39" Sudden Death 
DB and (g) "SEL-14157" Long-Term DB.  
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4.3.2.3    Analytical Results of Delineating Time Characteristics in P and T waves  

 

In this section, twenty eight ECG records were processed through the proposed 

delineation HSDPTW approach, and all delineated (onset, peak, and end) of P and T 

wave time locations were then evaluated by calculating the statistical metrics mentioned 

in Section 4.3.2.1 to prove the ability of this approach to perform accurate delineation 

for all these time characteristics. The selected ECG records were collected from QTDB 

as four random records from each of the seven categories in QTDB described in Chapter 

2 Section 2.3.2.2. The delineation results of the onset, peak, and end) time locations for 

all twenty eight ECG records are illustrated in Table 4.5. 

Table 4.5: Analytical Results of  Statistical Metrics (Sensitivity, Specificity, Mean, 
and Standard Deviation) Obtained by Applying Proposed  HSDPTW Delineation 

Approach on 28 ECG Records From QTDB 
 

D
.B

 

R
ec

or
d 

Parameters PON PPEAK POFF TON TPEAK TOFF 

M
IT

-B
IH

 A
rr

hy
th

m
ia

  

SE
L

 1
00

 Stored Beats 1129  1122  
FN  ,    FP 0   ,   4   0   ,  7   

Se(%) , P+(%)    100   ,  99.65     100     ,    99.37 
m ± s (ms) -0.8 ± 2.4 -0.8 ± 2.5  -1.9 ± 4.4 -1.2 ± 4.1 0.6 ± 12.7 -6.8 ± 9.9 

P.T (s) 3.35 

SE
L

 1
16

 Stored Beats 1019 1183 
(FN) , (FP) 0 ,  3 0 ,  2  

Se(%) , P+(%) 100      ,     99.71 100      ,      99.83  
m ± s (ms) -4.7 ± 3.6 1.1 ± 3.4 0.5 ± 2.5 -1.6 ± 9.0 1.0 ± 6.1 4.9 ± 8.9 

P.T (s) 3.64 

SE
L

 2
13

 Stored Beats 1573 1631 
(FN) , (FP) 0   ,    7 0   ,    4 

Se(%) , P+(%)  100     ,    99.56   100    ,    99.76 
m ± s (ms) -1.1 ± 2.8 0.1 ± 6.5 4.4 ± 3.2 -0.8 ± 6.2 -0.5 ± 10.3 -1.6 ± 7.5 

P.T (s) 3.48 

SE
L

 2
32

 Stored Beats  784 847 
(FN) , (FP) 0 ,  3 0    ,    5 

Se(%) , P+(%)   100     ,     99.62   100     ,    99.41 
m ± s (ms) -2.2 ± 7.0 -1.8± 9.2 4.2 ± 8.5 -7.8 ± 4.8 1.1 ±  11.0 -4.6 ± 7.3 

P.T (s) 2.24 
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Table 4.5: Continued 
 

D
.B

 
R

ec
or

d 

Parameters PON PPEAK POFF TON TPEAK TOFF 

M
IT

-B
IH

 S
T 

C
ha

ng
e 

 
SE

L
 3

01
 Stored Beats 1282 1347 

(FN) , (FP) 0   ,    8 0      ,       0 
Se(%) , P+(%)    100   ,    99.38 100   ,    100 

m ± s (ms) -6.6 ± 4.5 -1.5 ± 3.4 -3.9 ± 4.2 -4.7 ± 8.3 -0.8 ± 6.5 -0.8 ± 6.8 
P.T (s) 3.35 

SE
L

 3
02

 Stored Beats 1497 1499 
(FN) , (FP) 0    ,    0 0  ,    0 

Se(%) , P+(%) 100     ,     100 100     ,     100 
m ± s (ms) -3.6 ± 1.9 -2.1 ± 1.5 -0.8 ± 2.1 -2.3 ± 3.6 -1.3 ± 5.5 2.2 ± 3.8 

P.T (s) 3.44 

SE
L

 3
06

 Stored Beats 1036 1039 
(FN) , (FP) 0    ,    0 0    ,    0 

Se(%) , P+(%) 100     ,     100 100     ,     100 
m ± s (ms) -4.2 ± 2.7 -1.7 ± 1.9 -3.7 ± 2.6 -4.6 ± 1.6 -0.2 ± 1.1 1.9 ± 1.2 

P.T (s) 3.27 

SE
L

 3
08

 Stored Beats 1202 1289 
(FN) , (FP) 0    ,    15 0   ,   14 

Se(%) , P+(%)   100   ,   98.77    100    ,     98.93 
m ± s (ms) -4.5 ± 7.2 -4.1 ± 6.8 -1.9 ± 5.8 -2.4 ± 5.1 -0.5 ± 7.0  -1.6 ± 5.0 

P.T (s) 3.26 

M
IT

-B
IH

 S
up

er
 v

en
tr

ic
ul

ar
 A

rr
hy

th
m

ia
  

SE
L

 8
03

 Stored Beats 953 1025 
(FN) , (FP) 4  ,   8 0  ,  9 

Se(%) , P+(%) 99.58    ,    99.16    100    ,    99.12 
m ± s (ms) -4.7 ± 3.1 1.1 ± 2.3 2.2 ± 1.3  -2.1± 3.7  0.7 ± 5.6 -0.2 ± 3.4  

P.T (s) 3.39 

SE
L

 8
11

 Stored Beats 747 755 
(FN) , (FP)    0   ,    15 0   ,   14 

Se(%) , P+(%)      100    ,    98.77    100    ,     98.93 
P.T (s) -2.5 ± 3.1  1.5 ± 2.6 1.5 ± 2.3 -0.6 ± 1.9 -1.3 ± 2.9 -1.0 ± 2.3 
P.T (s) 2.13 

SE
L

 8
21

 Stored Beats 1447 1550 
(FN) , (FP) 0   ,    12 0  ,   15 

Se(%) , P+(%) 100     ,     99.17 100     ,     99.04 
m ± s (ms) -3.8 ± 9.2 -1.1 ± 7.4 5.4 ± 7.7 -3.2 ± 7.3  2.5 ± 4.8 4.7 ± 2.8 

P.T (s) 2.28 

SE
L

 8
53

 Stored Beats 988 1110 
(FN) , (FP) 0    ,    4 0    ,    2 

Se(%) , P+(%) 100     ,    99.59 100     ,     99.82 
m ± s (ms) -2.0 ± 5.3 0.8 ± 3.8 1.9 ± 6.9 -8.9 ± 6.8 -0.4 ± 2.0 -1.6 ± 6.1 

P.T (s) 2.22 
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Table 4.5: Continued 
 

D
.B

 
R

ec
or

d 
Parameters PON PPEAK POFF TON TPEAK TOFF 

M
IT

-B
IH

 N
or

m
al

 S
in

us
 R

hy
th

m
 SE

L
 1

62
65

 Stored Beats 712 1030 
(FN) , (FP) 0    ,    0 0    ,    0 

Se(%) , P+(%) 100     ,     100 100     ,     100 
m ± s (ms) 0.5 ± 1.0 0.7 ± 0.8 0.8 ±  3.5 -0.6 ±  6.4 0.2 ± 0.9 -0.7 ± 1.3 

P.T (s) 2.17 

SE
L

 1
62

73
 Stored Beats 818 1110 

(FN) , (FP) 0    ,    0 0    ,    0 
Se(%) , P+(%) 100     ,     100 100     ,     100 

m ± s (ms) -0.03  ± 1.3 0.5 ± 0.7 1.3 ± 1.4 -4.2  ±  1.9 -0.2± 0.7 0.8 ± 1.9 
P.T (s) 2.06 

SE
L

 1
64

83
 Stored Beats 1085 1084 

(FN) , (FP) 0    ,    6 0    ,    7 
Se(%) , P+(%) 100     ,     99.45 100     ,     99.35 

m ± s (ms) 3.9 ± 1.4 -2.7 ± 1.5 1.2 ± 0.3 -0.9 ± 1.2 0.3 ± 0.5 -0.1 ± 0.7 
P.T (s) 3.5 

SE
L

 1
67

95
 Stored Beats 759 759 

(FN) , (FP) 0    ,    0 0    ,    0 
Se(%) , P+(%) 100     ,     100 100     ,     100 

m ± s (ms) -12.3 ± 2.5 -7.7 ± 2.3 -6.7 ± 2.4 -4.8 ±  1.3 0.3  ± 0.5 -1.9 ± 0.8 
P.T (s) 3.44 

E
ur

op
ea

n 
ST

-T
   

SE
L

 0
10

6 Stored Beats 894 858 
FN  ,    FP                                0   ,   3                                 0  ,  4 

Se(%) , P+(%) 100  ,   99.33 100  ,   99.53 
m ± s (ms) -7.1 ± 1.2 4.2  ±  1.3 9.9  ±  2.2 -3.8 ± 4.4 7.1 ±  5.6 6.0 ± 4.5 

P.T (s) 3.25 

SE
L

 0
12

2 Stored Beats 
  

1412 
  

1412 
(FN) , (FP) 0   ,    12                                0    ,    10 

Se(%) , P+(%) 100     ,     99.15 100     ,     99.29 
m ± s (ms) 5.4 ± 1.1 3.4  ±1.0 14.2 ±1.0 3.8 ± 10.7 13.9 ± 16.6 13.8 ± 12.3 

P.T (s) 3.6 

SE
L

 0
50

9 Stored Beats 1001 1025 
(FN) , (FP) 0   ,   10                                0   ,  10 

Se(%) , P+(%)   100  ,   99.01 100  ,   99.03 
m ± s (ms) -1.9 ± 7.1 -3.0  ± 8.2 3.3  ±  7.2 -0.7 ±  3.1 2.5 ± 1.6 4.3 ± 1.8 

P.T (s) 3.43 

SE
L

 0
61

2 Stored Beats 749 749 
(FN) , (FP) 0    ,    9 0    ,    10 

Se(%) , P+(%) 100     ,     98.81 100     ,    98,68 
m ± s (ms) -0.7 ± 4.2 -0.4  ±  6.5 4.8  ± 6.2 -0.1 ±  3.4 0.7 ± 3.2 -0.8 ±  3.4 

P.T (s) 3.47 
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Table 4.5: Continued 
 

D
.B

 
R

ec
or

d 
Parameters PON PPEAK POFF TON TPEAK TOFF 

B
IH

 S
ud

de
n 

D
ea

th
 P

at
ie

nt
s  

SE
L

 3
4 

Stored Beats 582 896 
(FN) , (FP) 0  , 2 0  ,   12 

Se(%) , P+(%)      100 ,  99.65 100  ,  98.67 
m ± s (ms) -3.0 ± 2.9 -2.2   ± 2.4 2.9  ±  2.5 -0.4 ±10.5 0.2 ±  6.4 1.03 ± 9.5 

P.T (s) 2.21 

SE
L

 3
9 

Stored Beats 1147 1162 
(FN) , (FP) 0  ,  8 0  ,   11 

Se(%) , P+(%) 100  ,   99.30 100  ,   99.06 
m ± s (ms) -2.1 ±  4.5 -1.3  ±  3.7 0. 8  ± 2.7 4.8 ± 10.6 4.4 ± 10.8 -5.9 ± 8.3 

P.T (s) 2.43 

SE
L

 4
8 

Stored Beats 1335 1394 
(FN) , (FP) 0    ,    0 0    ,    0 

Se(%) , P+(%) 100     ,     100 100     ,     100 
m ± s (ms) 1.3 ± 3.3 -1.5  ±  2.8 0.7  ± 3.1 7.2 ± 10.7 0.8 ± 6.8 1.6 ± 7.9 

P.T (s) 2.38 

SE
L

 1
71

52
 Stored Beats 1625 1615 

(FN) , (FP)    4    ,    10   6    ,    11 
Se(%) , P+(%) 99.75   ,   99.35 99.62  ,  99.32 

m ± s (ms) -9.6  ±  5.5 -5.7  ±  5.8 0.5  ± 5.4 1.9  ± 8.4 11.7 ±11.3 13.6 ±10.9 
P.T (s) 2.39 

M
IT

-B
IH

 L
on

g 
Te

rm
 E

C
G

 
SE

L
 1

40
46

 Stored Beats 1230 1256 
(FN) , (FP) 0    ,  11 0   ,  25 

Se(%) , P+(%) 100   ,   99.11 100  ,  98.04 
m ± s (ms) -2.7  ±  2.6 -0.9  ±  1.9 -0.7 ±  2.2 -4.2  ±  6.5 1.4  ± 5.5 11.8  ± 7.7 

P.T (s) 2.19 

SE
L

 1
41

57
 Stored Beats 910 1079 

(FN) , (FP) 0    ,    12 0    ,    21 
Se(%) , P+(%) 100     ,     98.69 100     ,     98.08 

m ± s (ms) -2.1  ±  3.01 -1.9 ± 3.03 -4.06 ± 5.3 -0.1  ±  5.3 0.9  ±  4.6 8.9  ±  9.9 
P.T (s) 2.13 

SE
L

 1
41

72
 Stored Beats 659 637 

(FN) , (FP) 0    ,   12 0    ,   15 
Se(%) , P+(%) 100     ,     98.21 100     ,     97.69 

m ± s (ms) -4.3 ±  1.6 -2.4 ± 1.1 -11.1 ± 2.1 0.7 ± 3.8 -5.4 ± 8.7 -0.9 ± 5.8 
P.T (s) 2.12 

SE
L

 1
58

14
 Stored Beats 1006 1024 

(FN) , (FP) 0    ,    10 0    ,    15 
Se(%) , P+(%) 100     ,     99.01 100     ,     98.55 

m ± s (ms) -2.2 ± 1.7 -0.9  ±  1.1 -0.3  ± 1. 8 1.4  ±  5.5 -0.2  ±  1.8 -3.4  ± 3.5 
P.T (s) 2.17 

Average Se, P+ (%) 99.97       ,         99.36 99.98       ,         99.26 
Average m + s  (ms) -3.0 ±  2.9 -0.7 ± 4.4 0. 7 ± 4.6 -3.3 ± 4.9 0.2 ± 5.4 -0.4 ± 5.7 

Average Processing Time (s) 2.745 

 

 

 

 

 

 

 

©
 T

his 
ite

m
 is

 p
ro

te
ct

ed b
y o

rig
in

al
 co

pyr
igh

t 



 141 

 
As mentioned in Chapter 3 Section 3.3.2, the proposed HSDPTW approach to 

delineate time characteristics of P and T waves requires previous delineating of the QRS 

complex time locations, thus certain QRS detection method must be applied first. The 

proposed QRS detection RFEM approach mentioned in Chapter 3 Section 3.2 with an 

overall detection result of Se = 99.95% and P+ = 99.97% is considered for the QRS 

subject detection. The validation results presented in Table 4.5 prove that the proposed 

HSDPTW approach performs significant average Se (99.97% and 99.98%) for P and T 

wave, respectively which proves the ability of HSDPTW to minimize the probability of 

detecting false negatives waves. Moreover, at a high degree, the proposed HSDPTW 

approach has a good average P+ (99.36 % and 99.26%) for P and T wave detection, 

respectively. This relative decline comes from missing some P and T waves in the 

QTDB annotated data file in spite of the existence of these waves in the tested ECG 

signal and confirmation by site cardiologists. Therefore, these missing waves were 

detected as false positive waves (FP) which leads to a decreasing percentage of P+. 

Continuously, the robustness of HSDPTW to delineate accurate time locations of peak 

and boundaries that are closest to those annotated manually by cardiologists can be 

proved through the average time deviation expressed by m which does not exceed one 

ECG sample (4 ms) as well as the average s (5 ms) for the P wave (6 ms) for the T 

wave. The resulting s and m values are satisfactory due to the huge size of the ECG 

signals with different categories.  

The instantaneous processing based technique followed by the detection 

algorithms in HSDPTW to delineate the time characteristics of P and T wave and the 

simple mathematical calculations were implemented inside these algorithms. As a 

result, the average processing time required to perform the complete delineation of peak 

and boundary time locations in the P and T wave is about 2.745 s for a 15 minute 
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recording (about 225,000 ECG beats) as illustrated in Table 4.5. Furthermore, the 

processing time (P.T) required by HSDPTW to perform a complete delineation of the P 

and T wave in each of the 28 ECG records used to validate the proposed approach is 

presented in the same table. The processing time in all ECG records was obtained by a 

MATLAB implementation on a 2.1-GHz Core-i3 of (4GB RAM).  

 

4.3.2.4    Validation of Proposed HSDPTW Approach 

 

In this section, the performance of the proposed HSDPTW approach is evaluated 

by comparing the statistical evaluation metrics (Se, P+, m, and s) of the onset, peak, and 

end time locations in the P and T wave obtained by the proposed approach using the 

ECG records from QTDB with the corresponding metrics obtained from five PT 

detection methods (Ghaffari et al., 2009; C. Lin et al., 2010; Madeiro et al., 2013; A. 

Martínez et al., 2010; J. P. Martínez et al., 2004) proposed in literature using the same 

ECG database. The validation results presented in Table 4.6 demonstrate the 

effectiveness of the HSDPTW to delineate onset, peak and end time locations of the P 

and T waves with significant accuracy through a higher percentage of Se and P+ with 

respect to the other detection methods considered for validation.       

Through the average values of m and s illustrated in Table 4.6, the time 

deviations determined by the peak time locations in P and T wave are more accurate 

than those for the boundary (onset and end) time locations. In other words, the proposed 

delineation approach successfully performs exact computations of the peak time 

location, while for the onset and end time locations; it provides an approximation in 

some cases due the various shapes of the end points in ECG waves for different 

categories. However, the average values for m and s are higher than 4 with respect to 

the up-to-date detection methods considered for validation.   
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Table 4.6: Comparison the Statistical Metrics (Se, P+, m, and s) of the Delineated 
Onset, Peak, and End Time Locations in P and T wave Obtained by  

the Proposed HSDPTW Approach and Other Five Detection Methods Using ECG 
Records From QTDB, (N/A: not applicable, N/R: not reported) 

 

Method 
St

at
is

tic
al

 
M

et
ri

cs
 

PON PPEAK POFF TON TPEAK TOFF 

HSDPTW 
(Proposed work) 

Se(%) 
P+(%) 
m + s 

99.97                
99.36 

-3.0 + 2.9 

99.97                
99.36 

-0.7 + 4.4 

99.97                
99.36 

0. 7 + 4.6 

99.98               
99.26 

-3.3 + 4.9 

99.98               
99.26 

0.2 +5.4 

99.98               
99.26 

-0.4 + 5.7 

Automatic 
Delineation by PT 
(A. Martínez et al., 
2010) 

Se(%) 
P+(%) 
m + s 

98.65 
97.52 

2.6 ± 14.5 

98.65 
97.52 

32 ± 25.7 

98.65 
97.52 

0.7 ±14.7 

N/A 
N/A 
N/A 

99.20 
99.01 

5.3 ±12.9 

99.20 
99.01 

5.8 ± 22.7 

ECG waves detection 
by Bayesian 
Approach and PCGS  
(C. Lin et al., 2010) 

Se(%) 
P+(%) 
m + s 

98.93 
97.40 

3.7 + 17.3 

98.93 
97.40 

4.1 + 8.6 

98.93 
97.40 

4.1 + 8.6 

99.01 
96.07 

7.1+18.5 

99.81 
98.97 

1.3 +10.5 

99.81 
98.97 

4.3+ 20.8 

T wave Detection by 
skewed Gaussian  
function(Madeiro et 
al., 2013) 

Se(%) 
P+(%) 
m + s 

N/R 
N/R 
N/R 

N/R 
N/R 
N/R 

N/R 
N/R 
N/R 

N/R 
N/R 
N/R 

99.32 
99.47 

1.4 + 9.0 

99.32 
99.47 

2.8 +15.3 

Detection of P and T 
wave in Multi-ECG 
Lead using DWT 
(Ghaffari et al., 2009) 

Se(%) 
P+(%) 
m + s 

99.46 
98.83 

-1.2 + 6.3 

99.46 
98.83 

4.1+10.5 

99.46 
98.83 

0.7 + 6.8 

99.87 
99.80 

-1.4 + 5.7 

99.87 
99.80 

0.3+4.1 

99.87 
99.80 

0.8 + 10.9 

A Wavelet-Based 
ECG Delineator (J. P. 
Martínez et al., 2004) 

Se(%) 
P+(%) 
m + s 

98.87 
91.03 

2.0 +14.8 

98.87 
91.03 

3.6 +13.2 

98.87 
91.03 

1.9 +13.8 

N/A 
N/A 
N/A 

99.77 
97.79 

0.2 +13.9 

99.77 
97.79 

-1.6 +18.1 

 
 
 
4.4    Performance Evaluation of LVH Cardiac Disease Diagnosis  

 

In this section, the performance of proposed approach presented in Chapter 3 

Section 3.4.1.4 of the diagnosis of LVH cardiac disease is evaluated by applying this 

approach on 50 ECG records which were pre-diagnosed by cardiologists. The ability of 

this approach to provide accurate diagnosis results is evaluated by calculating three 

statistical metrics (sensitivity, specificity, and accuracy). Additionally, the simulation 
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results of these metrics are validated with the corresponding results obtained by well-

known LVH diagnostic criteria proposed in literature. 

 

4.4.1    Selection of Tested ECG Data for Diagnosing LVH Cardiac Disease 

 

The process of selecting suitable ECG data for the proposed diagnosis system is 

a more difficult issue due to the limited resources of 12-lead ECG data with specific 

cardiac disease especially high risk cardiac diseases like LVH. Thus, only 50 12-lead 

ECG records were selected to validate performance of the proposed diagnosing 

approach. The first group of tested data includes 34 ECG records which were collected 

from the INCART database, whereas most ECG records in this database were diagnosed 

manually by cardiologists as mentioned in Chapter 2 Section 2.3.2.3. The selected 

records include 11 patients that suffered from LVH cardiac disease and other patients 

with different cardiac diseases such as Acute Myocardial Infarction (AcMI), Transient 

Ischemic Attack (TIA), Ventricular Bigeminy (VBG), Atrioventricular nodal block 

(AVNB), Sinus Node Dysfunction (SND), Atrial Fibrillation (AF), Premature 

Ventricular Contractions (PVCs), Earlier Myocardial Infarction (EarMI), WPW, and ST 

elevation (STele). The second group of tested data includes 26 ECG records which were 

reconstructed using the proposed digital recovery approach presented in Chapter 3 

Section 3.2.2.1; the printed charts of these records were collected from three cardiology 

references (Azeem et al., 2005; Hampton, 2013; Jenkins & Gerred, 2011). The 

reconstructed ECG data includes 10 records with LVH cardiac disease and 11 records of 

normal patients. 
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4.4.2    Quantitative Evaluation of Diagnosing Process 

 

The quantitative evaluation of the proposed diagnosis approach can be 

performed by computing three statistical metrics which are mostly used to evaluate the 

performance of different approaches of diagnosing cardiac diseases based on ECG 

analysis using various computerized intelligent systems (Chang et al., 2012; Han & 

Kamber, 2006; Jager, Moody, Taddei, & Mark, 1991). The first metric is sensitivity 

which is also used to evaluate ECG wave detection as mentioned in Section 4.3.1.3. The 

same mathematical relation defined in Equation 4.7 is used to determine diagnosis 

sensitivity but the computed parameters for this relation have different concepts.  

Where, TP denotes the total number of true positive diagnosis (LVH was present and 

was diagnosed), and FN stands for false negative diagnosis (LVH was present but was 

not diagnosed).  

The second metric is specificity which is defined by Equation 4.12, where TN 

denotes the total number of true negative diagnosis (LVH was not present and was not 

diagnosed), and FP stands for the false positive diagnosing (LVH was not present but 

was diagnosed).  

  

𝐻𝐻𝑈𝑈𝑠𝑠𝑐𝑐𝑠𝑠𝐿𝐿𝑠𝑠𝑐𝑐𝑠𝑠𝑡𝑡𝐹𝐹 =
𝑄𝑄𝐴𝐴

𝑄𝑄𝐴𝐴 + 𝐹𝐹𝐴𝐴
× 100%                                                                                      (4.12) 

 

The last considered metric for this evaluation is the accuracy of the diagnosis 

which is defined in Equation 4.13. The computed accuracy describes the overall 

performance of the diagnosis approach because it considers the positive (true and false) 

as well as negative (true and false) events.  
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𝐴𝐴𝑐𝑐𝑐𝑐𝑠𝑠𝑟𝑟𝐵𝐵𝑐𝑐𝐹𝐹 =
𝑄𝑄𝐴𝐴 + 𝑄𝑄𝐴𝐴

𝑄𝑄𝐴𝐴 + 𝐹𝐹𝐴𝐴 + 𝐹𝐹𝐴𝐴 + 𝑄𝑄𝐴𝐴
× 100%                                                                  (4.13) 

 

4.4.3    Analytical Results of Proposed LVH Diagnosing Approach 

 

In this section, the proposed approach of diagnosing LVH cardiac disease is 

applied on the 50 ECG records mentioned in the previous section. Each of these records 

includes standard 12 leads of ECG signal.  

The first step of this implementation process is to determine eleven ECG voltage 

parameters required to compute (MDV, Expr1 and Expr2) that are mentioned in Chapter 

3 Section 3.4.1.4. As, all these parameters are related to QRS complex characteristics, 

either voltage amplitude of the R or S wave, a certain method of QRS detection is 

needed to delineate these characteristics. The proposed RFEM approach of QRS 

detection mentioned in Chapter 3 Section 3.3.1 is considered to delineate time locations 

of R and S waves, and then to determine the required voltage parameters for three 

diagnostic expressions (MDV, Expr1 and Expr2). The simulation results of eleven 

voltage parameters as well as the corresponding proposed decision values obtained by 

MDV expression for the 50 ECG records which were selected previously as the tested 

data for the proposed diagnosis process are illustrated in Table 4.7. 

The final decision related to the diagnosis of LVH cardiac disease is obtained by 

a logical value defined in Chapter 3 Section 3.4.1.2 Equation 3.22. This relation 

represents the proposed diagnostic criterion of diagnosing LVH cardiac disease which is 

integrated using the proposed FIS shown in Chapter 3 Section 3.4.1.4 Figure 3.13. The 

results of diagnosing LVH cardiac disease obtained by the proposed approach and nine 
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traditional diagnostic criteria (Sokolow, Cornell voltage, REC-CRT, and CRTA1 ... 

CRTA6) described in Chapter 3 Section 3.4.1.1 are illustrated in Table 4.8. 

 

Table 4.7: The ECG Voltage Parameters of the LVH Diagnostic Criteria and 
MDV values of the Proposed Diagnostic Criterion 

 

# 

R
ec

or
d 

G
en

de
r 

Pr
e-

D
ia

gn
os

ed
 

C
ar

di
ac

 D
is

ea
se

 Voltage Parameters  
R

(I
) 

S(
II

I)
 

S(
aV

R
) 

R
(a

V
L

) 

R
(a

V
F)

 

S(
V

1)
 

S(
V

2)
 

S(
V

3)
 

R
(V

4)
 

R
(V

5)
 

R
(V

6)
 

M
D

V
 

1 I01 F AHT 10.1 12.3 9.4 5.7 12.2 5.1 7.2 11.9 13.6 11.1 11.1 59.4 

2 I02 F AHT 12.7 9.8 8.7 6.6 9.7 6.8 8.1 11.7 14.9 10.5 N.A 45.8 

3 I05 M AcMI 2.6 4.9 1.8 2.8 2.4 7.9 9.0 9.0 15.3 15.7 9.6 52.1 

4 I10 F AVNB 12.2 2.7 9.4 9.1 4.6 10.7 11.6 10.6 5.1 10.3 12.6 46.9 

5 I11 M AVNB 8.9 5.4 8.7 5.7 6.5 9.6 7.9 8.3 5.4 9.5 10.4 44.1 

6 I15 M TIA 4.6 12.9 10.5 6.9 16.9 11.5 12.0 14.7 3.2 15.9 18.9 76.9 

7 I17 M TIA 3.4 4.7 5.2 1.2 3.4 11.7 13.0 16.9 14.9 5.6 6.5 46.6 

8 I20 F LVH 4.7 15.8 12.0 6.8 17.8 10.6 9.1 13.4 10.2 17.6 15.4 79.3 
9 I21 F LVH 2.0 17.6 10.3 8.9 18.8 9.2 8.9 11.3 11.9 16.5 14.0 78.2 
10 I22 F LVH 4.3 13.3 18.2 17.1 33.9 13.0 23.0 39.2 27.9 26.3 20.2 128.0 
11 I24 M EarMI 1.9 8.0 7.8 3.7 8.2 5.3 23.8 16.7 16.8 5.0 3.0 51.4 
12 I26 F SND 4.3 5.1 5.7 1.6 6.3 9.0 7.8 11.0 7.1 15.5 14.2 55.3 
13 I28 M PVCs 1.2 15.9 8.7 7.2 14.8 7.8 16.1 13.3 16.0 35.5 17.0 102.4 
14 I32 F VBG 1.1 6.6 4.1 1.3 4.1 5.1 4.8 5.7 1.9 7.1 10.8 35.32 
15 I33 M PVCs 4.3 10.7 8.6 4.1 12.4 11.9 23.8 20.9 9.7 12.0 12.0 73.95 
16 I35 F LVH 8.6 50.4 25.4 24.5 47.2 18.9 26.0 64.9 39.9 40.1 76.6 265.4 
17 I36 F LVH 8.5 27.8 18.9 10.9 26.1 19.1 18.3 34.8 17.8 29.3 49.9 165.1 
18 I37 F LVH 8.8 43.9 24.2 21.0 39.2 14.5 25.3 55.3 39.8 33.5 61.9 226.3 
19 I40 M TIA 5.9 4.2 7.2 4.2 3.6 5.2 8.3 9.7 12.1 15.9 12.1 51.74 
20 I41 M TIA 3.5 5.5 4.7 3.5 1.1 3.7 6.2 14.2 16.8 28.1 19.7 74.38 
21 I44 F LVH 6.8 44.3 23.3 23.7 43.5 12.8 20.4 25.4 31.7 28.6 19.8 159.6 
22 I45 F LVH 5.1 42.4 21.4 19.8 38.6 12.8 14.7 21.8 32.3 26.9 17.8 147.1 
23 I46 F LVH 5.3 39.4 19.3 18.9 35.4 10.9 13.6 24.7 28.9 23.5 15.2 134.9 
24 I50 M AF 8.8 6.7 11.7 3.0 9.8 10.9 16.2 13.5 10.0 12.4 10.5 59.7 
25 I55 M EarMI 12.0 23.3 6.0 16.7 14.9 12.0 7.6 18.0 13.4 8.6 6.2 71.1 
26 I56 M EarMI 5.9 14.0 3.8 10.1 10.9 7.7 4.2 12.7 13.3 5.2 3.8 47.5 
27 I58 F AHT 6.7 5.2 7.9 1.5 8.2 7.1 5.0 4.5 N.A 9.2 10.2 36.9 
28 I60 F STelv 7.9 15.5 14.6 5.3 11.8 6.3 4.9 8.3 8.7 16.6 16.7 68.7 
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The validation results of diagnosing LVH cardiac disease illustrated in Table 4.8 

show that some ECG records are diagnosed manually with LVH cardiac disease. 

However, the determined diagnosis about LVH cardiac disease is not verified (i.e. false 

negative diagnosing), for example Record I20, I21 are not diagnosed with LVH by 

seven traditional criteria (Skolow, CRTA1 to CRTA6), while these records are 

annotated manually with LVH cardiac disease. Additionally, other ECG records in the 

same table are normal or pre diagnosed manually with other cardiac diseases (non LVH 

  Table 4.7: Continued 
 

# 
R

ec
or

d 

G
en

de
r 

Pr
e-

D
ia

gn
os

ed
 

C
ar

di
ac

 D
is

ea
se

 Voltage Parameters  

R
(I

) 

S(
II

I)
 

S(
aV

R
) 

R
(a

V
L

) 

R
(a

V
F)

 

S(
V

1)
 

S(
V

2)
 

S(
V

3)
 

R
(V

4)
 

R
(V

5)
 

R
(V

6)
 

M
D

V
 

29 I68 M WPW 9.8 15.7 4.9 12.4 2.0 8.4 11.7 15.1 10.4 10.6 6.2 56.3 

30 I69 M PVCs 5.9 20.5 12.5 6.6 7.9 6.1 8.7 18.0 16.7 21.2 13.7 84.0 

31 I70 M WPW 8.5 8.4 11.7 3.5 11.8 13.7 27.5 7.9 11.4 17.2 16.8 78.4 

32 I71 M WPW 7.3 8.2 10.1 1.6 10.8 13.7 11.7 8.7 8.6 15.2 16.7 66.8 

33 I72 M LVH 7.7 66.0 41.9 10.3 31.1 35.3 22.7 42.4 12.7 31.2 22.5 191.9 

34 I73 M LVH 5.8 41.9 17.1 21.5 37.3 4.7 8.2 26.0 22.0 11.9 46.0 148.8 

35 H1 M LVH 10.7 17.0 17.1 9.1 22.9 9.6 27.1 28.6 21.4 34.3 29.8 135.9 

36 P72 M LVH 35.0 22.2 24.0 25.0 7.5 22.5 9.0 24.5 24.2 23.5 22.0 111.6 

37 P73 M LVH 27.0 11.5 18.0 19.0 31.0 21.5 25.4 31.3 16.0 42.0 43.0 159.1 

38 P74 M Normal 11.3 4.5 11.3 7.5 3.5 12.3 22.5 13.1 21.0 22.5 20.0 83.18 

39 P75 F Normal 7.3 4.5 8.8 2.1 8.0 11.0 9.5 10.5 13.3 12.5 9.5 52.63 

40 R40 F LVH 8.8 12.8 14.6 2.8 19.3 28.8 36.1 31.4 18.5 23.4 14.4 117.6 

41 R85 M LVH 17.1 3.2 14.7 12.3 9.9 23.6 27.9 25.1 29.4 36.1 35.2 132.6 

42 W1 F Normal 6.5 2.2 5.7 4.2 2.8 9.8 23.3 16.5 3.8 6.7 7.3 44.33 

43 W2 M LVH 15.3 15.8 16.9 14.7 7.9 18.5 19.6 14.8 16.1 31.9 23.3 109.5 

44 W3 F LVH 7.5 6.2 6.6 6.6 6.3 19.1 22.4 16.8 23.1 32.1 15.2 97.25 

45 W4 F LVH 12.3 3.5 9.5 9.0 3.9 13.8 29.8 31.6 6.9 18.8 16.4 81.67 
46 W5 M LVH 15.5 14.6 11.3 15.8 13.5 11.9 14.9 11.9 18.8 28.9 27.3 106.4 
47 W6 F LVH 13.5 3.7 13.3 5.5 9.5 13.9 14.3 14.2 16.9 27.2 23.3 88.56 
48 W7 F Normal 4.8 3.6 4.7 2.1 4.3 6.5 14.3 17.6 7.1 13.4 10.7 52.5 
49 W8 M Normal 10.8 13.6 5.6 12.3 2.4 10.3 25.3 25.8 13.9 10.3 6.4 69.08 
50 W9 F Normal 11.4 6.8 7.6 8.9 3.2 14.8 24.8 24.3 9.3 11.1 12.8 68.87 
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cardiac disease), but the determined diagnosis is LVH cardiac disease (i.e. false positive 

diagnosing), for example Record I55 is diagnosed wrongly with LVH according to four 

traditional criteria (Cornel, REC-CRTA, CRTA1, and CRTA2), while this record is 

annotated manually with Earlier MI cardiac disease.  On the other hand, the diagnosis 

results obtained by the proposed system prove that all LVH samples are recognized 

successfully and all non-LVH samples are excluded. Furthermore, these results prove 

the significant ability of proposed approach to provide an accurate diagnosis without 

any interference with other cardiac diseases.  

 

 

Table 4.8: Comparison Between the LVH Diagnosis Results Obtained by the 
Proposed Approach and Nine traditional Diagnostic Criteria Using 50 ECG 

Patients Suffering From Different Cardiac Diseases. (■: LVH, □: Other Cardiac 
Diseases or Normal Patient) 

 

# 

R
ec

or
d 

G
en

de
r 

Pr
e 

D
ia

gn
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ed
 

C
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di
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D
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ea

se
 

Pr
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os
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C

ri
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ri
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Sk
ol

ow
 

C
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ne
ll 

R
E

C
-

C
R

T
A

 

C
R

T
A

1 

C
R

T
A

2 

C
R

T
A

3 

C
R

T
A

4 

C
R

T
A

5 

C
R

T
A

6 

1 I01 F AHT □ □ □ □ □ □ □ □ □ □ 
2 I02 F AHT □ □ □ □ □ □ □ □ □ □ 
3 I05 M AcMI □ □ □ □ □ □ □ □ □ □ 
4 I10 F AVNB □ □ □ □ □ □ □ □ □ □ 
5 I11 M AVNB □ □ □ □ □ □ □ □ □ □ 
6 I15 M TIA □ □ □ ■ □ □ □ □ □ □ 
7 I17 M TIA □ □ □ □ □ □ □ □ □ □ 
8 I20 F LVH ■ □ ■ ■ □ □ □ □ □ □ 
9 I21 F LVH ■ □ ■ ■ □ □ □ □ □ □ 
10 I22 F LVH ■ ■ ■ ■ ■ □ ■ ■ ■ ■ 
11 I24 M EarMI □ □ □ ■ □ □ □ □ □ □ 
12 I26 F SND □ □ □ □ □ □ □ □ □ □ 
13 I28 M PVCs □ ■ □ ■ □ □ □ □ ■ ■ 
14 I32 F VBG □ □ □ □ □ □ □ □ □ □ 
15 I33 M PVCs □ □ □ ■ □ □ □ □ □ ■ 
16 I35 F LVH ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ 
17 I36 F LVH ■ ■ ■ ■ □ ■ ■ ■ ■ ■ 
18 I37 F LVH ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ 
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Table 4.8: Continued 
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C
R

T
A

2 

C
R

T
A

3 

C
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T
A

4 

C
R

T
A

5 

C
R

T
A

6 

19 I40 M TIA □ □ □ □ □ □ □ □ □ □ 
20 I41 M TIA □ □ □ ■ □ □ □ □ ■ □ 
21 I44 F LVH ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ 
22 I45 F LVH ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ 
23 I46 F LVH ■ □ ■ ■ ■ ■ ■ ■ ■ ■ 
24 I50 M AF □ □ □ □ □ □ □ □ □ □ 
25 I55 M EarMI □ □ ■ ■ ■ ■ □ □ □ □ 
26 I56 M EarMI □ □ □ □ □ □ □ □ □ □ 
27 I58 F AHT □ □ □ □ □ □ □ □ □ □ 
28 I60 F STelv □ □ □ ■ □ □ □ ■ □ □ 
29 I68 M WPW □ □ □ ■ □ ■ □ □ □ □ 
30 I69 M PVCs □ □ □ ■ □ ■ □ □ □ □ 
31 I70 M WPW □ □ □ ■ □ □ □ □ □ ■ 
32 I71 M WPW □ □ □ □ □ □ □ □ □ □ 
33 I72 M LVH ■ ■ ■ ■ □ ■ ■ ■ ■ ■ 
34 I73 M LVH ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ 
35 Oteh M LVH ■ ■ ■ ■ □ ■ ■ ■ ■ ■ 
36 P72 M LVH ■ ■ ■ ■ ■ ■ □ ■ □ ■ 
37 P73 M LVH ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ 
38 P74 M Normal □ □ □ □ □ □ □ □ □ ■ 
39 P75 F Normal □ □ □ □ □ □ □ □ □ □ 
40 R40 F LVH ■ ■ ■ ■ □ □ □ ■ □ ■ 
41 R85 M LVH ■ ■ ■ ■ □ □ □ ■ ■ ■ 
42 W1 F Normal □ □ ■ □ □ □ □ □ □ □ 
43 W2 M LVH ■ ■ ■ ■ ■ ■ □ ■ ■ ■ 
44 W3 F LVH ■ ■ ■ ■ □ □ □ □ □ ■ 
45 W4 F LVH ■ □ ■ ■ □ □ □ □ □ ■ 
46 W5 M LVH ■ ■ □ ■ ■ ■ □ □ ■ ■ 
47 W6 F LVH ■ ■ □ ■ □ □ □ □ ■ ■ 
48 W7 F Normal □ □ □ □ □ □ □ □ □ □ 
49 W8 M Normal □ □ ■ ■ □ □ □ □ □ ■ 
50 W9 F Normal □ □ ■ ■ □ □ □ □ □ ■ 
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4.4.4    LVH Diagnosis Results Using Proposed FIS 

 

In this section, the results of LVH cardiac disease diagnosis which are obtained 

by the proposed FIS for some ECG records are presented. The structure design of the 

proposed FIS illustrated in Chapter 3 Section 3.4.1.4 Figure 3.12 is implemented using 

fuzzy graphical user interface (GUI) editor by a MATLAB environment. Six ECG 

records from the tested data mentioned in Section 4.4.1 were selected as the validation 

data in this implementation. Three ECG records (I28, I50, and I73) were selected from 

male patients and pre diagnosed with PVCs, LVH, AF cardiac diseases, respectively. 

Another three ECG records (I10, I21, and I36) were selected from female patients and 

pre-diagnosed with AVNB, LVH, and LVH, respectively. The final diagnosis in the 

proposed FIS takes the form of activating one or more output MFs mentioned in 

Chapter 3 Section 3.4.1.4 Figure 3.15 based on the conditional results of fuzzy rules that 

are considered in the proposed FIS. Moreover, the results of these rules are varied 

according to the desired entry values by input ECG record. 

Through the implementation of the proposed FIS approach on six ECG records 

presented above, the three cases (I21, I36, and I73) are classified successfully as LVH 

patients; and other cases (I10, I28, and I50) are classified as non LVH patients. 

However the behaviour of the proposed FIS approach to prepare the final classification 

decision is different in all six cases. Therefore the implementation of each case is 

highlighted in more details with the rules viewer diagram which is generated 

automatically by the fuzzy GUI editor. This diagram views all input and output MFs in 

the proposed FIS.  

Three output MFs are considered in the proposed FIS, the first is Expr1, which 

denotes the decision of Cornell or REC_CRTA diagnostic criterion; the second is 

Expr2, which denotes the decision of Cornell and Skolow and successive occurrences in 
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CRTA1-6 diagnostic criteria; the third is MDV, which denotes the decision of the 

proposed diagnostic criterion through three MFs (MDV-Fe-LVH, MDV-Normal, and 

MDV-Ma-LVH). These MFs reflect a diagnosis for LVH female patients, non LVH 

patients, and LVH male patients, respectively.  

In the 1st ECG record (I21), the MDV-Fe-LVH and Expr1 MFs are activated, 

while Expr2 MF is not activated as shown in the rule viewer diagram in Figure 4.9. 

According to these output MFs results, the final diagnosis is LVH based on the main 

diagnosis decision rule defined in Chapter 3 Section 3.4.1.2 Equation 3.22. 

In the 2nd ECG record (I36), the diagnosis of LVH cardiac disease is not decided 

by MDV criterion because both MDV-Fe-LVH and MDV-Normal MFs are activated. 

At the same time, both Expr1 and Expr2 MFs are activated as shown in Figure 4.10. 

Thus, the final diagnosis due to the main diagnosis decision rule is LVH. The diagnosis 

in this case views clearly the reason behind using some LVH traditional criteria in the 

main diagnosis decision rule.       

In the 3rd ECG record (I73), the diagnosis of LVH cardiac disease is prepared 

smoothly because all successive output MFs (MDV-Ma-LVH, Expr1, and Expr2) are 

activated as shown in Figure 4.11.  

In other ECG records which are pre diagnosed with other cardiac diseases. The 

MDV-Normal MF is activated and both Expr1 and Expr2 are not activated in the 4th and 

5th ECG records (I10 and I50) as shown in Figure 4.12 and Figure 4.13, respectively. 

Thus the diagnosis in both cases is prepared smoothly as non LVH patients. In the 6th 

ECG record (I28), the Expr1 is activated, but both the Expr2 and MDV MFs are not 

activated as shown in Figure 4.14. Thus, the final diagnosis is non LVH according to the 

logical value obtained by the main diagnosis decision rule.  
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Figure 4.9: The Generated Rule Viewer Diagram by Proposed FIS on I21 Patient 
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Figure 4.10: The Generated Rule Viewer Diagram by Proposed FIS on I36 Patient 
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Figure 4.11: The Generated Rule Viewer Diagram by Proposed FIS on I73 Patient 
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Figure 4.12: The Generated Rule Viewer Diagram by Proposed FIS on I10 Patient 
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Figure 4.13: The Generated Rule Viewer Diagram by Proposed FIS on I50 Patient 
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Figure 4.14: The Generated Rule Viewer Diagram by Proposed FIS on I28 Patient 
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4.4.5    Validation of Proposed Diagnostic Approach 

  
In this section, the performance of the proposed approach for diagnosing LVH 

cardiac disease is evaluated by comparing the statistical evaluation metrics (sensitivity, 

specificity, and accuracy) mentioned in section 4.4.2, which were obtained by the 

proposed approach using the tested ECG records mentioned in section 4.4.1, with the 

corresponding metrics which are obtained by nine LVH diagnostic criteria using the 

same set of ECG records.  The validation results presented in Table 4.9 show that only 

one metric from the sensitivity or the specificity is high, and other is low or limited, 

except for the proposed criterion which performed perfectly for both metrics.  

 

Table 4.9: Comparison of Evaluation Parameters for Diagnosing LVH Cardiac 
Disease Using Proposed Criterion and Other Nine Diagnostic Criteria 

# Criterion  
Name 

D
es

cr
ip
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of
 E
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at

ie
nt
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ru

e 
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gn

os
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P)

 

Fa
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N
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(F
N

) 

Fa
ls

e 
Po
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tiv

e 
(F

P)
 

T
ru

e 
N
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(T
N

) 

Se
ns

iti
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ty
 (%

) 

Sp
ec

ifi
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ty
 (%

) 

A
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ur
ac

y 
(%

) 
1 Proposed 

Criterion 

T
ot

al
 N

o.
 o

f t
es

te
d 

Pa
tie

nt
s:

 5
0 

21 0 0 29 100 100 100 

2 Skolow 17 4 1 28 80.95 96.55 90.00 

3 Cornell 19 2 4 25 90.48 86.21 88.00 

4 REC-CRTA 21 0 12 17 100 58.62 76.00 

5 CRTA1 

21
 L

V
H

 
Pa

tie
nt

s 11 10 1 28 52.38 96.55 78.00 

6 CRTA2 13 8 3 26 61.90 89.66 78.00 

7 CRTA3 11 10 0 29 52.38 100 80.00 

8 CRTA4 

29
 P

at
ie

nt
s 

w
ith

 o
th

er
 

C
ar

di
ac

 
D

is
ea

se
s 15 6 1 28 71.43 96.55 86.00 

9 CRTA5 16 5 2 27 76.19 93.10 86.00 

10 CRTA6 19 2 6 23 90.48 79.31 84.00 
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Additionally, the results of diagnostic accuracy for all traditional diagnostic 

criteria take the same limits of precision (not exceeding 90%), whereas a perfect 

percentage of diagnostic accuracy (100%) is occurred by using the proposed diagnosis 

criterion. The perfect results of statistical metrics (sensitivity, specificity, and accuracy) 

obtained by the proposed approach demonstrate the robustness of this approach in 

performing a correct LVH diagnosis among various cardiac diseases in the ECG tested 

data.     

4.5    Summary  

In this chapter, many evaluation scenarios have been conducted to validate the 

performance of the proposed approaches. The selection of suitable evaluation scenarios 

for each approach depends mainly on the types of ECG data used for validation, the 

availability of this data in various rhythms/morphologies, and the availability of pre-

defined information for each patient like (cardiac disease, gender, etc), and the standard 

metrics that were adopted for this evaluation.  

For the first approach of digital recovery, two evaluations are presented to 

validate the robustness of this approach to generate highly precise 12 lead raw ECG 

data. The first evaluation is performed to calibrate the graphical behavior of the 

reconstructed data with respect to the baseline detected by the same approach. The 

second is analytical evaluation that takes two forms; a qualitative evaluation that 

computes the similarity between the printed ECG chart and the reconstructed ECG 

signal using a single lead of three ECG charts, and a quantitative evaluation that 

determines the accuracy of the generated raw data by calculating five standard 

parameters for reconstructed data and comparing them with the corresponding 
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parameters which are computed by the ECG machine itself. The same three ECG charts 

were used in this evaluation and final average accuracy exceeded 98%.  

Regarding the RFEM approach which is proposed to detect the QRS complex in 

the ECG signal and delineate its time characteristics, two graphical evaluations are 

performed to compute accuracy of the delineated results. The first is applied to evaluate 

RPEAK time locations using 48 ECG records from the MIT-BIH arrhythmia database, 

which is mostly used by related QRS detection methods. However, the second is 

performed to evaluate all time characteristics of the QRS complex (QONSET, QEND, 

RPEAK, SONSET, and SEND) using five ECG records from the QT database which includes 

manual annotations by cardiologists for all these characteristics. Additionally, the 

detection results obtained by the RFEM approach are validated with eight QRS 

detection methods in literature using three statistical metrics (Fd, Se, and P+), and the 

average processing time to implement this approach is validated with the corresponding 

processing time of three methods in literature. 

Regarding the HSDPTW approach which is proposed to detect the P and T 

waves in the ECG signal and delineate boundary and peak time locations of these 

waves, the delineation results of seven ECG records from QTDB are evaluated 

graphically with the manual annotation characteristics in this database. The ECG 

records were selected randomly from seven QTDB categories in order to prove the 

ability of this approach to process different ECG morphologies. The analytic results of 

the delineated time characteristics in both P and T waves and four statistical evaluation 

metrics (Se, P+, m, and s), which are obtained by applying the HSDPTW approach on 

28 ECG records from QTDB are presented in a single table mentioned in Section 

4.3.2.3 Table 4.5. Additionally, these results are validated with corresponding ones 

reported by five P and T detection methods proposed in literature.   

 

 

 

 

 

 

 

©
 T

his 
ite

m
 is

 p
ro

te
ct

ed b
y o

rig
in

al
 co

pyr
igh

t 



 162 

Regarding The FIS approach which is proposed to diagnose LVH high risk 

cardiac disease using proposed diagnosis criterion. It is applied on the ECG records of 

50 patients, only 21 patients suffered from LVH, while the others suffered from other 

cardiac disease or normal patients. Three statistical evaluation metrics (S, P+, and 

accuracy) are used to evaluate the performance of this approach. The analytic results 

prove that the proposed FIS approach provides perfect percentages (100%) of diagnostic 

accuracy, while the greatest accuracy occurred by the traditional LVH diagnostic 

criteria not exceeding 90%.     
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

 

5.1    Conclusion 

 

As mentioned in Chapter 3 Section 3.1, a new system with three main stages has 

been proposed for analyzing a 12 lead ECG signal, detecting ECG waves (P, QRS 

complex, and T), delineating the time characteristics of ECG waves, and diagnosing a 

specific high risk cardiac disease called LVH. Through the new ECG system, four 

approaches have been proposed based on new processing algorithms to improve the 

performance of different subjects considered in this system with respect to existing 

methods or to automate those using computerized intelligent techniques with respect to 

other subjects that were performed manually by cardiologists like diagnosing high risk 

cardiac diseases.  

The first proposed approach in the new ECG system performs an operation of 

digital recovery to reconstruct 12 lead raw ECG data from colored paper printout 

recordings. In other words, an open bank of 12 lead ECG data can be generated by this 

approach which can assist the researcher to do more work in terms of analyzing and 

interpreting the ECG signal. This approach was characterized by low-cost computing, 

low mathematical complexity, independent of any previous readings, high accuracy of 

the resulting raw ECG data, independent of ECG frequency recording, and ability to 

recover raw ECG data with different morphologies, size of paper printout and pen size 

of printing. Furthermore, it was able to detect the ECG baseline using simple 

calculations. Moreover, the resulting raw ECG data were smoothed and free from the 
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printed text and handwriting inside the paper printout.  As mentioned in Chapter 4 

Section 4.2, the recovered 12 lead ECG data was evaluated graphically with respect to 

the baseline detection, as well as two forms of analytical evaluation being performed for 

a single lead in three ECG recordings with different morphologies. The validation 

results prove the robustness of the proposed approach in reconstructing the ECG data in 

the printed chart with all deviations of finite precision. In addition, high precision 

matching exceeding than 98% was verified between the original and recovered ECG 

data. Furthermore, the proposed digital recovery approach applies simple and fast 

computing for processing a color scanned image of paper printout containing an ECG 

chart. Therefore, it can be easily integrated into a portable smart hardware system which 

can be developed later to do more real time ECG signal analysis and cardiac diseases 

diagnosis. 

The second part of new ECG system includes the process of detecting ECG 

waves and then delineating time characteristics of these waves to compute different 

diagnostic parameters/features related to the ECG signal. Two approaches have been 

proposed in this subject. The first approach named RFEM was designed to detect the 

QRS complex and delineate peak and boundary time locations of their components (Q, 

R, and S) waves. As the RFEM approach is based on a straight forward algorithm to 

perform QRS detection without the need for any mathematical transformation or 

estimation, it is characterized by high-speed processing time. The same instantaneous 

strategy to detect the QRS complex was considered by another approach named 

HSDPTW to detect P and T waves, and then delineate the boundaries and peak time 

locations of these waves (Pon, Ppeak, Poff, Ton, Tpeak, and Poff). Two algorithms were 

applied by the HSDPTW approach to perform the detection of P and T waves within the 
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fixed length search intervals which identified by previous time characteristics of the 

QRS complex.          

The delineated time characteristics determined by the RFEM and the HSDPTW 

approaches were used to calculate significant diagnostic criteria for different cardiac 

diseases. The highest detection accuracy verified by these approaches led to excellent 

diagnosis results for different cardiac diseases. Additionally, the high processing speed 

attained by these approaches enables these approaches to be applied as the smart 

hardware integrated chips inside ECG machine for real time processing ECG signal and 

to perform detailed delineation of all ECG waves instead of a general ECG wave 

description which is performed by modern ECG machine.           

The third part in the new ECG system focuses on diagnosing cardiac diseases 

using computerized intelligent techniques. A new FIS for diagnosing the LVH cardiac 

disease has been proposed based on new diagnostic criterion. All the input voltage 

parameters and the output of the logical expressions related to the proposed diagnostic 

criterion were expressed as the MFs in the proposed FIS. In contrast to the traditional 

LVH diagnostic criteria, the decision of the proposed criterion was obtained by three 

logical expressions. Two of them were a combination of some traditional diagnostic 

criteria, whereas the other expression (MDV) was obtained by the eight voltages from 

the 12-lead ECG with a different level for each gender. The proposed diagnostic system 

was validated successfully with 50 ECG samples from both genders with differing ages. 

However, 29 samples from the total validated samples did not suffer from LVH; the 

proposed diagnostic system achieved perfect results (100%) in terms of sensitivity, 

specificity, and accuracy.  

According the process of integrating the proposed LVH diagnosing system in a 

single FIS intelligent model, the simplicity of conditioning statements for all input and 
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output MFs in the proposed FIS, the perfect diagnosis accuracy, and the simplicity and 

the highly processing speed of the based technique followed by the RFEM approach to 

delineate the time characteristics of QRS complex and generate diagnostic parameters 

for the proposed diagnosis system. The idea of implementing the proposed diagnosis 

system on an intelligent hardware unit (which can be added to the ECG machine) to 

perform actual diagnosis of LVH cardiac disease became more realistic. 

 

5.2    Future Works 

 

Based on the proposed approaches in this thesis, some future works can be 

suggested: 

1- Implement the proposed digital recovery approach on a portable embedded 

system with high resolution vision system and huge storage media. As the 

system performs entire reconstructing raw ECG data in a single device, also 

facilities the process of capture and storage inside general hospitals or 

clinical centres.  

2- Implement the proposed detection RFEM and HSDPTW approaches in a 

single programmable micro chip unit to process the ECG output signal from 

the ECG machine and provide detailed parameters and features that can be 

beneficial for future diagnosis.  

3- Develop more computerized intelligent systems for diagnosing other high 

risk cardiac diseases like HOCM, WPW, LQTcS, ARVC, etc based on 

detailed analysis of the 12 lead ECG signal.  
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4- Design a computerized intelligent system for predicating SCD based on the 

diagnostic results of high risk cardiac diseases, standard tests of HH, and 

other hereditary issues.    
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Appendix A 

 
The 12-lead ECG chart shown in Figure A-1 is scanned with 600 dpi from the 

original ECG printout paper. The distribution of ECG leads in this chart are different 
from that shown in Figure 4.1, also the size of paper is different.  The scanned image of 
this chart is processed by the proposed digital recovery approach that is mentioned in 
Chapter 3 Section 3.2.2.1 to recover the 12 lead raw ECG data in a digitally form. The 
recovered 12 lead ECG data are plotted separately with the same scale for all graphs, 
also the ECG base line which is pre detected in the same approach is plotted in each 
graph with a dashed red line as shown in Figure A-2.   

     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Figure A-1: The Scanned Image (with 600 dpi) of 12-Lead ECG Chart. 
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Figure A.2: The Reconstructed 12-Lead Raw ECG Data of the ECG chart shown 
in Figure A-1.  
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Appendix B 

 

The scanned images of the ECG records which were used in the analytic 
evaluation of digital recovery approach mentioned in Chapter 4 Section 4.2.2 are shown 
in Figure B.1, B.2, and B.3, respectively. In these figures, the partition that is rounded 
by dashed red circle in the header part in each record contains the ECG parameters that 
are computed automatically by the ECG machine itself and used for quantitative 
evaluation. The colour grid part in each record contains the detail drawing charts of 12 
lead ECG. These charts are used for qualitative evaluation. All images of ECG records 
are scanned in 600 dpi.     
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Figure B.1: Scanned Image of 12 lead ECG Record for First Patient (P1) 
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Figure B.2: Scanned Image of 12 lead ECG Record for Second Patient (P2) 
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Figure B.3: Scanned Image of 12 lead ECG Record for Third Patient (P3) 
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