cadangan sistem fuzzy inference. Sistem diagnosis yang dicadangkan itu dapat disahkan
oleh lima puluh rekod ECG dan keputusan pengesahan mencapai seratus peratus
(100%) bagi sensitiviti, kejituan, dan ketepatan manakala ketepatan mendiagnosis

terbaik yang boleh dicapai dengan menggunakan Kriteria diagnostik tradisional tidak
melebihi 90%.
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A New Fuzzy Based Diagnosing System for Instantaneous Processing 12 Lead
ECG Signal

ABSTRACT

The Electrocardiogram (ECG) signal reflects the performance of the human heart as an
electrical signal. It consists of three main waves (P, QRS complex, and T), and is
recorded by an ECG machine in the form of 12 leads which include valuable
information about the functional activities of the human heart and cardiovascular
system. It is annotated manually by a cardiologist to diagnose cardiac disease, but for a
long time ECG recordings were performed to get an effective measure of heart rate
variability. The generated ECG data is huge and the probability of wrong analysis or
misreading by manual annotation is increased. Therefore, many_computerized based
techniques have been proposed in literature for analyzing and-.detecting ECG waves,
and at a lower rate for diagnosing cardiac diseases. In.this thesis, a new robust
intelligent system has been proposed to perform an accurate diagnosis of a high risk
cardiac disease named left ventricular hypertrophy “(LVVH). Four approaches are
developed within the proposed ECG system to imprave the performance of processing
the ECG signal with respect to the existing methods and to discover new system for
diagnosing cardiac disease based on the computerized intelligence technique. The first
proposed approach is a digital recovery system which addresses the limitation of digital
12 lead ECG data by reconstructing itfrom the colour scanned image of the ECG
printed chart. This approach is implemented by four image processing steps and
captures raw ECG data with respect to the baseline which is detected by the same
approach. Furthermore, it is reliable for different ECG morphologies and printout
charts. The reconstructed data“is evaluated qualitatively and quantitatively using some
predefined standard features. The analytic results demonstrate the consistency and
robustness of this approach to generate 12 lead ECG data with high precision (98%).
The second and third approaches are proposed to detect ECG waves and then delineate
all time characteristics of these waves. In contrast to the existing methods, both
approaches are-based on straightforward algorithms that perform instantaneous
processing for the ECG signal. As a result, detection operation is executed in a high
speed which reaches (4.5s per 650,000 beats) for QRS complex and (2.7s per 225,000
beats) for P&T waves. The based technique in both detection approaches has the
advantage of rising falling edge mutation as a base rule for delineating subject. This
technique reduces undetected beats and provides accurate detection results exceeding
ones in up to date existing methods. The fourth proposed approach is a diagnostic
system for LVH cardiac disease based on proposed diagnostic criterion. In contrast to
the conventional LVVH diagnostic criteria, the decision in the proposed criterion is
computed by three logical expressions; two of which are determined by a combination
of classic criteria, whereas the third is obtained by eight ECG voltages and takes two
different levels for each gender. These expressions are represented by the membership
functions in the proposed design of the fuzzy inference system. The proposed
diagnosing system is validated by fifty ECG records, in which the validation results
score were perfect (100%) in terms of sensitivity, specificity, and accuracy, while the
best diagnosing accuracy achieved by traditional diagnostic criteria does not exceed
90%.
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CHAPTER 1

INTRODUCTION

1.1 Background

The electrocardiogram (ECG) represents the electrical aetivity of the human
heart (HH), as well as showing the systematic contraction-and relaxation of the HH
muscle. Electrocardiography is a significant tool in~diagnosing the state of HH (Guler,
2005). Moreover, it provides precise information to doctors about the functional aspects
of the HH and the cardiovascular system which can help them to make a correct heart
diagnosis (Ghongade & Ghatol, ©2007; Mariano Llamedo & Martinez, 2011;
Maglaveras, Stamkopoulos, Diamantaras, Pappas, & Strintzis, 1998; Mehta & Lingayat,
2008). The early detection of cardiac diseases/abnormalities can prolong human life and
enhance the quality-of life through appropriate treatment. On the other hand, it is very
difficult and.time consuming for doctors to make an accurate analysis for long time
ECGrecordings, if we take into account that the possibility of misreading (or the wrong
analysis) in manual diagnosis of the enormous volume of ECG data is high. Therefore
computerized based techniques for ECG signal analysis and beat classification can be
very helpful in diagnosing different cardiac diseases (Addison et al., 2000; Dokur &
Olmez, 2001; Giler, 2005; Kundu, Nasipuri, & Kumar Basu, 2000; Ozbay & Tezel,
2010; Rajendra Acharya, Subbanna Bhat, lyengar, Rao, & Dua, 2003; Sternickel, 2002).
Many methods with computerized based techniques have been proposed in literature for

this subject. The main concepts of such methods are based on different adopted



techniques of pattern recognition. (Koriireck & Dogan, 2010; Mehta & Lingayat, 2008).
The general block diagram of ECG signal processing is shown in Figure 1.1. In this
figure, the time characteristic information that is delineated by the QRS complex
detector can be fed to the data compression and noise filtering operations (marked with
gray arrows) to enhance their performance. In addition, the time characteristics of the
QRS complex are mainly used to delineate related temporal information of other ECG
waves (P and T waves) including boundaries (onset and end) and.peak time locations
(S6rnmo & Laguna, 2006). According the valuable information which is extracted from
dynamic processing of the ECG signal, this represents one of the most significant

applications in the signal processing field.

ECG

S'gill» Noise QRS Wave
Filtering Detection Delineation
Data _ Storage or
Compression transmission

Figure 1.1: General Block Diagram of ECG Processing Signal (Sé6rnmo & Laguna,
2006).

Various methodologies with computerized based techniques have been proposed
in literature for the purpose of automated ECG diagnosis (Addison et al., 2000; Chang,
Lin, Hsieh, & Weng, 2012; Dogan & Koriirek, 2012; Rai, Trivedi, & Shukla, 2013).
However, the entire ECG diagnosis process can generally be partitioned into a number
of disjoint processing steps: ECG beat detection, diagnostic features/parameters

extraction or selection, and classification as shown in Figure 1.2.
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Figure 1.2: General Block Diagram of Classifying/ Diagnosing ECG Signal using
Computerized Based Technique (Guler, 2005).

Most computerized based techniques developed for analyzing the ECG signal to
detect electrocardiographic changes use autocorrelation function, frequency domain
features, time frequency analysis, and wavelet transform (WT) to transform the ECG
signal to a more objective quantitative for extracting diagnostic features (Kundu et al.,
2000; Nugent, Webb, Black, Wright, & Mcintyre, 1999; Sternickel, 2002). The reported
results in related methods proposed in literature demonstrate that WT is the most
trustworthy transformation to extract valuable features from ECG signals (Addison et
al., 2000; Dokur & Olmez, 2001; Giler, 2005). The greatest WT efficiency comes from
the capability of wavelet coefficients which are used as feature vectors to identify

further ECG characteristics that are not apparent inside the original ECG signal in the



time domain, as well as its capability to address the problem of non-stationary ECG
signals (Daubechies, 1990; Unser & Aldroubi, 1996). Additionally, the multi-resolution
that is generated from WT allows the decomposition of the ECG signal a number of
scales, each of which can be represented as a particular feature of the ECG signal under

test (Choi, 2008; Kutlu & Kuntalp, 2012).

1.2 Problem Statements

Many studies found in literature deal with processing and analyzing the 12 lead
ECG signal to detect ECG waves (P, QRS complex;.and T) waves and then delineate
the time characteristics of these waves, which.;are most significant to compute many
diagnostic criteria that are mainly used-in ECG beat classification and diagnosing
different cardiac diseases. Most of the-studies are validated with different ECG records
that are collected from freesonline ECG databases while several studies have used
private ECG data which*is collected from clinical centres. The online ECG databases
present single or multi-lead ECG data with different morphologies moreover, most of
these databases-are annotated manually by cardiologists with significant information
about-heart status and time location events of the ECG waves, which are mostly used to
evaluate the findings obtained by the ECG approaches. Finally, it should be noted that
most of the current ECG detectors are applied to ECG data after transforming them
using certain frequency or time transformations like (WT, Walsh Transform, etc). As a
result more time is needed to process ECG data.
On the other hand, very few studies of computerized based techniques found in
literature for the purpose of diagnosing general cardiac diseases exist. However, for
high risk diseases that cause sudden cardiac death for many people at a young age

(under 40 years old) no more systems with computerized based techniques have been



adopted for this subject. Two main reasons can be given for the limitation in this field of
research. First, it is related to the limited amount of 12 lead ECG data in digital form for
people who suffer from certain cardiac diseases. The second reason is related to clinical
subjects, that many cardiac diseases must be diagnosed by cardiologist after doing
additional heart tests like (stress tests, echocardiography, etc) due the difficulty in fixing
certain ECG parameters or diagnostic criteria to perform accurate diagnosis with high
percent of accuracy.

Regarding the previous presentation, some problems can be seen-as’follows:

1- The limited amount of digital 12 lead ECG data suitable for the computerized
processing technique which is originally recorded from patients who suffer from
certain high risk cardiac diseases.

2- The incompatibility of most of adopted ECG waves detection methods for real time
applications because their based. technique is applied on transformed versions of the
ECG signal not on thecoriginal signal itself. In addition, because some other
techniques are applied through the series of mathematical estimation operations with
complicated calculations, more processing time is spent.

3- Systems.coupled with computerized intelligent based techniques are not found in
literature for the purpose of diagnosing high risk cardiac diseases with high precision

based on 12 lead ECG signal analysis.

1.3 Research Objectives

In this thesis, a new ECG system is proposed for processing the ECG signal,
detecting entire ECG waves (P, QRS complex, and T waves) and delineating their time

characteristics, and diagnosing specific high risk cardiac disease based on the



diagnostic features/parameters which computed from the delineated time characteristics

of the detected ECG waves. Thus, three objectives are considered in the proposed ECG

system which can be summarized as follows:

1- To propose a new approach for the digital recovery of 12 lead raw ECG data by
reconstructing it from scanned images of the ECG printed chart, thus an open bank of
12 lead ECG data in digital form is generated from the ECG paper printout recording
that can be collected from expert hospitals or clinical centres.

2- To propose new high speed algorithms for detecting ECG waves (P, QRS complex,
and T), and the ability to delineate their time locations with high precision. The
proposed detection and delineation algorithms- take a straightforward flow with
instantaneous processing techniques on the'ECG input signal itself without the need
for any mathematical transformation‘arestimation process.

3- To design a diagnosis system of.computerized intelligent techniques for specific high
risk cardiac diseases with/igh levels of sensitivity, specificity, and accuracy for both
genders based on the-proposed diagnostic criteria that is computed by analyzing the

12 lead ECG signal.

1.4 (Scope of Research

The aim of this thesis is to propose a new system for processing the 12 lead ECG
signal to detect all ECG waves P, QRS complex and T wave, to delineate their time
characteristics, and to diagnose specific high risk cardiac diseases. The implementation
of these aims will be performed through four proposed approaches inside the proposed
ECG system. In each of these approaches, a completely new algorithm of processing

ECG signals is proposed to improve the entire performance of each approach in term of



the processing time considerations, the capability of processing different ECG
morphologies, and the precision of final outcomes in comparison with the adopted
works. Moreover, different evaluation scenarios are conducted for each approach using
standard sets of evaluation metrics to compute precision levels of final outcomes. The
proposed approaches are validated with different categories of ECG data in order to
prove the capability of these approaches in adapting with various ECG morphologies.

The first approach is proposed to address the limitation in digital 12 lead ECG
data especially for some high risk cardiac diseases. However, hiuge amount of this data
is available as paper printout in specialist hospitals and_general clinical centres around
the world and become more beneficial if they are converted to digital version. The
proposed approach applies a sequence of image processing operations on the scanned
image of the printed ECG chart to reconstruct the digital raw ECG data that is ready to
be used by different computerized_based techniques of processing and analyzing the
ECG signal.

A second approach-is proposed to delineate the time characteristics of the QRS
complex using a-proposed straightforward algorithm of instantaneous processing for
ECG input_signal (beat by beat) without the need for any mathematical transformation
or estimation operations. According to this type of processing, the whole QRS complex
detection operation is performed at high speed, thus considering this approach for real
time clinical applications becomes more realistic.

Similarly, the third approach is proposed to delineate P and T time
characteristics (boundaries and peak time locations) based on pre detected time
locations of the QRS complex using proposed algorithms which apply conditional
scanning operations in both sides of the QRS complex, but in the same processing type

used in the QRS complex algorithm.



The fourth approach is proposed for accurate diagnosis of one particular high

risk cardiac disease called left ventricular hypertrophy. This diagnosing approach is

based on proposed criterion expressed by the voltage parameters of eight ECG leads to

maximize the probability of detecting the abnormality within the 12 lead ECG. The

proposed diagnostic criterion is designed to get different decision levels for each

gender. The overall diagnosis approach is implemented using one of the computerized

intelligent systems named "fuzzy inference system™. Therefore, this approach can be

integrated as a portable hardware unit added to the ECG machine.as a diagnosis module.

1.5 Summary of Main Contributions

The main contributions of this research.can be summarized as follows:

To propose a new digital recavery approach to reconstruct raw ECG data from
scanned colour image of -ECG paper printout recording. This approach is designed
to reconstruct all 12 leads of the ECG signal and detect the ECG baseline to ensure
the final plotting of reconstructed ECG data with the correct reference level.
Additionally, the proposed digital recovery approach is capable of processing ECG
paper-printout with different paper size, different printing colours, and different pen
size of the printed ECG chart. Finally, different evaluation scenarios are performed
to prove the robustness of the proposed digital recovery approach to produce raw
ECG data with high precision

To propose a new approach for QRS complex detection with high processing speed.
This approach is designed to delineate all time characteristics of QRS complex
including boundaries and peak time locations of Q, R, and S waves that are formed
by this complex using a straightforward algorithm with instantaneous processing

techniques without the need to use additional transform or mathematical



estimations. The proposed detection approach is validated with standard online
ECG records with different ECG morphologies to evaluate the overall performance
of this approach with respect to the adopted methods. A property of high processing
speed in this approach proves the usefulness of considering this approach in future
real time applications of ECG signal processing.

To propose a new approach for P and T wave detection with high processing speed.
This approach is designed to delineate all time characteristics. of P and T waves
including boundaries and peaks time locations of these waves®ased on pre detected
time locations of the QRS complex. Moreover, it includes two proposed algorithms
(one for each wave) with the same processing-type followed in the proposed QRS
complex detector. The proposed detection -approach is validated with standard
online ECG records from different ECG categories to prove the ability of this
approach to perform accurate: d€lineation of all time characteristics for different
shapes of P and T waves.

To design a new system for diagnosing specific high risk cardiac disease called left
ventricular hypertrophy (LVH) using a computerized intelligent technique. A new
diagnastic criterion for LVH cardiac disease is proposed in this system, which
inCludes eight parameters that are extracted from analyzing 12 lead ECG data. The
final decision to diagnose LVH cardiac disease is prepared according to proposed
diagnostic criterion and two traditional criteria to increase the sensitivity and
specificity of the final diagnosed results. The proposed system is designed to
perform accurate diagnosis of LVH cardiac disease based on analyzing 12 lead data
from both genders. In addition, it is validated by 50 ECG records from both
genders. Only 42% of this data is from LVH patients, while other data is from other

cardiac diseases and some normal patients. This selection is made to prove the



robustness of the proposed diagnostic system to overcome any interference in
diagnosing between different cardiac diseases. Additionally, some evaluation

scenarios are performed to compute the accuracy of the diagnosed results.

1.6 Thesis Outline

Chapter 1 introduces an overview of processing the ECG signal using a computerized
system and extracting significant features and time characteristics events of ECG waves
to interpret and describe the heart status and diagnosing cardiac diseases. Additionally,
it provides the problem statement, the objectives.ofthesis, a summary of main

contribution, and thesis outline.

Chapter 2 introduces the basic concepts of the ECG signal through the brief
descriptions of cardiac conduction system, ECG components, and types of ECG lead.
Additionally, all resources,of 12 lead ECG data are reported. The second part of this
chapter provides a literature review of well-known published works related to the main
contributions that are presented in this thesis in terms of four subjects (digital recovery
of raw ECG data, QRS complex detection, P and T wave detection, and diagnosing high

risk cardiac diseases).

Chapter 3 introduces the general block diagram of the proposed system for pre-
processing the 12 lead ECG signal, detecting (P, QRS complex, and T) waves and
delineating their time characteristic events, and diagnosing one particular high risk
cardiac disease. Additionally, four proposed approaches corresponding to the four
contributions in this thesis are presented in this chapter. The methodology of each

proposed approach is discussed in more detail through the description of the basic idea,
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the applied algorithms, the block diagrams, and the mathematical definitions which are

related to each approach.

Chapter 4 introduces the results that are obtained by each proposed approach, as well
as the scenarios that are considered to evaluate the performance of these approaches
with the mathematical definitions of all evaluation metrics used in each evaluation
scenario. Additionally, the validation of the obtained results with respect to another that
are reported by well-known published works in literature if found’is performed also in

this chapter.

Chapter 5 introduces the general discussion for all proposed approaches and new
findings through their originality, the ability to address the present problem and their
activity to perform designated= objectives. Additionally, significant topics and

suggestions for future work are'presented in this chapter.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

The development of a computerized intelligent system in medical applications is
a significant challenge faced by physicians, engineers and computer scientists. The
ability to process medical signals by such expert systems is combined mainly with the
availability of medical data in a digital form, also with a‘sufficient amount of different
morphologies.

One of the most popular medical signals that can be recorded for both genders in
all ages, even the fetus, is an ECG sighal.' As a part of periodic medical tests, many
cardiologists advise healthy people”to have this test every six or twelve months,
especially for the people over forty. The ECG signal is a graphical registration of the
electrical signal generated by the HH against time (Gacek & Pedrycz, 2012; Suri &
Spaan, 2007). The, ECG is used to interpret some types of abnormal heart cases like
conduction-disturbances, arrhythmias and heart morphology (e.g., hypertrophy, and
evolving myocardial ischemia or infarction). The clinical practices show that some
cardiac diseases can be diagnosed accurately, depending on ECG test, while other
diseases are estimated with an acceptable probability (Malmivuo & Plonsey, 1995). The
ECG diagram is also helpful when assessing the performance of portable pacemaker
devices to control abnormal heart rhythms. For example, in the United States more than
50% of hundred-million ECGs recorded annually are identified and diagnosed by

computer systems (Drazen, Mann, Borun, Laks, & Bersen, 1988).
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2.2 The Basic Concepts of ECG signal

Simply, the HH is a muscle that works continuously to pump the blood
throughout the different parts of the human body. The HH is partitioned into right and
left units segregated by a septum. It consists of four chambers (right/left atrium and
ventricle, respectively), and four valves to manage the flow of blood between the
chambers of the heart to/from arteries (Hampton, 2008). All parts of.the HH are marked

clearly in Figure. 2.1.
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Figure 2.1: Structure of the Human Heart.

2.2.1 The Cardiac Conduction System

The cardiac conduction system shown in Figure 2.2 controls all activities

performed when the HH pumps the blood. Thus this system is termed as the electrical
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control system of the HH, as well as the provider of its repeated rhythmic beat. These
electrical activities are recorded by the machine as a signal variation against time, this
signal is called ECG or EKG (this abbreviation is used in some countries (Hampton,

2008)), which is printed onto grid paper or viewed on the monitor.

Electrical system of the heart

Bachmann's bundle

Sinoatrial
(SA) Left bundle
node branch

Posterior
interncdal
tract

Atrioventricular Conduction

(AV)node  pRight bundle pathways
branch

Figure 2.2: Cardiac Conduction of the HH (Assadi et al., 2011).

The first event in the cardiac conduction system starts when the sinoatrial node
(SA) node generates an impulse (when the right atrium is full of blood) and then
circulates as a depolarization over the cells of the right and left atria until it arrives the
atrioventricular (AV) node (Foster, 2007) as shown in Figure 2.3.a. The upper right

corner of this figure contains a diagram which simulates one complete cycle of the ECG
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signal. A position of the circle remark indicates the start of the cardiac conduction
system (first beat in the ECG cycle).

It should be noted that the AV node is the unique pathway for conducting the
electrical impulse from the right and left atrium to the right and left ventricle,
respectively (Foster, 2007). The next step in the cardiac conduction cycle is started
when the first impulse generated by the SA node reaches the AV node and spreads
across the atria to contract it. The contraction of the atria pumps: the blood through
release valves (the tricuspid and mitral valve in the right and: the’left side of the HH,
respectively) into corresponding ventricles; this contraction is expressed in the ECG by
the P wave as shown in Figure 2.3.b. When the blood passes to ventricles, there is a
period time needed to fill both ventricles with blood. This time interval is represented
on the ECG by the PQ segment (limited)between P and Q wave) as shown in Figure
2.3.C.

In the next step of the\cardiac conduction system, the electrical signal is moved
to the bundle of His (which is discovered by German cardiologist Wilhelm His (1836-
1934)) and separated to the right and the left bundle branch through the septum of the
HH. This_progress is represented in the ECG by the Q wave as shown in Figure 2.3.d.
The celectrical signal then leaves the right and the left bundle branches and passes
through the Purkinje fibers that are diffused around the walls of the ventricles (Foster,
2007). Consequently, the muscles of both ventricles are stimulated by the electrical
impulse moving down the Purkinjefibers but not at the same moment (the left ventricle
precedes the right ventricle) (Azeem, Vassallo, & Samani, 2005) as shown in Figure
2.3.e. On an ECG, the R wave represents the contraction of the left ventricle, while the
S wave represents the contraction of the right ventricle as shown in Figure 2.3.f and g,

respectively. It should be noted that the contraction of the right ventricle pumps the
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blood to the lungs through the pulmonary valve, while the contraction of the left
ventricle pumps the blood to the rest of the human body through the aortic valve. When
the electrical signals of these contractions are passed, the walls of both ventricles are
relaxed gradually. This process includes a time period where the ventricles do not
respond to further electrical catalysts (Azeem et al., 2005), which is represented in the
ECG by the ST segment as shown in Figure 2.3.h. this occurs continuously, when the
walls of ventricles are reverted completely to its resting state. This process is

represented in the ECG by the T wave as shown in Figure 2.3.i{\¢0
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Figure 2.3: Representation the Electrical Conduction System of the HH by the
ECG Signal.
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2.2.2 The ECG components

A typical ECG recording from a normal patient is shown in Figure 2.4. The

ECG signal consists of six waves (P, Q, R, S, T, and U). Three waves (Q, R, and S) are

usually expressed as a single composite wave called the QRS-complex (Suri & Spaan,

2007). In addition, between the ECG waves there are two time intervals and one

segment. The first time interval is termed the PR interval and is computed from the

starting point of the P wave to the starting point of the QRS complex. The second time

interval is termed the QT interval and is measured from the starting of the QRS complex

to the end of the T wave. However, the standard time segment on the ECG is the ST

segment, which is the time portion between the-termination of the QRS complex (J-

point) and the starting of the T wave.
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Figure 2.4: The Waves, Intervals, and Segments of Typical ECG Signal
(Suri & Spaan, 2007)

In addition to the above intervals and segments, another time interval is

considered in the ECG signal and termed the RR interval. This interval is measured
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between the peaks of two consecutive R waves. The RR interval represents one
complete cardiac cycle and is mainly used to compute the heart rate. What is more, a
small time portion, termed as the PR segment, is measured from the end of the P wave
until the starting point of the QRS complex. It should be noted that the PR segment does
not include the duration of the P wave, while the PR interval includes it (Luthra, 2011).
Another ECG component termed QT is measured by the modern ECG machine
in addition to the QT interval mentioned above. The QT interval represents the
corrected value of the original QT interval and is determined by Bazett's formula as
defined in Equation (2.1). In this formula the observed QT interval is divided by the
square root of RRgyccessive iNtervals (i.e. the distance variation between the present and

the next RR interval) (Azeem et al., 2005; Gacek & Pedrycz, 2012).

or.=—% @1

RRsuccessive

2.2.3 Thel2 Lead ECG

As mentioned previously, the ECG registers the electrical activities of the HH
against time. The ECG is recorded by the electrodes that are attached directly to the
surface of the human body on the chest and on the limbs. The electrical activities of the
HH are sensed by electrodes and are passed through the connecting cables to the ECG
machine. In addition, the potential difference between two electrodes (one with positive
polarity and other with negative polarity) is expressed by a single ECG lead to assess
the average cardiac activity in a specific portion of the HH at a specific time (Aehlert,

2012).
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The ECG leads view the electrical activi
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There are twa types of ECG leads: the first are li

lanes of the 12 Lead ECG (Foster,

ty of the HH in two planes: the
(coronal) as shown in Figure 2.5.

mb leads and the second are chest

leads. Therstandard leads in the ECG are twelve; six of them are the chest leads and the

others-are the limb leads.

2.2.3.1 The Limb leads

The limb leads sense the electrical activity of the HH in the frontal plane. There

are six limb leads which are labeled as: I, I, 11, aVR, aVL, and aVF. The electrical

connections of these leads with respect to the human body are shown in Figure 2.6. The

limb leads are composed of two groups: bipolar leads and augmented (unipolar) leads.
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Figure 2.6: The Electrical Connection of the Limb Leads to the Human Body.

2.2.3.1.1 The Bipolar Leads

The ECG leads in this group assess the electrical activity between two electrodes
(one acts as a positive and other as a negative polarity) that are connected to the limbs
(left arm, right arm, and left leg). As viewed in Figure 2.6, this group includes three

ECG leads as follows:
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e Lead I is the potential difference between the (positive) left arm (LA) electrode and
right arm (RA) electrode.

e Lead Il is the potential difference between the (positive) left leg (LL) electrode and
the right arm (RA) electrode.

e Lead Il is the potential difference between the (positive) left leg (LL) electrode and

the left arm (LA) electrode.

2.2.3.1.2 The Augmented (Unipolar) Lead

The second group of limb leads is the augmented leads. The basic concepts of
these leads were described firstly by Frank Wilson in 1931. Wilson introduced three
leads obtained from the mean of potential, difference between any two bipolar leads
described above. Moreover, he praduced a connection reference point termed as the
"Wilson Central Terminal™ (WCT) of the limb electrodes (LA, RA, and LL) to obtain an
average potential differenee across the HH (Bowbrick & Borg, 2006). Additionally, the
WCT represents_the electrical centre of the HH (Suri & Spaan, 2007). The new
produced leads are:

e Lead aVR is the potential difference of the RA with respect to the average of the LA
and LL.

e Lead aVL is the potential difference of the LA with respect to the average of the LL
and RA.

e Lead aVF is the potential difference of the LL with respect to the average of the LA
and RA.

The voltage obtained from Wilson's three leads was very small. Thus,

Emmanuel Goldberger in 1942 was able to increase the resultant voltage by 50%. The
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names of the new leads were changed slightly to aVR, aVL, and aVF, respectively
where (letter "a" refers to augmented). The augmented leads are also termed as unipolar
leads because they are determined by a single positive electrode with respect to the
combination of the other limb leads. The electrical polarity diagram of the augmented
leads incorporated into the Einthoven's triangle is shown in Figure 2.7.a. This figure
shows that the limb electrodes (LL, LA, and RA) are the vertices of the Einthoven's
triangle. Also, the final representation of bipolar and augmented (unipolar) leads with
respect to the central terminal (which are referred virtually to the’ negative polarity of

the augmented leads) is shown in Figure 2.7.b.
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Figure 2.7: (a) Polarity Diagram of the Augmented (Uni-polar) Leads
Incorporated into Einthoven's Triangle (Bowbrick & Borg, 2006), (b) View of the
Limb Leadswith Respect to the Common Central Terminal (Aehlert, 2012).

2.2.3:2) The Chest (Precordial) Leads

In addition to the limb leads that assess the electrical activity of the HH from the
frontal plane as shown in Figure 2.5, there are six precordial chest leads named (V1, V2,
V3, V4, V5, and V6). Each chest lead is determined by the potential difference between
the positive electrode termed as the chest lead and a virtual negative electrode which is
represented by WCT. Thus the chest leads are known as the unipolar leads. The

placement of the chest leads on the HH is shown in Figure 2.8.a.
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The chest leads assess the ECG in the transverse plane as shown in Figure 2.5.
Leads V1 and V2 are placed above the anterior wall of the right ventricle. For this
reason, they are referred to as right ventricular leads as shown in Figure 2.8.b. When the
heart is normally oriented along the long axis, leads V5 and V6 are placed above the
lateral wall of the left ventricle, therefore known as the left ventricular leads. The
transitional zone between the left and right ventricles (interventricular septum) is found
at the level of lead V3 and V4 (equal amplitudes of the R-wave and. S-wave) (Gacek &

Pedrycz, 2012).
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Figure 2.8: (a) The Placement of ECG Chest Leads in the HH (Bowbrick & Borg,
2006), (b) Top View of the Chest Leads (Aehlert, 2012).

The different placements of the chest leads produce dissimilar patterns in the
ECG output diagram. In other words, the ECG waves (P, QRS, and T) have a different
amplitude and direction due to the placement of the chest lead in the left, right, or

septum side of the HH, Figure. 2.9 shows an ECG diagram of the six chest leads.
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Figure 2.9: The ECG Patterns of the Chest Leads.

2.3 The Data Resources of the 12 lead ECG

A basic investigation and clinical diagnosis of the ECG signal are dependent on
the availability of the ECG data with different morphologies. Moreover, can this data be
found in a digital raw form? To process it easily by the expert computerized system.

The main data resources of the ECG signal.are highlighted in the following text.

2.3.1 The ECG machine

The ECG machine assesses and amplifies the small electrical variations on the
skin that are .caused when the heart muscle is released during each heartbeat. The
electrical signal of the HH is detected as a tiny rising and falling voltage between two
ECG-electrodes placed either side of the HH and displayed as a wavy line either on a
screen or on paper. The ECG signal is printed on paper as a graph; its time is
represented on the x-axis, while the voltage is represented on the y-axis of the print-out
paper.

The ECG machine must be calibrated to represent each 1 mV on the y-axis as 1
cm and each 1 second as 25 mm on the x-axis. What is more, the ECG paper contains a
background pattern of a 1mm small square and every 5 mm in both horizontal and

vertical directions as a large square. The standard speed of moving paper from the ECG

25



machine is 25 mm/s. At this speed, one small square on the ECG paper is translated as
40 ms of the ECG signal as shown in Figure 2.10.a. A standard calibration signal of 1
mV is included with the ECG record and must cover vertically 20 small squares (2 large
squares) of the ECG paper as shown in Figure 2.10.b (Aehlert, 2012; Azeem et al.,

2005).

(a) (b)
Figure 2.10: The ECG Grid Paper; (a) The Time Event is Represented by the
Horizontal Axis and the Voltageés Represented by the Vertical Axis, (b) In the

Calibration of ECG Machineya 1 mV Electrical Signal of Square Shape Will
Produce a Deflection Measuring Exactly 10 mm Height (Aehlert, 2012).

2.3.2 The ECG-Database

Most researchers in the field of ECG signal processing need a huge amount of
ECG data to validate their work. In addition to the healthy (or normal patients), in some
specialists studies, some patients with high risk cardiac diseases are needed to develop
different techniques to diagnose these diseases. It is very difficult to collect enough
volume of this data from the clinical centres or general hospitals. Therefore, most
studies found in literature have validated their works with certain groups of ECG
records which were collected from one or more online ECG databases.

The ECG database simply is a list of some ECG signals which are recorded by

one or more clinical centres and characterized specifically by certain pathological
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conditions or the affiliation of data resources. There are many ECG databases found in
specialist clinical interpretation websites. The largest and well-known archive of
characterized digital recordings of biomedical signals around the world is the
PhysioBank, which was created under the sponsorship of the National Centre for
Research Resources of the National Institutes of Health. It contains more than 50
databases of multi-parameter signals from different healthy topics and patients with
satisfactory cases that have a significant impact on public health like myocardial
infarction movement disorders, congestive heart failure sleep~apnea, sudden cardiac
death, aging, etc (Goldberger et al., 2000).

In the PhysioBank ECG databases, the raw-digital data for each ECG record is
stored in a single file. Additionally, one or more“sets of annotations about this record
like heart rate, RR interval, beat by beat’annotations, time locations of the ECG waves,
etc are available on the same database’in separate files. In addition, in some PhysioBank
ECG database, a complete diagnosis of cardiac disease in each record is available as a
separate description file, These annotations provide more facilities for researchers to
evaluate the analytic performance of new algorithms. Finally, it should be noted that all

databases of-.the PhysioBank are available to the community of scientific researchers via

a PhysioNet website (http://www.physionet.org/).

2.3.2.1 The MIT-BIH Arrhythmia Database

The MIT-BIH Arrhythmia Database was created under the auspices of the
Massachusetts Institute of Technology (T. Lin & Tian, 2012). It was the first standard
dataset available around the world to evaluate the performance of arrhythmia detectors.
Additionally, it has been used for basic research into the analysis and diagnosis of the

ECG signal at more than 500 sites worldwide since 1980 (G. B. Moody & Mark, 2001).
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This database contains 48 ECG recordings which were obtained from 47 subjects and
sampled at 360 Hz. Each record contains two ECG leads (limb lead Il and one of the
chest lead V1, V2, V4, or V5) for 30 minutes duration. The ECG records in this
database were annotated by two or more cardiologists. The annotation information
include gender, age, R-peak time location, R-R interval, and beat by beat annotations

(G. B. Moody & Mark, 1990).

2.3.2.2 The QT ECG database

Another annotated reference ECG database, from the PhysioNet is the QT
database. This database contains 105 ECG recardings of 15 minutes. They were selected
from seven well-known databases in PhysioNet (MIT-BIH arrhythmia, European ST-T,
ST change, supraventricular arrhythmia, normal sinus rhythm, sudden death, and long
term). Thus, the existing database includes a wide variety of ECG waves in different
morphologies. Also, all records were sampled at 250 Hz and annotated by cardiologists
with onset, peak, and*end time locations of P-wave, QRS complex, and T-wave, while
the cardiac. disease for all records was not diagnosed (Laguna, Mark, Goldberg, &
Moody, 1997).

Through the valuable annotations and variation of ECG morphologies in the QT
database, the ECG records of this database can be mostly used by researchers to validate

the new techniques of detecting entire ECG waves.

2.3.2.3 The Diagnostic 12-lead ECG Databases

Unlike the ECG databases mentioned in the previous sections, some of the ECG

databases in PhysioNet were available with the conventional 12 leads. The cardiac
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disease of all records was diagnosed by cardiologists. The first database in this form
was the St. Petersburg Institute of Cardiological Technics 12-lead Arrhythmia Database
(INCART). It includes 75 ECG recordings of 30 minutes duration and each was
sampled at 257 Hz. In addition, each record contains 12 standard leads. The original
records were collected from patients undergoing tests for coronary artery disease (most
had ventricular ectopic beats). The INCART database contains preferential cardiac
diseases whose ECG was consistent with ischemia, coronary artery disease,
arrhythmias, and conduction abnormalities. In addition to.the’ valuable diagnosis
information, a detail clinical summary (including age, gender, and blood pressure where
necessary) was also available for each record (M Llamedo, Khawaja, & Martinez, 2010;

G. Moody, 2008).

Another diagnostic ECG database from PhysioNet was the Physikalisch-
Technische Bundesanstalt (PTB)cdatabase. The PTB database contains 549 recordings
selected from 290 subjects.cEdch single subject was expressed by (1 to 5) ECG records.
Only 268 subjects were diagnosed successfully and distributed into 9 diagnostic classes
(Myocardial .infarction, Cardiomyopathy/Heart failure, Bundle branch block,
Dysrhythmia;” Myocardial hypertrophy, Valvular heart disease, Myocarditis,
Miscelaneous, and Healthy controls) while the diagnostic details of the other (22)

subjects were not available (PTB Diagnostic ECG Database).

Through the valuable diagnosis information found in the INCART and PTB
databases, many studies deal with ECG beat classification and a diagnosis of cardiac
diseases were used these datasets as a reference for the quantitative evaluation and
validation of final analytic results (J. Martinez, Almeida, Olmos, Rocha, & Laguna,

2006; G. B. Moody, Koch, & Steinhoff, 2006).

29


http://www.ptb.de/�
http://www.ptb.de/�

2.3.3 Digital Recovery of the Raw ECG Data from Paper Printout Recording

Many techniques for analyzing and diagnosing ECG signals have been
proposed. Certainly, they need huge amount of digital ECG data for processing, as well
as special kind of data for quantitative evaluation. The ECG data found in the online
databases is not sufficient to perform this purpose, especially for ECG data with specific
high risk or generic cardiac diseases. At the same time, huge amounts of historical ECG
recordings for different ages, ECG morpholgies, cardiac diseases,.etc can be collected
from old hospital information systems. These recordings<are' usually stored in paper
printouts or in a non-digital format, thus they must be.converted into digital format to
facilitate their processing by computerized ;techniques. Generally, this process of
converting is called "Digital Recovery".\Most methods for the digital recovery of
biomedical signals from printout charts follow a four steps structure (Mitra & Mitra,
2003; Sanroméan-Junquera et al.;>2012):

Step 1: scanning ECG paper printout recording.

Step 2: correcting the orientation of the scanned image.

Step 3: grid line, annotation symbols, and printed text cancellation.

Step 4: sampling drawing signal in a two-dimensional image with actual units.
The process of digital recovery provides an open bank of ECG data and other
biomedical signals, which can be used to develop further medical analysis and diagnosis
techniques. However, few studies have dealt with digital recovery of biomedical signals
in literature. An integral framework based on basic principles of digital image
processing techniques was proposed by (Sanroman-Junquera et al., 2012) for
biomedical signal digital recovery from binary black and white (BW) chart printout
recordings. In this approach, a new algorithm was developed for improving each of the

usual four steps. First, the scanned image was complemented for the purpose of easy
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interpretation, thus both the biomedical signal and gridlines pixels were foreground.
Second, correcting the orientation of the scanned image was performed by a
combination of two stages: estimating the tilt angle by decomposing the eigenvectors of
the foreground pixels coordinates, and then refining the estimated angle using standard
Hough transform (SHT). Third, the grid line cancelation was tackled using binary
morphological filters in a horizontal and vertical direction, while the grids in both
directions were detected using discrete cosine transform (DCT). Fourth, the final signal
waveform was sampled by analyzing all image columns from leftto right and using one
trace representative pixel per column. The performance af)this approach was evaluated
using the time synchronization between the originalsignal in the scanned image and the
recovered biomedical signals. The results proved the capability of this approach in
terms of automatically reconstructing the biomedical signal from the BW chart printout
recording from old hospital information systems. However, this approach was limited
for BW paper printout recordings and no technique was proposed for detecting the
signal base line. Additionally, all the validated recordings had one lead only, thus there
is no evidence that this approach was reliable for recovering multi ECG leads.
Few-studies pay attention to the digital recovery for reconstructing the ECG
signal from the trace printout recordings. In (Swamy, Jayaraman, & Chandra, 2010), a
new algorithm for recovering the digitized ECG time series from the scanned ECG
recordings was proposed. In this algorithm, the orientation angle of the scanned image
was detected using random transformation based on the maximum variance. An
adaptive threshold technique using Otsu’s algorithm (Petrou & Petrou, 2010) was then
applied to convert the scanned image into binary form. Finally, the sampling process or
as termed by this study, envelop detection was performed by scanning the image

columns and recording both upper and lower non-zero values. The digitization accuracy
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of this approach was evaluated by computing the heart rate for both the original and the
recovered data of six single lead ECG records. The resultant accuracy achieved by this
approach did not exceed 95%; moreover, no additional technique has been reported to
digitize multi-leads in a single scanned image.

An improvement to the ECG digital data recovery was proposed by (Chebil, Al-
Nabulsi, & Al-Maitah, 2008) to tune suitable image resolution for the scanning process.
Also, the median and neighbourhood techniques were applied for the reconstruction and
digitization of the ECG signal. For each image resolution, four’measurable features
(heart rate, PR interval, QRS duration, and QT interval) “‘were determined for both
original and digitized signals. The results show-that the highest accuracy for the
digitized ECG data was obtained when the_image resolution was 2400 dot per inch
(dpi). However, this resolution uses aChigher rate of computational cost and more
processing time.

A software based approach was proposed by (e Silva, de Oliveira, & Lins, 2008)
using eight digital signal processing (DSP) steps (digitalizing the paper strip, image
binarization, skew ecorrection, salt-and-pepper filtering, axis identification, converting
pixel-to-vector, removing the header and trailer of the acquired signal, and splitting the
ECG chart and re-assembling it) for digitalizing the ECG printout chart. All steps were
developed by MATLAB™ as the software tools without the need for additional
dedicated hardware. Some ECG strips were collected from the ECG databank (Jenkins
& Gerred, 2009). All records in this databank were stored in low resolution. At the
same time, no measured metrics were considered in this study to evaluate the accuracy
of the reconstructed ECG waveform. In addition, spatial and frequency techniques were
applied separately by (T. Shen & Laio, 2009) for the ECG signal recovery. The

performance of both techniques was evaluated by calculating the percentage root mean
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square difference (PRD) of 23 ECG charts which were collected from the MIT/BIH
Sudden Cardiac Death Holter Database. The PRD was determined for five interpolation
functions in each technique. The PRD results show that linear interpolation was the best
(45.46% for spatial and 54.33% for frequency technique). However, these results need
more improvement in order to minimize dispensable interpolation.

Finally, a simple procedure for digitizing ECG paper printout recordings was
proposed by (Paterni, Belardinelli, Benassi, Carpeggiani, & Demi, 2002) using the first
order absolute moment (FOAM) as a mathematical rule to locate'the ECG trace points.
This procedure was validated by 50 ECG printed recordings of 10 seconds from
different ECG morphologies. In addition to the classical measure PRD, two mean
opinion score (MOS) tests were used to evaluate this procedure. The results of these
three tests showed a positive correlation_between the original and reconstructed signal.
However, this procedure needs further enhancements (as reported in the article) to

remove the wrinkles, handwriting, and printed text that were found on the original ECG

graph paper.

2.4 ECG.Signal Analysis

The ECG signal analysis is a widely used and restful way to interpret different
functions of the HH. Amplitudes, time intervals, and ECG wave morphology are used to
obtain most of the clinically useful parameters in ECG signals (Petrutiu et al., 2006;
Sérnmo & Laguna, 2005). The advancement of robust and precise techniques for ECG
wave delineation is a very attractive challenge for cardiologists and biomedical
engineers in order to classify ECG arrhythmia types and have a better solution for
diagnosing specific ECG phenomenon such as T-wave alternans, atrial fibrillation, and

QT-extension (Minhas & Arif, 2008).
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2.4.1 ECG Waves Detection

In recent years, the process of analyzing ECGs takes more attention due to its
essential role in diagnosing many cardiac diseases. As a result, the development of an
efficient and intensive method for ECG wave detection and delineating their time
characteristics is a subject of major importance (Zigel, Cohen, & Katz, 2000).

Generally, the process of diagnosing cardiac diseases of the HH based on
analyzing the 12-lead ECG signal is performed by computing>some features called
diagnostic features. There are three main types of diagnostic features: duration,
amplitude, and shape features (Zigel et al., 2000). The-duration and amplitude features
are extracted from certain time location points<which are located on boundaries and
peak time locations of P, QRS, and T (P-QRS-T) waves; Figure 2.11 shows these time
location points, as well as the diagnostic features limited by these points in a single

cardiac cycle.
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Figure 2.11: The Diagnostic Features Limited by the Time Location Points
in a Single ECG Cycle.
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Figure 2.4 shows all the intervals and segments which are limited by these
locations. Differently, the calculations of shape features depend entirely on the texture
of the ECG waves (C. Lin, Mailhes, & Tourneret, 2010; J. P. Martinez, Almeida,
Olmos, Rocha, & Laguna, 2004; Mneimneh, Povinelli, & Johnson, 2006; Zigel et al.,

2000).

2.4.1.1 QRS Complex Detection

The QRS complex represents heart ventricular.depolarization and has the highest
frequency component in the ECG signal. Therefore, most significant strategies for
detecting ECG waves start by finding_time location points of the QRS complex then
representing these points as a referenceto find other locations for P and T waves (C. Lin
et al., 2010). The QRS complexconstructed from three sequential (Q, R, and S) waves,
and the time location points in these waves are Qon, Qorr, Rpeak, Son, and Sorr (J-
point). These timeclocation points are used to obtain duration and amplitude features
related to the-QRS complex, as well as the segments and intervals of P and T waves like
PR, QT interval, and ST segment (Chesnokov, Nerukh, & Glen, 2006; Mneimneh et al.,

2006; Wu & Chiu, 2006).

In general, the extracted features from the QRS complex are mainly used to
diagnose many high risk cardiac diseases like ventricular hypertrophy, cardiac
arrhythmia, myocardial infarction, etc (Hadj Slimane & Nait-Ali, 2010), also as
mentioned previously the RR interval obtained by the duration between two consecutive

Rpeaks is used to compute heart rate of the HH.
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Many studies are found in the literature survey dealing with QRS complex
detection. A new method named the difference operation method (DOM) was proposed
by (Yeh & Wang, 2008) to detect the QRS complex in the ECG signal. This method
was applied using a simple algorithm of two stages. The first stage was to detect Rpeak
by means of the difference (differentiation) between the current and previous beat,
while the second stage was to detect Q and S waves by applying the search operation for
maximum amplitudes at dual intervals to the right and left side of.the Rpgax position
detected in the first stage. This method does not need:‘complex mathematical
computations, thus the time required to process 10 minutes of ECG data does not
exceed 30 seconds. The 48 ECG records from MIT-BIH were used to validate the DOM
detector. The validation results show that the DOM detector performed in perfect
specificity and low sensitivity in comparison with the other two detection methods (Li,
Zheng, & Tai, 1995; Pan & Tompkins, 1985). Another approach for QRS complex
detection was proposed by (Saini, Singh, & Khosla, 2013) using the K-nearest neighbor
(KNN) algorithm. In-this approach, the ECG signal was filtered using a digital band
pass filter to minimize the false detection generated by power line interference. The
gradient of the ECG signal was then used to extract many features which were used by
the KNN classifier for QRS complex detection. This detection approach was validated
by 48 ECG records from the MIT-BIH arrhythmia database and 125 original 12-lead
ECG records from the diagnostic CSE database. The validation results show that the
detection rate for CSE database was excellent, while for the MIT-BIH arrhythmia
database, it was limited (also less than the DOM detector). Additionally, the time

considerations for processing ECG data were not reported in this study.

The empirical mode decomposition (EMD) technique is mostly used for ECG

noise reduction (Kabir & Shahnaz, 2012; Kasturiwale & Deshmukh, 2009; Tang & Qin,
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2008). The same technique was also used for the purpose of QRS complex detection. In
(Hadj Slimane & Nait-Ali, 2010) , a new EMD based algorithm was proposed to detect
the QRS complex. The EMD algorithm includes 5 steps to perform subject detection:
applying a 5™ order high pass Butterworth filter to remove any frequencies within the
ECG signal between 0-1 Hz and reducing the influence of the baseline wander,
decomposing the filtered ECG signal into a sum of three intrinsic mode functions (IMF)
that handle enough information about the slope of the QRS complex, applying nonlinear
transform on the resulted IMF, integrating the resulted components; and then applying a
1% order low pass Butterworth filter to compute a unique maximum value for each QRS
complex event. The EMD algorithm was validated-by 48 ECG records from the MIT-
BIH arrhythmia database. The validation results:show better performance for the EMD
algorithm compared to ones that were determined by the real time QRS complex
detection method proposed by (Christov, 2004) and based on comparing the adaptive
threshold value with the abselute sum of differentiated ECG signals in one or more
leads. A new Rpeax detectton method was proposed by (Manikandan & Soman, 2012).
This method was>applied in four stages: firstly, the QRS complex in the entire ECG
signal was_ emphasized and the noise was removed by three processing steps (band pass
filtering, 1% order forward differentiation, and amplitude normalization). In the second
stage, the approximate locations of Rpeak in the ECG signal were obtained by applying
Shannon energy (SE) estimation and zero-crossing filtering. In the third stage, the local
Rpeak Was identified by detecting positive zero-crossing points in the Hilbert transform
of the SE envelop. Finally, the final true Rpgax time locations were obtained by
applying a simple search for the largest amplitude within 25 ECG beats of the candidate
Rpeak in the previous stage. The performance of this method was validated with the

same set of ECG records used in previous studies. The Rpegax detection results obtained
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by this method improve performance compared to ones in (Hadj Slimane & Nait-Ali,

2010) and the other five detection methods.

In general, a WT is widely used by researchers to detect ECG signals due to its
flexibility and adaptability. Additionally, the structural design of this transformation
addresses the problem of non stationary ECG signals (Giler, 2005). In (Zahia Zidelmal,
Amirou, Adnane, & Belouchrani, 2012), a new method of detecting the QRS complex
was proposed using the wavelet detail coefficients in fourth~and fifth wavelet
resolution (d4 and d5) due to the highest QRS energy in these resolutions compared
with the first three resolutions (d1..d3). Therefore this energy property was used to
distinguish between the false beats and the normal and abnormal true beats. This
method was validated with the same set of ECG records as in the previous studies. The
detection accuracy was slightly lower ‘than ones that were performed by previous

studies.

Lately, a new method of detecting Rpeak time location based on S-transform
(ST) and SE has been proposed by (Z Zidelmal, Amirou, Ould-Abdeslam, Moukadem,
& Dieterlen, 2014). This method exploits the advantages of ST to extract the QRS
complexes-in the time-frequency domain. The energy of each local spectrum computed
with ST was then determined using SE to localize the Rpeak time location in the time
domain. This method was validated with the same set of ECG records used in the
previous studies. The obtained results proved the performance in terms of detection
accuracy compared with the previous studies. As happened in previous studies (except
the DOM detector) (Yeh & Wang, 2008), there is no estimation of the processing time
required to compute the SE and ST which were used in this method. As a result, any
decision about its validity for real time ECG processing cannot be made clearly.

Additionally, this method was validated with 48 ECG records of MIT-BIH arrhythmia
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database, while many QRS complex detectors found in literature were tested alongside
2 or 3 other ECG databases to prove the ability of suggested methods to process

different morphologies of ECG patterns.

2.4.1.2 P and T waves Detection

As mentioned in the previous section, most strategies of ECG detection start
with QRS complex detection, then P and T waves that have lower<amplitude than the
QRS complex are detected sequentially, depending on the pre-detected time location
points of the QRS complex. The time location points_of P and T waves can be
summarized by the boundary points (onset and end);'as well as the peak point, which
are labeled as Pon, Ppeax, Penp, Ton, Treax,-@nd Togr respectively, as shown in Figure
2.11. These time characteristics are. mostly used to obtain many diagnostic criteria
related to P and T waves alone,’as“well as some other criteria correlated with QRS

complex characteristics.

The process of‘detecting P and T waves has been addressed by many studies in
literature. A new“method for delineating time characteristics of P, QRS, and T waves
was proposed by (J. P. Martinez et al., 2004) based on WT. Firstly, the QRS time
characteristics were detected by searching for “maximum modulus lines” that exceeded
some thresholds at wavelet scales, and then marking the pair limited by positive
maximum and negative minimum with respect to the zero crossing of the 1% WT scale
as the QRS interval. T wave detection was then performed by looking for local
maximum WT coefficients of certain morphologies within a search window that was
defined relative to the QRS position and its obtained RR interval. Similarly, the P wave
was detected, except that the RR dependent search window was defined on the other

side of the QRS position with different morphologies than ones for the T wave. The
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performance of this detection system was validated using four ECG databases (MIT-
BIH Arrhythmia, QTDB, European ST-T (Taddei et al., 1992), and CSE (Willems et
al., 1987)) databases, which were mostly used by other detection techniques according
to the manual annotation information inside them. The time characteristics of ECG
waves that were obtained by this system were Pon, Ppeax, Penp, Qonser, Sonset, Treak,
and Tenp. The greatest detection accuracy was found in Tenp, While the others time
characteristics were comparable to those found in the literature.

Another method of detecting ECG waves was .proposed in (Ghaffari,
Homaeinezhad, Akraminia, Atarod, & Daevaeiha, 2009) using discrete wavelet
transform (DWT) to delineate onset, peak, and end-time locations of P, QRS complex,
and T waves. In this method, a window with a fixed length was slid sample to sample
on the fourth wavelet scale then the curve length in each window was multiplied by the
area under the curve. Finally, a designated variable thresholding criterion was applied to
delineate the time locations of the ECG waves. This method was validated with the
same sets of ECG databases used in the previous study. In contrast to the previous WT
based detector, the most significant performance was found in the detection results of P
wave time locations compared with those in the QRS complex and T wave.

A new method of delineating time locations in P, T, and the QRS complex was
proposed by (A. Martinez, Alcaraz, & Rieta, 2010) based on Pahsor transform (PT). In
this method, each instantaneous ECG sample was converted to complex form; the real
part was represented with a constant value, while the original ECG sample was
considered as an imaginary part. The detection of the P and the T wave was performed
by considering the instantaneous phase deviation in successive ECG samples of PT. The
phase angles caused by P and T waves in the pahsor form are maximized, regardless of

their eventually small amplitude in the original ECG signal, thus making the delineation
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of their time locations easier. The performance of this method was validated with the
same sets of ECG records used in previous studies. The detection results of P and T
waves for all time locations were lower or compatible with those computed by similar

studies in the literature.

2.5 Diagnosing Cardiac Disease Based on 12-Lead ECG Signal Analysis

The most important objective of ECG signal processing is diagnosing the
cardiac disease of the HH based on the diagnostic features which were extracted from
analyzing and detecting ECG waves as mentioned An-Section 2.4.1. The precision of
these features is responsible for the correct diagnasis cardiac diseases. The results of the
studies that were proposed in literature for.diagnosing cardiac diseases demonstrate that
WT is the most promising method to’ perform feature extraction from 12 lead ECG
signals (Addison et al., 2000;>Dokur & Olmez, 2001; Saxena, Kumar, & Hamde, 2002;
Sternickel, 2002).

While, there."are many cardiac diseases, some of them can be diagnosed
extremely .aecurately based on the extracted diagnostic features from the time
characteristics of 12 lead ECG records (Malmivuo & Plonsey, 1995). Also, the ECG test
performs estimation with accepted probability compared to other cardiac diseases
because they need additional clinical heart tests like Echocardiography (ECHO), which
uses sound waves to generate a series of moving pictures that describe the size and
shape of the HH and how well its chambers and valves are working.

Additionally, the areas of the HH muscle that do not contract normally and the
areas of poor blood flow to the HH can be captured by this test. Other clinical heart tests
were recommended by cardiologist to get more valuable information about the status of

the HH and can make an accurate diagnosis easily.
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2.5.1 Diagnosing High Risk Cardiac Diseases

Among cardiac diseases, there are some which mainly cause sudden cardiac
death (SCD), thus these diseases are called high risk cardiac diseases. The simplest
accepted interpretation of SCD is death caused by unexpected circulatory arrest due to
HH causes that leads to sudden loss of consciousness within 1 hour from the starting of
acute symptoms in a person with/without existence of specific cardiac disease
(Vasiliadis, Kolovou, Mavrogeni, Nair, & Mikhailidis, 2014). Hypertrophic obstructive
cardiomyopathy (HOCM) is the most common cardiac_disease that causes SCD in
young athletic persons. The pathophysiology of SCD-that is caused by HOCM involves
complex arrhythmogenic substrate that prepares the person to fatal ventricular
fibrillation (Kelly & Galvin, 2010). Additionally, arrhythmogenic right ventricular
cardiomyopathy (ARVC), Wolf Parkinson White syndrome (WPW), LVH, long QT
corrected syndrome (LQTcS); ‘and brugada syndrome are classified as the high risk
cardiac diseases that cause SCD with a lower percentage (low risk) than for HOCM.
The risk percentage.of SCD for some high risk cardiac diseases were presented in a
form of pie.chart by (Maron, 2009) according the well known standard guidelines of the
American- College of Cardiology (Graham et al., 2005) and the European Society of
Cardiology (Pelliccia et al., 2005). In this study, the risk percentage that causes SCD for
HOCM was 35%, 8%, 4%, and 2% for LVH, ARVC, and WPW, respectively.

Many diagnostic criteria that were found in different well-known cardiology
references can be used to perform a diagnosis of high risk cardiac diseases, but with
limited accuracy. These criteria were obtained originally by the time characteristics that
resulted from analyzing P, QRS, and T waves in 12-lead ECG and the standard ECG
intervals limited by these time characteristics. Some diagnostic criteria were based on

the shape of the ECG waves themselves. However, most of these criteria take the form
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of simple logical conditions or basic mathematical definitions which can be computed
easily by computerized systems using programming languages or modern intelligent
systems like fuzzy logic, artificial neural network (ANN), etc. In spite of these facilities
to design an intelligent diagnosis system using different computerized techniques, most
studies found in literature that deal with diagnosing high risk cardiac diseases based on
12-lead ECG signal take the form of statistical medical studies on selected group of
patients to develop new diagnostic criterion or to get the detailed medical reports about
the most causes of cardiac disease and the correct ways of treatment.

On the other hand, few studies have been proposed in literature for the purpose
of diagnosing generic cardiac diseases using suecessive computerized systems. In
(Chang et al., 2012), a new diagnosing system was proposed for myocardial infarction
(MI) classification based on multi-leaddECG (V1, V2, V3, and V4). These four leads
reflect the MI infection in the anterior and septum wall of HH, therefore they were
considered in this system to-determine four corresponding sets of ECG features using
hidden Markov models(HMMs). These 4 HMMs are used not only to find the
ECG segmentations but also to compute the probability value (or likelihood value
in  HMM).~The probability for each heartbeat will be transferred to logarithm, log-
likelihood, and adopted as statistical feature data of each heart-beat’s ECG
complex. These likelihood values are adopted as statistical different features for each
heart-beat’s ECG complex. Then, the two well-known classification methods,
support vector machines (SVMs) and Gaussian mixture models (GMMs) are applied
to classify a set of testing data represented by four sets of HMMs feature into
myocardial infarction and normal classes. This system was validated with 1129 ECG

samples collected from private clinical centres, including 582 MI samples and 547
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normal samples. The final diagnosis results of sensitivity, specificity, and accuracy were
85.71%, 79.82%, and 82.50%, respectively.

Additionally, the precise detection and classification of different types of ECG
arrhythmias is crucial for the correct medical treatment of cardiac patients, so the
detection of the ECG arrhythmia using the ECG signal was the most significant subject
(Kutlu & Kuntalp, 2011; Nasiri, Naghibzadeh, Yazdi, & Naghibzadeh, 2009; Ozbay &
Tezel, 2010). Many computer based approaches have been proposed:in literature for the
purpose of detecting and classifying various arrhythmia types. An’intelligent diagnosis
system of adaptive neuro-fuzzy inference systems (ANFIS) was proposed by (Nazmy,
El-Messiry, & Al-Bokhity, 2010) to classify ECG/beats into six types of arrhythmias;
normal sinus rhythm (NSR), ventricular premature contraction (VPC), atrial premature
contraction (APC), ventricular tachycardia (VT), ventricular fibrillation (VF), and
supraventricular tachycardia (SVT),based on a feature vector that was extracted from
independent component analysis ICA, power spectrum, and RR interval. A simple and
reliable method named-,"range overlaps method” was proposed by (Yeh, Wang, &
Chiou, 2010) for classifying cardiac arrhythmia into five types; NORM, VPC, APC, and

left/right bundle brunch block (LBBB and RBBB), respectively.

2.5.2 Predication of Sudden Cardiac Death using ECG Signal Analysis

However, SCD in young people is rare, but it is a tragedy which threatens all
families and communities around the world (Maron, 2009; Maron, Doerer, Haas,
Tierney, & Mueller, 2009). The incidence of SCD in any population varies due to many
reasons including: nationality, age, gender, ethnic group, clinical techniques to detect
SCD, and facilities to obstruct or overcome SCD pharmacologically, surgically, and the

use of clinical implantable devices. There are 80 incidences of sudden death (SD)
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(fewer than 40 years old) per year in New Zealand; and 427 incidences of SD from 1995
to 2004 in Australia. However, the statistical clinical studies performed by experts
estimate that at least eight incidence of SD happen weekly in the United Kingdom
(Fishbein, 2010). Additionally, the reported information in (Noseworthy & Newton-
Cheh, 2008) shows that there are more than 300,000 incidences of SD in the United
States annually. Most of these people (about 80%) suffered from coronary artery
diseases; fewer cases (15%-20%) were associated with non-ischemic myopathic
processes like HOCM, and approximately 5% were related: to“a primary defect of
cardiac electrophysiology like (LQTcS or brugada syndrome) (Zipes, 2005).

The process of SCD predication using a 12-lead ECG takes in a wide area of
research due to the seriousness of this subject. /A large number of studies found in
literature survey deal with SCD predication‘as an attempt to get an early warning about
this problem and surviving cardiac-incidences, then thinking about possible ways to
overcome it. Numerous approaches and methods to detect and predict SCD have been
proposed in literature. dhese studies have been based on certain parameters like heart
rate turbulence (HRT), heart rate variability (HRV), T wave alternans (TWA), and
signal averaged electrocardiogram (SA-ECG), which can be obtained by the same set of
time/characteristics related to ECG waves that were presented in Section 2.4.1.1 and
Section 2.4.1.2.

In (E. Ebrahimzadeh & Pooyan, 2011), a new algorithm was proposed to detect
and predict SCD based on HRV and two sets of features were extracted by processing
two minutes of ECG beats before SCD. The first set of features was extracted from the
ECG signal itself using time and frequency domain, while the second set was extracted
by applying a time-frequency transformation on the resultant HRV signal .The decision

to classify healthy persons and others who are liable to SD was performed by multilayer
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perceptron (MLP) and K-Nearest Neighbour (KNN) with neural networks based on the
two sets of features after reducing their dimensions by principle component analysis
(PCA). This predication method was evaluated by 35 SCD patients from the MIT-BIH
SCD Holter database in PhysioBank. The behaviour of the ECG signal of one patient
from this database before two minutes of SCD and few seconds after is shown in Figure
2.12. The resulted prediction accuracy of SCD with this method was 91.42% which was
better than the percentage obtained by another method (T.-W. Shen, Shen, Lin, & Ou,
2007). This made a prediction of SCD with 87.5% accuracy by-applying ANN on the
features of HRV in Lead | from the ECG patients of the ‘same database used in the

previous method.

600 — Second Minute First minute SCD i

Figure 2.12: The ECG Signal of SCD Patient Before 2 minutes of SCD Event and
Several Seconds After that (E. Ebrahimzadeh & Pooyan, 2011).

Finally, a review study was presented by (Murukesan, Murugappan, & Igbal,
2013) about the methods and techniques based on HRV to detect and predict SCD.

Many important recommendations were made in this study. The first was that the
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predication accuracy of SCD based on HRV was limited because HRV factors cannot
be accurately evaluated in the patients with frequent Premature Ventricular Contractions
(PVC) or Atrial Fibrillation (AF). Moreover, these factors were influenced by many
parameters like age, gender, and the medicines taken by patients. The second conclusion
made by this study was that the HRV factors must be combined with other ECG
parameters like HRT and TWA to produce a highly precise SCD predication. The last
conclusion made by this study was that statistical tools were a,processing way of

predicting SCD in comparison with classifier based tools.

2.6 Summary

Chapter two has been divided into, two main parts; in the first part, a detailed
interpretation of the basic concepts ©f ECG signal including the cardiac conduction
system of HH and its representation in the ECG signal and the standard components of
the ECG signal have been presented and discussed. Moreover, the main groups of 12
leads considered in ECG signal and adopted sources of ECG data have been explained.

A literature review of the latest researches and studies that are related to the
main contributions of this thesis, which include the methods of digital recovery raw
ECG data from printed charts, QRS complex detection methods, P and T wave detection
methods, and the methods of diagnosing high risk cardiac diseases were presented in the
second part of this chapter.

Table 2.1 summarized all the literature survey related to the main contributions

of this research.
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Table 2.1: Summary of Literature Review

Reconstructing Digital Raw ECG Data From ECG Paper Printout Recording

#| Authors | Year Description of based technique
M An integral automatic approach for recovering biomedical signals
Sanroma frqm'BW grid paper printouts based_ on digital image processing
1 - 2012 prlnCIpIe_s (Ima_ge orientation correction, Pre processing and grid
Junquera cancellation, Signal waveform extraction, Conversion from the
waveform in the image plane to 1D biomedical signal).
an improved methodology to extract the digitized version ECG time
5 Prashanth 2010 series using the Radon transform for de-skewing the scanned
Swamy images. Even though the conventional Furthermore, a simple and
useful way of axis identification is proposed:
A new method for converting ECG paper.printout recording of into
3 Jalel 2008 digital form using neighbourhood.:and median approaches. In
Chebil addition, the relationship between pixels and time-voltage values is
automatically determined.
A new software-based approach using Matlab environment through
AR. 8 image processing toalssDigitalization of the paper strip, Image
4 |Gomese | 2008 |binarization, Noise filtering, Axis identification, Pixel-to-vector
Silva conversion, Removing-the header and trailer of the acquired signal,
Splitting the ECG(chart and re-assembling it.
A new method of recovering ECG signal using spatial and frequency
5 |TW Shen | 2003 techniques, Separately.
a simple“procedure for digitizing ECG paper printout recordings
6 |M Paterni| 2002 |using(the FOAM as a mathematical rule to locate the ECG trace
points.
%ﬁeating Time Characteristics of The QRS Complex
# | Authors [“Year Description of based technique
1 A new method named the difference operation method (DOM)
which be applied using a simple algorithm of two stages:
YUR-Chi ngtect RPE_AK time location by means of the difference
Yeh 2008 | (differentiation) between the current and previous beat
e Detect Q and S waves by applying the search operation for
maximum amplitudes at dual intervals to the right and left side of
the Rpeax position.
2 A new approach for detecting QRS complex using the K-nearest
neighbor (KNN) algorithm. In this approach, the ECG signal was
Indu Saini | 2013 filtered using a digital band pass filter to minimize the false
detection generated by power line interference. The gradient of the
ECG signal was then used to extract many features which were used
by the KNN classifier for QRS complex detection.
3 .. a new EMD based algorithm to detect the QRS complex. This
E:jr:je_- algorithm includes 5 steps to perform subject detection:
Had}ne 2010 | » Applying a 5" order high pass Butterworth filter.
Slimane e Decomposing the filtered ECG signal into a sum of three (IMF).

e Applying nonlinear transform on the resulted IMF.

48




e Integrating the resulted components.
e Applying a 1% order low pass Butterworth filter to compute a
unique maximum value for each QRS complex event.

M.Sabari A new Rpeak detection method based on the SEE estimator and a
malai 2012 simple peak-finding logic using the HT and moving average
Manikand filter to address the problem of detecting unusually shaped QRS
an complexes and noises.
a new method of detecting the QRS complex using the wavelet
detail coefficients in 4™ and 5" wavelet resolution (d4 and d5) due
Z 2012 to the highest QRS energy in these resolutions compared with the
Zidelmal first three resolutions (d1..d3). Therefore this energy property was
used to distinguish between the false beats and the normal and
abnormal true beats.
A new Rpeak detection method based on<ST and SE. This method
2 Zidelma e_xploits the advantaggs of ST to extract the QRS complexes in the
| ' 2014 [time-frequency domain. The energy' of each local spectrum
computed with ST was then determined using SE to localize the
Rpeak time location in the time.domain.
N N
Delineating Time Characi't&lvgﬂcs of P and T Waves
Authors | Year Description of based technique
Juan A new method_for_delineating time characteristics of P, QRS, and T
Pablo waves based on- WT. Firstly, the QRS time characteristics were
detected by<searching for “maximum modulus lines” at wavelet
scales. Towave detection was then performed by looking for local
2004 |maximum WT coefficients of certain morphologies within a search
window that was defined relative to the QRS position and its
obtained RR interval. Similarly, the P wave was detected, except
that the RR dependent search window was defined on the other side
of the QRS position
A new method of detecting ECG waves using DWT to delineate
A onset, peak, and end time locations of P, QRS complex, and T
Ghaffari 2009 |waves. In this method, a window with a fixed length was slid _sample
to sample on the fourth wavelet scale then the curve length in each
window was multiplied by the area under the curve.
A new method of delineating time locations in P, T, and the QRS
complex based on PT. In this method, each instantaneous ECG
Arturo sample was converted to complex form. The detection of P and T
Mart’ 2010 {waves were performed by considering the instantaneous phase
mnez deviation in successive ECG samples of PT. The phase angles
caused by P and T waves in the PT are maximized, regardless of
their eventually small amplitude in the original ECG signal
Diagnosing Generic Cardiac Diseases
Authors |Year |Description of based technique
Pei- a new diagnosing system was proposed for MI classification based
Chann 2012 |on 4 sets of ECG features which were extracted from (V1, V2, V3,
Chang and V4) leads using HMMs, then the two  well-known
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classification methods SVMs and GMMs are applied to classify a
set of testing data represented by 4 sets of HMMs feature into
myocardial infarction and normal classes.

An intelligent diagnosis system of ANFIS to classify ECG beats into

Elﬁzmy 2010 six types of arrhythmias; NSR, VPC, APC, VT, VF, SVT based on a
. feature vector that was extracted from ICA, power spectrum, and RR

Messiry interval

Yeh 2010 |A simple and reliable method named "range overlaps method" to

Wang classify cardiac arrhythmia into five types; NORM, VPC, APC,

LBBB, and RBBB.
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CHAPTER 3

RESEARCH METHODOLOGY

3.1 Introduction

Many computerized based techniques have been proposed in literature for the
purpose of analyzing, detecting ECG waves, and delineating the time characteristics of
these waves to extract many valuable parameters and diagnaesti¢c’ features to interpret
different functional activities of the HH. Most of these techniques were validated with
the online ECG data that was downloaded from specialist physiological websites like
PhysioNet as mentioned in Chapter 2 Section-2.3.2. However, many of these techniques
provide acceptable results, but need further improvements to generate perfect outcomes
especially the incompatibility of these techniques for real time applications. This is due
to the fact that the greatest numbers of these techniques were applied to the transformed
version of ECG data (net on the ECG data itself) using certain mathematical transform
like DWT, PT, ete,or using the series of mathematical estimations like SE. EMD. As a
result, mare time was spent on arriving of these calculations.

As mentioned in Chapter 2 Section 2.5.1, a limited number of computerized
based techniques have been proposed in literature for the purpose of diagnosing cardiac
diseases based on diagnostic features that were extracted from analyzing a 12 lead ECG
signal. This limitation has many reasons, the first of which is the limitation of digital 12
lead ECG data as it is only persons who suffer from certain cardiac diseases who are
suitable to process in a computerized system. Second, many cardiac diseases, especially
high risk cardiac diseases, need more specialist cardiac information and more HH tests

than that normally reported by cardiologists.
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In this chapter, an intelligent system is proposed for analyzing a 12 lead ECG
signal and diagnosing LVH high risk cardiac disease. The proposed system includes
three main stages: pre-processing the ECG signal, analyzing and detecting ECG waves,
and diagnosing LVH high risk cardiac disease. The general block diagram for the
proposed ECG system is shown in Figure 3.1.

In the first stage of proposed ECG system, a new digital recovery approach is
proposed to address the limitation of digital ECG data by reconstructing it from the
scanned image of the ECG paper printout recording.

In the second stage of the proposed ECG system/two approaches are proposed
to detect the QRS complex and P, T waves, respectively, and then delineates the
boundaries and peak time locations of these ‘waves which are used to compute
diagnostic parameters for various cardiac diseases. Both proposed approaches are
designed to apply a straightforward algorithm with an instantaneous processing
technique on the ECG input signal.

As mentioned in,Chapter 2 Section 2.5.1, LVH cardiac is one of the high risk
cardiac diseases that cause SCD in young people. In the third stage of the proposed
ECG system, a new approach is proposed for diagnosing LVH cardiac disease based on
some: voltage parameters determined from the previous detection stage and some
traditional diagnostic criteria. The proposed diagnosis approach is modelled by the new
design of the fuzzy Inference system (FIS), and it is designed to test any 12 lead ECG

data and provide an accurate diagnosis of LVVH cardiac disease for both genders.
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Figure 3.1: General Block Diagram of Proposed System for Analyzing and
Diagnosing 12-lead ECG Signal.

3.2 12-Lead ECG Data

As mentioned in Chapter 2 Section 2.1, the ability to interpret any medical data
using a computerized system is related mainly to the availability of this data in a digital
form with various morphologies. In this section, the resources of ECG data used to
validate the proposed approaches for analyzing, detecting and diagnosing are discussed

in more detail.

3.2.1 Online ECG Data

Most studies found in the literature survey for analyzing, classifying, and
diagnosing ECG signals were validated by ready data that was downloaded from
specialist databases on the internet. The online ECG data was arranged as groups of

databases with different subjects in a digital form. In addition, the original ECG
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recordings for this data were collected from many specialist clinical centres around the
world.

As mentioned in Chapter 2 Section 2.3.2, the Physionet website is a great
resource for different physiological signals. It contains a huge bank of data called
PhysiBank which is organized into more than 50 ECG databases with different numbers
of records, and most databases are annotated manually by cardiologists with important
analysis information like RR interval, time characteristics of ECG waves, ECG beat
classification, etc. Additionally, some ECG databases in this.bank include a complete
diagnosis of cardiac disease and all data inside this bank'is free of charge. Therefore,
these databases have become the main resources of ECG data for all studies presented in
the literature survey which is concurred with® ECG analysis, classification, and
diagnosis.

In the second stage of the proposed ECG system shown in Figure 3.1, two
approaches have been proposed-to detect ECG wave characteristics; one for detecting or
delineating the QRS complex and other for P and T waves. Selecting the suitable ECG
database to validate-any detector depends mainly on the annotated information available
in this database. The first detector for the QRS complex is validated with the ECG
records,in the MIT-BIH database from Physiobank which was discussed in Chapter 2
Section 2.3.2.1. Also, in the same data bank, the ECG records from the QT database
discussed in Chapter 2 Section 2.3.2.2 are used to validate the second detector of P and
T waves. Additionally, some ECG records from diagnostic 12 lead ECG database
INCART discussed in Chapter 2 Section 2.3.2.3 are used to validate the proposed
approach for diagnosing LVH cardiac disease in the third stage of the proposed ECG
system shown in Figure 3.1. The limited amount of ECG records in these databases

which are suitable for diagnosing validation, especially for high risk cardiac diseases
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like LVH, opens the way for other ECG record resources like reconstructing 12 lead

ECG data from the printed ECG chart.

3.2.2 Digital Recovery of 12-lead ECG data from Paper Printout Recordings

As mentioned in Chapter 2 Section 2.3.3, the digital recovery of ECG data from
paper printout recordings has become essential, especially for the ECG data of high risk
cardiac diseases. Moreover, it is very difficult to assemble sufficient amounts of this
data through online databases. At the same time, unlimited>)ECG records as the paper
printout recordings can be collected from different ¢linical centres, even if they have
been recorded using a traditional ECG machine:-Thus, a new approach for the digital
recovery of 12 lead ECG data has been proposed to reconstruct this data from the digital
image scanned from the ECG paper printout recording (printed ECG chart). The
proposed digital recovery approach is based on the basic principles of image processing
techniques and is applied‘in four stages. The general block diagram of this approach and

a sample result for.each step is shown in Figure 3.2.

3.2.2.1  Proposed Approach for Digital Recovery of 12-Lead ECG from Paper
Printout Recordings

The final shape of the ECG chart depends mainly on the ECG machine that has
recorded it. Traditional ECG machines use long roll paper to print the ECG. In this
machine, the 12 lead ECG is printed one after another in a sequential form, while in

modern machines, all 12 lead ECG are printed on single paper.
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Figure 3.2: General Block Diagram of Proposed Approach for Digital Recovery of
12 lead ECG Data from Colour Scanned Image of ECG Paper Printout Recording.
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Additionally, certain types of these machines are programmed to make basic
analysis and pre diagnosis for the ECG signal recorded but their accuracy is limited
because many parameters in these machines must be adjusted before reuse. One sample
of ECG printout recording from a traditional machine is shown in Figure 3.3.a, and two
samples of ECG recordings which are recorded by different modern ECG machine

models are shown in Figure 3.3.b and c, respectively.
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Figure 3.3: (a) Cl .h?a’l 12-lead Paper Printout Recording, (b), (c) Modern Forms
of 12-lead Pgs Printout Recordings with Automatic ECG Interpretation.
A
X0

1{\(& first step of the proposed digital recovery approach, the 12-lead ECG
pape@rintout is scanned with high resolution (600 to 1200 dpi) to maintain the most
accurate details of the ECG drawing, which means that the final recovered raw ECG
data is very accurate. Next, each row region of the ECG drawing that contains four
different leads is grouped separately as an image slice with (WS) width and (HS) height,
while the remaining area in the scanned image is excluded from the following
calculations as shown in the 1% step of Figure 3.2.

The resulting image slices from the previous step are converted to black and

white colour mode by removing background colour which is viewed as small and large
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squares. The background colour is usually light (light green, orange, red, or blue). This
background colour must be erased and only the dark colour (usually black) of the ECG
chart stays (alone) within the image slice. To perform this subject analysis, an adaptive
high pass filter is applied on each slice including three colour layers (RGB) for each
point. As is known, the value of each (RGB) component is limited between (0 ... 255)
and each colour filter applied on this pattern must be fixed exactly with an adaptive
threshold value for component for each colour to make a decision to pass or reject
(erase) the tested point. The special colour filter is designed to erase all points within the
image slice that verify the mathematical rule expressed in)Equation (3.1), which at the
same time passes all points elsewhere. The threshold-values (R, Gin, and Bg) must be
determined accurately according to the components of the background colour; this is
done by applying a simple analysis on the (RGB) components of some points found in
small selected segments inside the:tested slice, however, the selected segment must be

empty (from any drawings).

3[Erase X; |: Red(X;;) < R,y AND Green(X;;) < G, AND Blue( X;;) < By,

Vi=1.,HS;, Vj=1,., WS (3.1)

The resultant image slices from the previous step contain the ECG chart and
some printed text around this chart. The enlarged segment in the 2nd stage of Figure 3.2
shows that some blank spaces are found within the ECG chart. These gaps in the
drawing will be considered as missing data in the next steps, which will have an effect
on the accuracy of the final recovered data.

The third step in the proposed digital recovery approach overcomes this problem

by applying an intelligent technique to track the resulting ECG chart' points and fill any
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blank spaces within them. As well as, removing any printed text or lines around ECG
chart. The delineation value of the new data added must be computed accurately to
remove any distortion which occurs in the final ECG drawing. The new intelligent
technique takes four (3 x 3) masks (left, right, up, and down) around the tested point as
a base rule to make a decision to contact two neighbouring end points if at least one
mask (M) from the four contains more than two black points (pixels) as expressed in

Equation (3.2).

a[Fill XU]:Z Myese = 2 or ZMRight > 2 or Z My, = 2 or ZMDW > 2(3.2)

The contact decision takes the form-of replacing the blank point by a designed (3
x 3) mask, which makes the contact’with four possible end points in four directions as

shown in Figure 3.4.

o]
M_ UP 1 1 | 1 | esigne
~ o[ o] Mask
M _Left M Right (_Replﬂ(-e test p()fﬂf\
Vwith designed mask |
® ® | if contact condition |
M_Down

Figure 3.4: A Process of Replacing Test Point with Designed Mask to Fill Blank
Spaces between Two Neighbouring Points.
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In addition to contacting two end points spaced by a blank space within the ECG
chart, other advantages are gained from applying the previous technique. First, the
resulting ECG chart takes a smooth form, thus the enlarged segment shown in the 3rd
stage of Figure 3.2 is smoother than the resulting ECG chart when the previous
intelligent technique was applied. Second, the testing of the blank spaces is limited to
the points that fall inside the four tested masks (Mup, Mpown, Miet, and Mgigh). This
means that any points outside these masks are not considered in the.resulting smoothed
image and, as a result the unwanted printed text and the handwritings outside the ECG
chart are removed.

The final step in the proposed digital recovery approach is focused on detecting
the ECG baseline and reconstructing useful raw ECG data. The proposed technique of
computing the level of the ECG baselineis performed by partitioning the complete area
of each image slice resulting fromthe’previous step into small horizontal segments with
the same heights equal to 5 points (pixels) and the same widths equal to the width of the
image slice (WS).

The baseline position is allocated in the centre of the segment that has a
maximum number of black points as expressed in Equation (3.3). The baseline detection
process)is applied once in each image slice (i.e. all four leads in single image slice take

same baseline level).

i
3! [BaseLine « i + 2]: MAX ZX(i..i + 4, 1..WS)

Vi =1,611..,size(HS — 5) (3.3)
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The second operation which will be applied in this step is the digital recovery of
raw ECG data. In general, sampling any continuous signal must be processed with a
certain frequency. The output frequency of the ECG signal is related directly to the
speed of the ECG device. As standard, this speed is equal to 25 mm/s, thus the time
interval for one ECG beat is (40 ms). These basic principles are reported in most
cardiology resources (Azeem et al., 2005; Bowbrick & Borg, 2006; Hampton, 2008;
Luthra, 2011; Wagner, 2008).

As the time interval of a single ECG beat is represented by a small square in the
final ECG paper printout, the sampling process of the ECG chart must be applied to
each small square. However, the difference here is-that the small square is represented
by a number of image pixels, not as a time interval.

The size of a small square in pixels (PS) can be determined easily by computing
a number of pixels with the same_colour which forms the square shape in any clear
region from the original secanned image. The complete area of the image slice is
partitioned into vertical-segments with the same widths equal to PS pixels and the same
heights equal to the height of the image slice (HS). The width of the vertical segments
(PS) can he.reduced to 50% or more in order to increase the resolution of the final
reconstructed data, especially for the low printed quality of the ECG chart.

The sampling or digitizing process is applied according to the proposed
algorithm mentioned in Algorithm 1. In this algorithm, each vertical segment is scanned
from the bottom in an upward direction to find the first column mask of 5 points which
has more than 2 black points. When this mask is reached, the scanning process in this
segment is terminated and the centre point of this mask is fixed as a digitizing point.
This point represents primary voltage amplitude of the raw ECG data in this segment;

the final voltage amplitude level is determined by shifting it with the baseline level
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computed in the first operation of this step, and then normalizing it by a certain
amplitude factor determined by the number of pixels in the two large squares which
simulate ImV in a real ECG signal (Aehlert, 2012; Azeem et al., 2005; Hampton, 2008,

2013; Jenkins & Gerred, 2011; Luthra, 2011).

Algorithm | Proposed Algorithm for Sampling Raw ECG Data from Slice Image

BEGIN
Read FS_image = Image Slice (k;, k;) ,Vki=1, ... ,HS; vk;=1,.5,WS
[* WS, HS are width and height of testing Image Slice */
PS = Calculate (No. of Pixels in each small Square of ECG chart)
Amp_Fact = Calculate (Scaling Factor from Total.Height HS with respect to PS)
Raw_Data=Zeros (1...WS/ PS ) /* Generate.amempty matrix of Raw ECG Data */

for j=1to WS STEP PS do
for i=3 to HS-2 do
Sum_Rg=> Fs image (1-2...i+2, j) /* Calculate No. Of Black Pixels in Mask
Column Mector of Five Points that is cantered by tested point (i,j) */
if Sum_Rg > 3 then
Raw_Data(j)=i + (Sum_Rg/2) /* Store Centre Position of First Verified Column
Mask with*5 points That includes more than two Black Pixels into Raw ECG Data
Vector*/
Break loop(i);
end if
end for  /*end of loop i*/
end for  /*end of loop j*/
Final_Raw_Data = (Raw_Data - Baseline Level) / Amp_Fact /* shifting Resulted
Raw ECG Date by the baseline level and scaling them with amplitude factor */
END
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3.3 Detection Time Characteristics of ECG Waves

As mentioned in Chapter 2 Section 2.4.2, most approaches for detecting and
delineating P, the QRS complex, and T waves were applied using certain mathematical
transformation like wavelet, Walsh, cosine, Fourier, etc, adaptive filtering techniques
like low pass differentiation, nested median filtering, etc, or intelligent classifier like
fuzzy theory, ANN, etc (C. Lin et al., 2010). In these approaches, the detection of ECG
waves is performed by processing the ECG data after converting‘it to another sampling
or sequence form that makes the processing of the ECG signal simpler. However, the
resulting detection rates which are obtained by these approaches are highly accurate.
Nevertheless, the ability to apply them as a real time system becomes more difficult due
to the complexity in the mathematical calculations needed for these approaches. On the
other hand, the validity of the real time detecting approach becomes more realistic when
the based technique tracks the ECG signal beat by beat and performs the entire subject

detection by simple mathematical calculations.

According-to the last observation of processing the ECG signal instantaneously,
two detection approaches have been proposed based on a straightforward algorithm that
tracks-the ECG signal beat by beat, and then delineates the time location points of P, the
QRS complex, and T waves. The first approach is proposed to delineate the time
characteristics of the QRS complex. While, the second approach is proposed to
delineate the time characteristics of the P and T waves depending on the time location

points of the QRS complex that are pre-delineated in the first approach.
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3.3.1 Proposed Approach for Detecting QRS Complex

As mentioned in Chapter 2 Section 2.4.2.1, the first step in detecting ECG waves
in most detecting techniques found in literature survey is to delineate the time location
points of the QRS complex, and then represent these locations as the reference points to
delineate other time locations in the P and T waves. Additionally, the obtained
diagnostic features from these locations are used to make a diagnosis for different
cardiac diseases. Therefore, the detection of the QRS complex can be seen as the core of
analyzing and interpreting ECG signals. As a result, developing new approach for

detecting and delineating the QRS complex accurately.is essential.

In this section, a new approach to delineate the time characteristics of the QRS
complex (Qonser, Qenp, Rreak, Sonsgr, ‘and Sgnp) has been proposed using an
instantaneous algorithm applied directly on the ECG signal without the need for any
mathematical transform, additional filters, or classification with the intelligent
technique. The proposed detection approach takes the advantage of mutation from tall
rising to falling edge as the basis for delineating the time location points of the QRS
complex. The-proposed detection approach includes three steps as shown in Figure 3.5.
In the following text, each of these steps is highlighted in more detail to interpret its

main function in the final detection process.

In the first stage which can be represented as a pre-processing unit, simple
calculations are performed to compute two threshold values (Ry, and Sy,), which are
used in the next steps to make a decision of considering R and S waves, respectively.
These threshold values are determined by computing the maximum positive and
negative difference along with the beats of two or three ECG cycles. Next, the largest

two sequential sets are extracted as a maximum positive difference Rt and a maximum
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negative difference St. Finally, the Ry, and Sy, are obtained by Rt and St values after

scaling them with a factor (0.85 .. 0.95).

Stage One: Determining Threshold Values for R & S waves
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Figure 3.5: General Block Diagram of Proposed RFEM Approach for Detecting
Time Characteristics of QRS Complex.
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Figure 3.6: Extremely Tall amplitude of T wave (Foster, 2007).

This scaling factor is selected at a high level to make surethat the decision about
detection is related to the QRS complex and not for the T wave because in some cardiac
diseases, the T wave has a high amplitude level due to hyperkalemia (Foster, 2007)
(asymptotic amplitude level of the QRS complex) as shown in Figure 3.6. Another
reason for this scaling factor comes from-the fact that not all QRS complexes along the

same ECG record take the exact same-amplitude level.

The second stage of(the proposed QRS detection approach represents the first
step in the QRS complex detection process by delineating the time location points of
(Qenp, Reeax, Sonser) Which are the vertices of a triangle that forms the QRS complex.
These locations are delineated using a proposed algorithm named rising falling edge
mutation (RFEM). The new algorithm includes two parts. The first starts when the ECG
signal is mutated from the horizontal level or falling edge direction to the rising edge
direction. This transition can be detected by comparing two voltage differences (AMP;
and AMP;.;) defined in Equation (3.4) and Equation (3.5), which denote the amplitude
difference between the next and current beat, and between the current and previous beat,
respectively. In this case, the AMP; has a positive value, while the AMP;.; has a zero or
negative value. At this moment the time event of (Beat;) is assumed to be temporary as a

Qenp time location.

68



AMP; = AVoltage(Beat; 1 — Beat;) (3.4)

AMP;_; = AVoltage(Beat; — Beat;_1) (3.5)

Where AMP;: Amplitude difference between next and current beat, AMP;:

Amplitude difference between current and previous beat.

The ECG signal within the actual QRS complex must continue in an upward
direction until it reaches the Rpeak point. This behaviour can be interpreted with the
positive signs of AMP; and AMP;.; along this period; moreover;the number of beats
within this period is determined as (rm). When the ECG signal reaches the peak point of
the QRS complex, the direction of the signal is conyerted from upward to downward. At
this moment the time event of (Beat;) is assumed to be temporary as the Rpgax time
location and the first part of the proposed,delineation algorithm is finished. Finally, the
left side of Figure 3.7.b shows a graphical representation of this part of the algorithm in
a single ECG cycle which is labelled 1% step. In addition, all instruction sets of this
operation illustrated in thefirst part are marked (check the occurrence of rising edge) in
Algorithm 1. As.seen as, the second part of the proposed delineation algorithm is
started, the.first process performed here is the decision to consider the ECG period
limited, down by Qenp and up by Rpeak, due to the verification of the compound
condition expressed in Equation (3.6). This decision condition contains two criteria;
first, that the voltage amplitude difference between the Rpeax and Qenp iS greater than
or equal to Ry, to make sure that this amplitude is related to the QRS complex, which
takes the highest amplitude components, while at the same time excluding any
amplitudes that are related to the P and T waves. Second, the number of beats in this

time period rm is at least two beats.

3!'[Qenp = Rprax] : (AVoltage(Rppax — Qenp) = Rep and rm = 2) (3.6)
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The last criterion is based on the information reported in most cardiology
resources that the duration of the QRS complex in normal ECG does not exceed 120 ms
(3 ECG beats as a maximum) (Azeem et al., 2005; Bowbrick & Borg, 2006; Gacek &
Pedrycz, 2012). Therefore, the R wave which represents the left half of the QRS

complex takes a half of this duration.

Beside the decision of (Qeno — Rpeak), this part of the algorithm still
determines the continuity of the falling edge which can be interpreted with negative
signs of AMP; and AMP;; along this period. This sequence, continues until the ECG
signal reaches the next mutation point; at this moment-the time event of (Beat;) is
assumed temporary at the Sonser time location-due to the verification of compound
condition is expressed in Equation (3.7). Thesame criteria for the previous decision are
used here, except that the threshold value-is Sy, and the number of required beats within
this period is (sm). The right side, of Figure 3.7.b shows a graphical representation of
this part of the algorithm in‘single ECG cycle which is labelled 2™ step. Moreover, all
instruction sets of this -operation are illustrated in the second part which is marked

(Check the occurrence of Falling Edge) in Algorithm 1I.

3! [Rpgak = Sonser] : (AVoltage(Rpgax — Sonser) = Sen and sm > 2) 3.7)

The third stage of the proposed approach is performed to delineate a start time
location point of the QRS complex Qonser and the end time location point Senp (J-
point) that makes the connection between the QRS complex and T wave in the ECG
cycle.

In general, the Q wave in an ECG signal is expressed by a negative deflection
that precedes the occurrence of the R wave. This deflection represents the left to right

depolarization of the inter-ventricular septum of the HH.
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Algorithm Il Proposed Algorithm to Delineate Qenp, Rpeax, and Sonset Time
Locations

BEGIN
X =[BEAT,,...,BEAT;] ,Vi=l,....,N /*N:total No. of beats in ECG input signal */
for=1toNdo

AMPygis =A Voltage (Xi+1 - Xj) I* Determine the voltage difference between current and
next beats */
/* Check the occurrence of Rising Edge */

if AMPgis > 0 then
rm=rm+1 /* rm is the counter of beats in Rising Edge */
iriRsT = Xi /* store first Rising Edge point in iggst */
if sm>2and A (AMP(Xgrpeak ) — AMP(X;.1) ) > Sth and Rpag =1 then
SonseT =Xi.1  /* record the existence of S-wave start_point */
Reset Riiag=0 /* reset Ryag When successive falling” edge is detected */
endif
sm=0
endif
/* Check the occurrence of Falling Edge */
if AMPgit < 0 then
sm=sm+1 /* sm isthe counter of beats in Falling Edge */
if rm>2and A(AMP(Xg-peak ) — AMP(Xi1) ) > Rth then
Qenp = Xi-rrst  /* Qenp point is the first point in successive Rising Edge */
Reeak = Xi
SetRuag=1 /* set Rqag When successive Rising edge is detected */
endif
rm=0
endif
endfor
END

The amplitude of the Q-wave is small in left leads (I, aVL, V5, and V6);
however, its amplitude becomes deeper (greater than 2mm) in leads (I, Ill, and aVR).

Additionally, the Q wave is not seen in the right side leads (V1, V2, and V3) (Alfaouri
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& Daqgrouq, 2008; Azeem et al., 2005; Bowbrick & Borg, 2006). According to the
variation in the amplitude of the Q wave in different ECG leads, a simple search process
is performed from the Qgnp time location towards the upper left corner. This search
process checks the voltage amplitude difference between the Qgnp point determined in
the previous stage and the previous beat (Beatgeng-i), as well as the number of beats
within this period is determined. The search operation is terminated when one of the
conditions expressed in Equation (3.8) is verified. The first condition limits the
amplitude difference that does not exceeds 2mm (0.2mV) (thecmaximum amplitude for
a normal Q wave) (Azeem et al., 2005), and the secand: condition limits the time
duration of the detected Q wave less than 2 beats;~which limits the duration of the Q
wave and is reported in most cardiology references (Aehlert, 2012; Azeem et al., 2005;
Bowbrick & Borg, 2006; Hampton, 2008). In the same manner, another search process
is performed on the upper right corner of the Sonset time location point to detect the end
time location of the S wave(Senp). The same search process which is used in the Q
wave is implemented-ta-locate (Sonset— Senp) time interval, except that the start beat is
the (Sonset) time-location point and the assuming threshold for the time duration does

not exceeds-3-beats as expressed in Equation (3.9).

3! [QONSET b QEND] : (AAmp|Bth - Bth—i' < ?2mmor TDQ()_,E <2 beatS) (38)

3! [SONSET = SEND] : (AAmp|BtSO - BtSO+i| < 2mmor TDSO_,E <3 beatS) (39)

3.3.2 Proposed Approach for Detecting P and T waves

As mentioned in Chapter 2 Section 2.4.2.2, most detector approaches of P and T

waves found in the literature survey mainly depend on the time characteristics of the
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QRS complex which are pre-detected by another detection approach. In this section a
new high speed approach for delineating time characteristics of P and T waves
(HSDPTW) has been proposed. The new approach includes two algorithms to delineate
time locations (onset, peak, and end) of P and T waves, respectively. Both delineated
algorithms scan the target ECG signal within the adaptive interval that can be identified
relative to the time characteristics of the QRS complex which are pre-detected by
another detector. In the following text, each algorithm is discussed in a single section in

order to highlight the details for each algorithm separately.

3.3.2.1 Delineating the Time Characteristics of Pwave

The P wave represents the depelarization of the atrial muscle in the HH.
According to the small mass of atrial muscle, the P wave is represented as low voltage
in the ECG diagram (Foster,>2007). In this section, a new algorithm for detecting the
time characteristics of the’P wave is proposed. Firstly, this algorithm takes the time
characteristics of the. QRS complex in the left side as a reference point to delineate the
peak time loeation, and then use this location as a reference point to delineate the onset
and the end time locations of the P wave. As, the delineation processes of the peak and
the boundaries time locations are performed with a different processing technique, each

one is discussed separately in the following sections.

3.3.2.1.1 Delineating the Peak Time location of P wave

The proposed approach to delineate the peak time location of the P wave
includes four steps. The first step is a pre-processing unit that involves the process of

extracting time characteristics of the QRS complexes using another detector. The
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proposed QRS detector RFEM is considered for this issue. The second step allocates a
small search segment in the left side of QRS complex in a limited period called the
"search period”, thus delineating the peak time location of the P wave which is limited
within this period only. The start and end time limits of the search period are marked
Pstart and Peng, respectively as shown in Figure 3.8.a. However, the most difficult

problem is to allocate these limits correctly.

In the P wave detection method, proposed by (Espiritu-Santo-Rincon &
Carbajal-Fernandez, 2010), two search periods were suggested; the first was a narrow
period and defined as 0.81*RR(i)-7 to Q(i)-18, the second was the wide period and
defined by 0.71*RR(i)-7 to Q(i)-18. Additionally,“another approach (Tan, Chan, &
Choi, 2000) suggests a single search period which is limited by 0.1 to 0.3 s back from

the QRS complex.

The PR interval, whichwas discussed in Chapter 2 Section 2.2.2, varies from
0.12 to 0.20 s (Azeem et al.;.2005), and the number of ECG beats within the PR interval
depends mainly on this time duration, as well as the frequency used in sampling the
ECG signal as.defined in Equation (3.10). A standard frequency used by most ECG
machines to record the ECG signal is 25 Hz, but most ECG databases found online use
a higher frequency for sampling to maintain the smallest details in the ECG record, for
example the sampling frequency in QTDB is 250 Hz, and in the MIT-BIH arrhythmia
database, it is 360 Hz. The proposed detection approach can be applied to any ECG

records with a different sampling frequency.

No of ECGggurs = Time Interval (s) * Sampling Frequency (Hz) (3.10)
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Figure 3.8: Graphical Representation of Proposed Approach for Detecting P and
waves, (a) Search Period Limits Utilized by Proposed Algorithm for P and T Peak
Delineation in Single ECG Record of Dataset "'SEL307" From ST Change
Category in QTDB, (b) P-wave Segment Marked with Angles and Intervals
Utilized by PWONOFF Subroutine to Extract the Onset and the End time
locations of P wave and (c) T-wave Segment Marked with Three Sequential Stairs
Utilized by TWONOFF Subroutine to Extract the Onset and the End of T wave (
|3| : time interval of three beats, Hgis : Height Difference ( A amplitude) of [3|).
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In most well known cardiology references, the normal duration of the P wave
does not exceed 0.1 seconds, its amplitude does not exceed 0.25 mV, and its boundaries
are 0.1to 0.2 seconds relative to the QRS complex (Azeem et al., 2005; Gacek &
Pedrycz, 2012). According to these parameters, the limits of the search period Ps,rt and
Peng Must be 25 and 50 samples back from the beginning of the QRS complex. In the
proposed approach, the search period is assumed to be wider as defined in Equation
3.11 and Equation 3.12. Therefore, the duration of this search period is 45 samples and
started before 20 samples from the beginning of the QRS“complex. The idea of
enlarging the search period utilizes the process of detectingythe P wave in every position
even if any shifting to the right or left occurs due te-any instant abnormality in the heart
rhythm. As a result, the probability of detecting the P wave within the assumption

search period is increased.

Psrapr = Qpnp — 20 (3.11)

Pgnp = Psrapr — 45 (3.12)

The third step of the proposed approach performs the main job of delineating the
peak time location of the P wave using a proposed algorithm to process the ECG beats
along the search period which was allocated in the previous step. The proposed
algorithm allocates peak position at the mutation point between the conditional rising
and falling interval sequentially because the search direction of starts from Pgyp towards
Pstart. Algorithm 111 views all instruction codes for rising and falling conditions as well
as the main iteration of the search operation. The peak time location delineated by the
previous operation is reported as a primary peak. In some cases, different forms of

concavity appear near the actual peak of the P wave in both sides that lead to an
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incorrect peak time location point. The final step in this approach overcomes this
problem by applying multi-scan iterations on both sides of the primary peak time
location. The first iteration Frwingex Scans a limited interval on the right side of three
translation steps allocating the odd beats, while the second iteration Bakingex SCans a
same interval in the reverse direction but passes on the even beats. The graphical
representation of the last correction operation is shown in Figure 3.9. Additionally, its
instruction codes are mentioned in the second part of algorithm Il and labelled

(/*Delineating correct peak time location of P wave */).
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Figure 3.9: The Effect of Correcting the Delineated Primary Peak of the P

Wave, (a) Three ECG Cycles of Dataset ""SEL39"" From the Sudden Death
Category in QTDB; (b) Right/Left Scan Iteration.
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Algorithm 111 Proposed Algorithm of Delineating Peak Time Location of P wave

BEGIN
Read QRS=[QRS;,..,QRS\] /* N is total No. of pre-detected QRS complexes by RFEM*/

for I=1to N do
Qstart = time(Q[ 11]); /* Qstart is a pre detected onset time location of Qwave by RFEM*/

Penp = QSTART - 20 ; PstarT = Penp — 45; *Psrart and Peyp are the start and end limits
of P wave Peak search period */

FLP=0; [*Status Flag*/

PUP=0 ; PDW=0 /* PUP, PDW are counting of rising and falling interval in P wave */

Ws=0; PMX =0; /*PMX is the primary time location of P-wave Peak*/

/* Delineating primary peak time location of P wave */

for KT = Penp 10 PstarT do
if Xkt < Xk1 then PDW = PDW+ 1; FLP = 1; PUR.=0;
else PUP=PUP +1;
if (FLP equal 1 and PDW >:10 and PUP > 10) then
PMX = Ws (Kt-1) ;
PDW =0;
FLP =0;
Break loop (KT);
endif
endif
end for /> end of loop KT*/

/* Delineating correct peak time location of P wave */
MPMX =PMX;
for MP = PMX+2 to PMX+10 STEP +3 do

If Xmpmx"<Xme then MPMX = MP; endif
end for:

for MP = MPMX downto MPMX-9 STEP -3 do
if Xmemx < Xpp then MPMX = MP; endif
end for

Ppeak [I] = MPMX; /* Store corrected Peak time location of P wave (MPMX) in
Ppeak Matrix */
end for /* end of loop | */

Call PSon-orr(MPMXj); /* Call a subroutine for determining start Poy and end Poer time
location of P-wave*/
END

The previous correction operation is the last part of the proposed approach to

delineate the peak time location of the P wave. When it is finished, the process of
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delineating the onset and end time locations of the P wave is started directly by calling a

proposed subroutine named PSon-orr in the last part of algorithm I1I.

3.3.2.1.2 Delineating the Onset and the End Time Locations of P wave

In this section, a new algorithm to delineate the onset and end time locations of
the P wave has been proposed. The new algorithm takes a form of a subroutine which is
called by the main P wave peak delineation algorithm mentioned in the previous
section. The new subroutine uses the peak time locationof the P wave as a base to
delineate the P wave boundaries (onset and end) time locations by applying two scan
iterations beginning from the peak time location*point towards the boundary points of

the P wave period.

The first iteration (BG) scans the interval to the left of the P wave peak beat by
beat, and two angles (ANG1 and ANG2) are determined continuously based on
Equation (3.13) and ‘Equation (3.14), respectively. This iteration continues until the
determined angles -match the condition mentioned in the PSon-orr Subroutine. The P
wave segment shown in Figure 3.8.b elucidates the based technique used to determine
these'angles. Both angles represent the convexity degree in the rising interval of the P
wave. At the same time, the ANG2 represents the flatness degree at the end points in the
same wave. The time location allocated by this iteration represents the onset time

location of the P wave and is labelled Poy in Figure 3.8.b.

o Xpe — Xppak
ANG1 = 180" — tan™?! [—] 3.13
an Ckk (3.13)
Xpr — X
ANG2 = tan™! [%] (3.14)
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where Xpeax: Amplitude voltage (mV) of the pre-detected Ppeax, Xgs, Xgo-2:
Amplitude voltage (mV) of current and previous beat is separated by 3 time units,
respectively, BG: 1% Iteration index of the interval on the left side of Ppeax.

Through the same technique applied in the first iteration (BG), the second
iteration (EF) scans the right interval of the P wave peak; however, the ANG1 and
ANG?2 are determined using different sets of equations, which are defined in Equation
(3.15) and Equation (3.16), respectively. The time location allocated by this iteration
represents the end time location of the P wave which is labelled’ with Porr in Figure
3.8.b. The ANGL1 angle represents the angular obliquity “between the line segment
limited by the peak point (Xpeak) and the test point inchoth iterations (Xgg and Xgg) with
respect to the horizontal axis. Therefore, the‘determined ANGL1 vyields a pure obtuse
angle, but it takes a different sign in{hoth iterations because the arctangent angle
computed by (Xss-Xpeak)/Ckk Is allocated in the third quadrant and has a positive sign.
On the other hand, the corresponding angle in second iteration computed by (Xgg-
Xpeak+3)/Ckk IS allocated, in the fourth quadrant and has a negative sign.

The final decision to delineate the P-wave onset and end time locations depends
mainly on_the' determined ANG1 and ANG2 value in the boundary points of the P-
wave; At the same time, it is very difficult to specify certain threshold values for these
angles due to the variety of P-wave texture in various ECG categories, but an
assumption value can be obtained by analyzing some ECG signals with different P
waves' morphologies, and then taking the average limits for two angles on both sides.
The overall instruction codes for the previous two iterations and all related calculations

of delineating Pon and Pogr are illustrated in Algorithm 1V.

Xer — XpEAKk+3

ANG1 = 180" + tan™!
+ tan Chk

(3.15)
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ANG?2 = tan~! [M]

g (3.16)

where Xpeak+3: Amplitude voltage (mV) of the ECG beat separated by 3 time
units from the right of Ppeak, Xer, Xer+2: Amplitude voltage (mV) of the current and
next beat separated by 3 time units, respectively, EF: 2"Iteration index of the interval in

the left side of Ppeak.

Algorithm 1V PSon-orr Subroutine of Delineation Onset andEnd Time Locations in
the P Wave

BEGIN
Ckk=1; pw=0; FLKP =0;
for BG =MPMX downto MPMX-15 do
/* MPMX is the modified peak location-after the correcting operation */
ANG1 = 180° - tan™ [(Xae - Xmpmx) / CKK];
ANG2 = tan™[(Xse - Xae2)L3];
if ANG1 < 120° and ANG1 > 100° then FLKP = 1; endif
if | ANG2 |> 5 thendpw = pw+1; endif
if pw >3 and (FLKP equal 1) then Break loop(BG); endif
Ckk = Ckk+l;
end for-/*end loop (BG) */
Ckk=1;
for EF =MPMX+3 to MPMX+15 do
ANG1=180° + tan™ [(Xer - Xwmpmx3) / CKK];
ANG2=tan™ [(Xgr+2 - Xer) / 3];
if ANG1 < 110° and ANG1 > 95°and | ANG2 |> 5 then Break loop(EF);
endif
Ckk = Ckk+1;
end for : /*end loop(EF) */
Pon[ 1] =BG; /* Store onset time location of P-wave Poy (BG) Matrix at | index */
Pore[ | ] =EF; /* Store end time location of P-wave Pogrr (EF) Matrix at | index */
RETURN
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3.3.2.2 Delineating the Time Characteristics of T wave

The T wave corresponds to ventricular repolarisation of the HH. Normally, it has
the same direction as the predominant deflection of the QRS complex (Foster, 2007,
Morris, Brady, & Camm, 2009). The normal shape of the T wave is in a positive
direction and its amplitude must not exceed half the amplitude of the preceding QRS
complex. The abnormalities of the T wave take three shapes, and each of these shapes is
caused by certain/many cardiac disease(s) or some general diseases in the human body.
The first abnormal shape is flat which is causedyby Myocardial Ischemia,
Hypothyroidism, and Pericarditis. The tall amplitude of the T wave is the second
abnormal shape, which is caused by hyperkalemia as shown in Figure 3.6. Finally, the
inverted T wave is the abnormal shape ofthe T wave which occurs most frequently and
is caused by many cardiac diseases like Ventricular Hypertrophy, complete heart block,
right bundle brunch block, etc-(Azeem et al., 2005; Foster, 2007; Gacek & Pedrycz,
2012). At the same time,the T wave is normally inverted in aVR and V1 lead, and
sometimes in 111, V2, and V3 leads in some black people (Hampton, 2008).
Accordingto the different shapes of the T wave mentioned above, it is very difficult
to detect this wave with a single algorithm (Espiritu-Santo-Rincon & Carbajal-
Fernandez, 2010). A new approach for detecting the T wave with different shapes has
been proposed in this section. Like the P wave detector which was mentioned in the
previous section, the proposed T wave detector includes a main algorithm to delineate
peak time location of the T wave, and then calling a small subroutine to delineate
boundaries time locations based on the delineated peak time location. Each part of the
proposed T wave detector is discussed separately in the following sections in order to

highlight each in more detail.

83



3.3.2.2.1 Delineating the Peak Time Location of T wave

As happen with the P wave detection approach, the first process is delineating
the peak time location, which is considered as reference point to delineate other
boundaries of the T wave (onset and end). A new approach of delineating the peak time
location of the T wave has been proposed in this section based on the same strategy that
was used in the P wave peak delineation algorithm mentioned in the previous section,
except that the search period is allocated on the right side of the QRS complex.

Through the basic concepts of the ECG signal that-are found in most well known
cardiology references, the normal period of the QT.interval is 0.44 seconds (Azeem et
al., 2005; Foster, 2007; Gacek & Pedrycz, 2012; Gupta, Mitra, & Bera, 2013). As a
result, the total number of ECG samples obtained by Equation (3.10) along the QT

interval is 110 beats, and each T wave’ must start and end within these beats.

In the proposed algerithm, the T wave search period is assumed to be 75 ECG

beats according to Equation (3.17) and (3.18).

Tsrarr = Ssrarr + 30 (3.17)

Tenp = Tsrarr +75 (3.18)

The Tstart and Tenp represent the lower and the upper limits of the search
period, respectively. It is different from that of the S wave which has 30 ECG samples
as shown in Figure 3.8.a. Therefore, the entire search period takes 105 ECG samples in
addition to the normal duration of the QRS complex defined in most cardiology

references (20 - 25 ECG samples).
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According to the previous calculation, the assumed QT interval from the onset
of the QRS complex to the end of the search period is 125 to 130 ECG samples, which
is wider than the normal QT interval by 15 to 20 ECG samples. This wider range of the
QT interval utilizes the ability to detect the T wave period, even those with a long
duration and those that shift to the right or left due to any disturbance in the
performance of the HH.

The same pre-processing step of detecting QRS time characteristics in P wave
peak delineation approach is applied in the proposed approach™to delineate the peak
time location in the T wave. Moreover, the second step)focuses on determining the
lower limit Tstart and upper limit Tegnp Of the seareh“period according the definition in
Equation (3.17) and (3.18) based on the S wave time characteristics that are predefined
in the pre-processing step. The third~and final step in this approach performs the
delineating of the peak time location-of the T wave using a new algorithm that allocates
peak time location when the-ECG signal within the search period is mutated from the
falling edge to the rising.edge for negative T wave or vice versa for the positive T wave.
The number of ECG samples within the first interval in both cases is determined by
separate counters termed Cyup and Cpown, respectively. The decision about the peak
event occurs when the counter value Cyp or Cpown exceeds 15 ECG samples (less than
the half of the search period limited by Tstart and Tenp) to consider the tipping event
as a peak time location in the T wave which is labelled Tpeax.

The instruction codes for the previous three steps are illustrated in Algorithm V.
As another decision about the direction of T wave is computed in this algorithm, the
total number of normal and inverted T waves along the ECG signal can be easily

determined.
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Algorithm V Proposed Algorithm of Delineating Peak Time Location of T wave

BEGIN
Read QRS =[Q:R;:Sy,...,QnRNSn] 7* Niis total No. of QRS complexes which are pre-
detected by RFEM */
for I=1 to N do
Seno =time (S[1]); /* Senp is the end time location of S wave pre- detected by RFEM */
Tstart= Senp + 30; Tenp= Tstart + 75; /*Tstart and Teyp are the start and stop
time of T wave peak search period*/
FLT=0; /*Status Flag of interval directionl for rising, 2 for falling*/
Cup=0; Cpw=0 /* Cyp, Cpw are counting of rising and falling.interval in T wave */
TUP=0; TDW=0; /* TUP,TDW are event counting of,Up and Down direction in
T- wave */
TMX=0; /* TMX is the time location<of T-wave Peak */
/* Delineating peak time location of T wave */
for KT = Tsrart to Tenp do
If Xt > X1 then Cyp= Cyp +1,;
if (FLT-equal 2) and Cpw>15) then TMX = kt; TDW=TDW+1,
Break loop(KT);

end if

FLT=1; Cpw=0;
else

Cow=Cpw+1;

if (FLT equal 1) and Cyp>15) then TMX = kt; TUP = TUP+1,
Break loop(KT);
end if
FLT=2; Cup=0;
end if
end for /* end of loop KT*/
Treax[ | ] < TMX; /* Store Peak time location of T-wave (TMX) in Tpeax Matrix */
Call TSon-ore(TMX;) /* Call TSon-ore subroutine for determining onset Toy and end
Tore time location of T-wave*/

END
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3.3.2.2.2 Delineating the Onset and the End Time Locations of T wave

In addition to the peak time location of the T wave delineated in the previous
section, there are two time characteristics which are represented by the boundaries
(onset and end) time locations of the same wave. The T wave has taller amplitude and a
wider duration compared with the P wave in most ECG signal categories.

In this section, a new approach to delineate the onset and the end time locations
of the T wave has been proposed. The new approach maximizes the fact that the T wave
constructs a semi-orthogonal angle with the ECG baseline at'the end events of the T
wave. The new approach considers this fact as themain criterion to delineate the
boundaries time locations of the T wave.

The new algorithm takes the form\of a subroutine termed TSon-orr, Which is
called by the main T wave peakcdelineation algorithm mentioned in the previous
section. As in the P wave algorithm, the TSon-orr Subroutine uses the Tpegak time
location as a base point to.delineate the boundaries of the T wave (onset and end) time
locations by applying two scan iterations (TN and TD) starting from the Tpgax time
location point. to the endpoints of the T wave period as shown in categories of the T
wave_-segment in Figure 3.8.c. Each of these iterations is repeated up to 30 ECG
samples. Therefore, the maximum duration for the detected T wave which is limited
between the onset and the end time locations is 60 from 75 ECG samples, which is
assumed to be the period for the T wave. Only one amplitude segment named Hygj is
determined in both iterations as the difference between two successive ECG beats
isolated by three time locations. The delineation decision of the onset and the end time
locations is taken according the occurrence of three sequential segments with the
smallest Hgj;, which demonstrates the behaviour of the ECG signal at the endpoints of

the T wave. This decision is more effective in delineating the end time location of the T
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wave but not as effective in delineating the onset time location, especially when the
starting segment of the T wave is merged with the previous S wave (i.e. takes the same
slope). All instruction codes for the proposed subroutine to delineate the onset and end
time locations of the T wave are illustrated in Algorithm VI. In addition, the resulting
onset and end time locations of the T wave are labelled Ton and Togr, respectively in

the T wave segment shown in Figure 3.8.c.

Algorithm VI TSon-orr Subroutine of Delineation Onset and End-Time Locations in
the T wave

BEGIN

Ckk =1;
for TN =TMX+3 to TMX+30: STEP 3 do
Hait =Aamplitude( XTn+2 - X7n); /* Amplitude difference between current beat Xy and
next beat spaced by three time units Xyy.o */
if | Hair | < 0.001 then Ckk = Gkk+1;
if Ckk > 3 then Break loop(TN); /* Decision for Toer when
three continuous semi flat segment are verified */
endif
endif
end for /* end loop (TN) */

Ckk=1,;
for TD =TMX-3 to TMX-30: STEP -3 do
Hait. = Aamplitude( X102 - X7D); /* amplitude difference between previous beat spaced
by three time units Xp, and current beat X;p */
if | Hair | <0.015 then Ckk = Ckk+1;
if Ckk >3 then Break loop (TD); /* Decision for Toy when
three continuous semi flat segment verified */
endif
endif
end for /*end loop (TD) */

Ton[ 1] =TD+9; /* Store time location of T-wave ON (TD+9) in Ty Matrix */
Tore[ 1] = TN-9; /* Store time of T-wave OFF (TN-9) in Tore Matrix */

RETURN
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In the previous sections, two approaches have been proposed to delineate time
characteristics (onset, peak, and end) time locations of P and T waves in the ECG

signal. The general block diagram of these approaches is shown in Figure 3.10.
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Figure 3.10: General Block Diagram of Proposed Approaches to Delineate the
Onset, Peak, and End Time Locations of P and T Waves in the ECG Signal.

3.4 Diagnosing High Risk Cardiac Diseases

As mentioned in Chapter 2 Section 2.5, most studies found in literature that deal
with the diagnosis of high risk cardiac diseases take the form of statistical studies. On
the other hand, several methods proposed in literature use the computerized system
tools for the purpose of diagnosing cardiac diseases based on a 12 lead ECG signal (A.
Ebrahimzadeh, Shakiba, & Khazaee, 2014). In the following text, the standard

diagnostic criteria for diagnosing LVH cardiac disease are highlighted in more detail,
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and an intelligent computerized system of diagnosing LVH cardiac disease based on

new diagnostic criterion is proposed.

3.4.1 Diagnosing Left Ventricular Hypotrophy

As mentioned in Chapter 2 Section 2.5.1, LVH cardiac disease is one of the high
risk cardiac diseases that causes SCD, and electrocardiographic evidence of LVH is a
major indicator of cardiovascular morbidity and transience around the world (Levy et
al., 1990). In LVH cardiac disease, the muscle mass of theeft ventricle increases. This
leads the main vector of ventricular depolarization more toward the left ventricle and
enlarges its magnitude. As a result, the R wave-in the lateral precordial leads (V5 and
V6) becomes longer, the S wave in V1 becomes deeper, and the amplitude of the R
wave in Lead (I or aVL). Figure 3:11 shows the 12 lead ECG record of a man with

longstanding severe hypertensionvand LVH (Foster, 2007).

1 aVR aVvL aVF =~ V1 V2 V3 V4 V5 V6

SEER R

Figure 3.11: A 12-lead ECG Record of a 38-year-old Man with Long-Standing
Severe Hypertension and LVH (Foster, 2007).
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Preparing an accurate and early diagnosis of LVH is a significant issue in the
care of patients with hypertension (Pewsner et al., 2007). The process of diagnosing
LVH from a 12-lead ECG depends mainly on several voltage and duration criteria
related to each single lead with respect to another. The standard diagnostic criteria for
diagnosing LVH cardiac disease based on ECG parameters are highlighted in more

detail in the next section.

3.4.1.1 Standard Diagnostic Criteria for LVH Cardiac Diséase

In general, the diagnostic criteria of LVH can. be classified as either voltage or
non-voltage criteria (Morris et al., 2009). Many.criteria for diagnosing LVVH have been
proposed in literature. These diagnostic criteria are obtained by certain parameters in a
12-lead ECG signal, many of them have remained anecdotal (Pewsner et al., 2007). On
the other hand, there are some«criteria that are commonly used to diagnose LVH, which
are more suitable for computerized ECG (Casale, Devereux, Alonso, Campo, &
Kligfield, 1987). Typically, high specifications are verified by these criteria (greater
than 90%), while the sensitivities are low (20%-60%) (Devereux, Casale, Eisenberg,

Miller, & Kligfield, 1984; Reichek & Devereux, 1981).

The first standard criterion for diagnosing LVH was proposed in an early study
and is usually referenced as "Sokolow-Lyon". This criterion uses the uni-polar limb and
precordial leads to detect the atypical and early patterns of LVH (Sokolow & Lyon,
1949). Another criterion used for diagnosing LVVH was the "Cornell voltage” (Casale et
al., 1985). This criterion takes two different forms of conditions to detect LVH in men
and women, respectively. In (Molloy, Okin, Devereux, & Kligfield, 1992), a modified

criterion based on the Cornell voltage product was developed and analyzed. Another
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diagnostic criterion was proposed in an old study (GUBNER & UNGERLEIDER, 1943)
termed the "Gubner criteria”. A different approach is called "Rombhilt-Estes scores™ and
diagnoses LVH using a point score system of multi-criteria (Romhilt & Estes Jr, 1968).
The descriptions of the standard criteria for diagnosing LVH cardiac disease are
illustrated in Table 3.1. Most of these criteria are considered in proposed diagnostic

criterion for diagnosing LVH cardiac disease which is discussed in the next section.

Table 3.1: Standard Diagnostic Criteria of LVH Cardiac Disease
(M:Male, F:Female)

# | Criterion Name |Description N (JO‘ Gender
1 [Sokolow-Lyon |S(V1) + R(V5or V6) > 3.5 mV M and F
R(aVvL) + S(V3) > 2.8 mV M
2 | Cornell voltage
R(aVvL) + S(V3) > 2.0mV F
S(V3) + R(aVL))-%x-QRS duration > 2440 M
3 | Cornell product (5(V3) @VL))xQ — s
(SV3+(RaVL+8mV)) x QRS duration>2440 ms F
4 | Gubner RI+SHE25mV M and F
Max( R«0r'S (Limb Leads)) > 20 3
S(VI)or S(V2) > 30 3
R(V5) or R(V6) > 30 3
5 |Romhilt-Estes (ST and T wave changes opposite to mean 3 |MandF
scores QRS
ST and T wave changes opposite to mean 3
QRS
Left atrial involvement 3

In addition to the standard diagnostic criteria mentioned above, other diagnostic
criteria for LVH cardiac disease have been reported by various well known clinical
websites. Most of these criteria show the limited accuracy of diagnosing LVH cardiac
disease. This low rate of accuracy comes from the wrong diagnosis of LVH cardiac
disease, especially in young people (aged <40 years), where the tall R wave and deep S
wave are present in ECG leads in the absence of LVH cardiac disease. The additional

criteria for diagnosing LVH cardiac disease are illustrated in Table 3.2.
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Table 3.2 : Additional Diagnostic Criteria of LVH Cardiac Disease

# |Abbreviation Description

1 |CRTA1 R(@aVvL)>13mm

2 |CRTA2 R(1)+S(111)>25mm

3 |CRTA3 R(@VF)>20mm

4 |CRTA4 S(aVR)>14mm

5 |CRTAS R(V4 or V5 or V6)>25mm

6 [CRTAG6 S(V1orV2) +R(V5or V6) >35mm

7 |Recommended Criterion (REC-CRTA) [S(Il) + Max(R,S(V1-V6)) >30 or R(aVL) >13mm

3.4.1.2 Proposed Criterion for Diagnosing LVH Cardiac Disease

In this section, a new criterion of diagnosing LVH cardiac disease has been
proposed. The new criterion addresses the problems of previous diagnostic criteria in
making an accurate diagnosis in terms of sensitivity and specificity. In contrast to the
present diagnostic criteria found in literature, the new criterion considers eight voltages
from eight ECG leads to compute the final diagnosis of LVH cardiac disease. The
voltage parameters considered in new criterion are split into two groups; the first group
includes the R wave “amplitude in leads V4, V5, V6, and aVF. The second group
includes the S-wave amplitude in leads V1, V2, V3, and Ill. The idea of selecting eight
ECG voltage parameters comes from maximizing the area to detect irregularities in all
ECG categories (limb [standard, augmented] and precordial) leads. In the new
diagnostic criterion, there is a polynomial equation defined in Equation (3.19) which is
proposed to compute the main decision value (MDV) for diagnosing LVH cardiac
disease. With respect to the chest leads in this equation, the left ventricular leads are
most common due to their location on the left of the transitional zone in the HH to
assess hypotrophy in the left ventricle (Gacek & Pedrycz, 2012). Thus, only left
ventricular leads V5 - V6 (which are placed above the lateral wall of the left ventricle)

are considered to have full voltage (weight=1) in the MDV equation, whereas the right
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ventricular leads V1 - V2 and V3 - V4 (which are placed between the ventricles and the
anterior wall of the left ventricle) are considered to have half voltage (weight=0.5) in
the MDV equation. In addition to the chest leads, two of the limb leads (I1l and aVL)
are considered in the same equation because these leads are mostly used in traditional
LVH diagnostic criteria. The computed MDV values for the LVH patients are high
compared with the normal or non-LVH patients; however, in a few cases, the computed
MDYV value is high in the absence of LVH cardiac disease. This.drawback is solved
logically in the final decision of the proposed criterion by successive logical expressions

with some traditional diagnostic criteria.

MDV = 0.5R(V4) + R(V5) + R(V6) + 0.5R(aVF) + 0.55(V1) + 0.55(V2)

+0.55(V3) + SUID) (3.19)

In addition to the MDBV equation, the proposed criterion for diagnosing LVH
cardiac disease includes-three logical expressions. The first expression (Exprl) defined
in Equation (3:20) is true according to the verification of either the Cornell or the
recommended criterion (REC-CRTA), whereas the second expression (Expr2) defined
in Equation (3.21) is verified when the Sokolow and the Cornell criteria are true and at
least five of six criteria (CRTAL...6) are true. The last expression defined in Equation
(3.22) represents the main decision for diagnosing LVH cardiac disease based on MDYV,

Exprl, and Expr2, which were obtained previously.

A[Exprl]: Cornell is true OR REC — CRTA is true (3.20)

6
A[Expr2]: (Cornell AND Skolow AND Z TRUE(CRTA)) = 5) (3.21)
i=1
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3! [LVH¢ p]: (([MDVE > 75 OR MDV); = 105] AND Expr1) OR Expr2 ) (3.22)

In the main expression defined in Equation (3.22), there are two different
threshold levels of MDV for each gender. The threshold levels are computed
statistically by analyzing a 12-lead ECG record of some patients who suffered from
LVH and others with other cardiac diseases. A few normal patients are also considered
for this test. The statistical results show that the suitable limit of MDV is 75 for females
and 105 for males. However, some results satisfied the MDV limits in the absence of
the LVH cardiac disease which leads to an incorrect diagnosis. Therefore Exprl and
Expr2 are added in the main diagnostic expression toe. overcome this drawback and to

perform an accurate diagnosis of LVH cardiac disease.

3.4.1.3 ECG Voltage Parametersfor Proposed Diagnostic Criterion

The overall voltage parameters required for the proposed criterion are eleven
voltages which are~obtained from the 12-lead ECG signal. The voltage parameters
include the R wave amplitudes of I, aVL, aVF, V4, V5, and V6 leads and the S wave
amplitudes-of 11, aVR, V1, V2, and V3 leads. These voltages are determined directly
using the time characteristics of the QRS complex. The proposed detection approach
termed "RFEM" for QRS complex detection mentioned in Section 3.4.1 is considered to
determine these characteristics. Because the RFEM approach, like other QRS detectors,
works with ECG data in digital form, any ECG record available as a paper printout
recording must be converted first. The other proposed approach for digital recovery
mentioned in Section 3.2.2.1 is considered to reconstruct raw 12 lead ECG data from

the printed ECG chart.
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3.4.1.4 Proposed FIS for Diagnosing LVH Cardiac Disease

In general, fuzzy inference is the process of formulating the mapping from a
given input to an output using fuzzy logic. The mapping then provides a basis from
which decisions can be made, or patterns discerned (Sumathi & Paneerselvam, 2010).
The FISs are recently more familiar tools for solving engineering problems because of
their unique features in computing complex phenomena. A fuzzy system is a non-linear
mapping between inputs and outputs, in which the mapping ofdnputs to outputs is in
part characterized by a set of ““IF-THEN’’ rules. A typicalfuzzy logic-based approach
involves three main units: fuzzfication unit, inference engine, and defuzzification unit

as shown in Figure 3.12.

Inference "
Fuzzification Defuzzification

X .
,\‘Q\ Fuzzy Rule Base J_
> J

Figure 3.12: Expert FIS System Model (Sivanandam et al., 2007; Sumathi &
Paneerselvam, 2010).

As with most traditional criteria used for diagnosing LVVH cardiac disease, the
computational equation of the proposed diagnostic criterion takes a conditional form. In
reality, the final decision about diagnosing LVH is verified according the logical value

of four conditions which are defined in Equation (3.22). Therefore, this logical structure
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can be represented easily with a FIS according to the basic concepts of mapping rules

used in FIS.

In this section, a new FIS for diagnosing LVH cardiac disease has been
proposed. The proposed FIS is constructed using fuzzy Mamdani method; in addition, it
has seven input membership functions (MFs) which are determined mathematically by
analyzing the logical expressions of diagnostic criteria that are defined in Equation
(3.19), Equation (3.20), and Equation (3.21) to convert them into-simple conditioning
statements that can be easily expressed by FIS as the MFs. These MFs are used by 6
fuzzy rules to obtain the decision values of three outputdFs (Exprl, Expr2, and MDV)
that construct the main parameters in the final diagnosis of LVVH cardiac disease defined
in Equation (3.22). The general diagram of the proposed FIS is shown in Figure 3.13 as
it is viewed by MATLAB environments. Four input MFs are designed to simulate
Sokolow-Lyon, Cornell voltage,” CRTAL, and REC-CRTA diagnostic criteria.
Additionally, the true occurrence of CRTAL to CRTAG6 diagnostic criteria is expressed
by another input MF. The graphical diagrams of these MFs are shown in Figure 3.14.a-
e, respectively..The sixth input MF is designed to evaluate the MDV value defined in
Equation~(3.22). This MF is composed internally of two sub-MFs. The first MF is
termed’MDV-Female to compute the MDV criterion for females with respect to the
designated threshold of the LVH diagnosis (75). The second MF is termed MDV-Male
to compute the same criterion for males with respect to a determined threshold of the
LVH diagnosing (105). The graphical diagram of the two sub-MFs is shown in Figure
3.14.f. The last input criterion is termed Gender-CRT to specify the gender of the tested

patient as shown in Figure 3.14.g.
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Figure 3.13: The Proposed FIS for Diagnhosing LVH Cardiac Disease.
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Figure 3.14: Graphical Diagrams of the Input MFs in Proposed FIS.

In general, fuzzification is the process of changing a real scalar value into a
fuzzy value. This is performed with three types of fuzzifiers (Gaussian, singleton, and
trapezoidal or triangular). All mathematical statements in the proposed diagnostic
criterion defined in Equation (3.22) take the form of a single logical condition (greater
than or less than the fixed threshold). The trapezoidal fuzzifier includes four scalar
parameters (a, b, ¢, and d) (Hanss, 2005; Sumathi & Paneerselvam, 2010). The
membership definition for a trapezoidal fuzzifier is defined in Equation (3.23). From

this definition, there are five classification regions, while the logical condition requires
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two classification regions. Thus, a small change must be applied on the original
trapezoidal fuzzifier to convert it to handle two classification regions instead of five. To
do this, a and b parameters are assigned to the fixed threshold level, while ¢ and d take
the upper limit for the input parameter. Consequentially, all logical statements in

proposed diagnostic criterion are expressed with input MF using a modified trapezoidal

fuzzifier.
(Y, ifx<a
|;:Z, if x € [a,b]
Fix)={ 1, if x €[b,c] (3.23)
==, if x € [c,d]
k 0, if x>d

The final decision of LVH cardiac disease diagnosis in the proposed FIS is made
by three MFs. These MFs compute-the value of Exprl, Expr2, and MDV which are
defined in Equation (3.20);)(3.21), and (3.22), respectively. The output MFs are
obtained by six fuzzy-fules in such a manner that each MF is verified when the
diagnostic criteria’found in the input MF within its rule are true. The first and second
output MFEsinclude single sub-MF as shown in Figure 3.15.a-b, respectively. The third
output, MF handles three sub-MFs. The first is termed MDV-Fe-LVH and verifies when
the input MF MDV-Female is true and the value of Gender-CRT is in the female area.
Similarly, the second sub-MF is termed as (MDV-Ma-LVH) and verifies when the MF
MDV-Male is true, and Gender-CRT is in the male area, while the third sub-MF is
termed MDV-Normal and verifies when the first MFs are false. The graphical diagram
of the third output MF is shown in Figure 3.15.c.

In general, the defuzzification process represents the final step in each fuzzy

system which is performed by aggregating the resulting value for all output MFs. In
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proposed FIS, the final decision about LVH cardiac disease diagnosis represents the
deffuzfication process by aggregating a resultant value for the three output MFs (Exprl,
Expr2, and MDV) using the fuzzy rules related to each one. The defuzzfication method
used is centroid, which computes the defuzziied value at a very fast rate, as well as
being able to produce very accurate results (Sumathi & Paneerselvam, 2010). The
centroid method returns the centre of area under the curve. The active interval in Exprl
and Expr2 is [0, 1] as shown in Figure 3.15.a-b, respectively, thus the aggregated value
using the centroid defuzzification method is 0.5. However, in MDYV there are two active
intervals [0, 1] and [3, 4], and the aggregated value using the same defuization

method is 0.5 or 3.5, respectively.
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Figure 3.15: Graphical Diagrams of the Output MFs‘in Proposed FIS.

3.5 Summary

In this chapter, a new system of computerized based technique has been
proposed for diagnosing LVH cardiac-disease based on processing and analyzing a 12
lead ECG signal. The new proposed system includes three main stages called: pre-
processing ECG signal, detecting and analyzing ECG waves, and diagnosing LVH high
risk cardiac disease..The descriptions of these stages and their detailed operations were

integrated in single graphical block diagram at the first part of this chapter.

Through the first stage of the proposed ECG system that handles all pre-
processing operations of reading, smoothing or filtering (if needed), and archiving ECG
data. A new system called the digital recovery approach has been proposed to generate
12 lead raw ECG data by reconstructing it from a scanned image (24-bit Bitmap) of the
printed ECG chart. This approach includes four image processing steps to provide final
12 lead ECG data in digital form. These steps were integrated in a single graphical
block diagram in Section 3.2.2 Figure 3.2, and the theoretical concepts for each step

were interpreted separately with related demonstrative diagrams and mathematical
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definitions. The 4™ step of this approach is the detection of the ECG baseline and
reconstructing raw ECG data from the image pixels using the proposed sampling
process. The instructions of this process were presented in detail in Algorithm I. The
proposed digital recovery approach was designed to process various types of the printed

ECG charts.

The second stage of the proposed ECG system was focused on detecting ECG
waves (the P wave, the QRS complex, and the T wave), and.then delineating time
characteristics of these waves which leads to the computing of more diagnostic
features/criteria for different cardiac diseases. Two approeaches were proposed in this
stage. The first approach is named RFEM which.performs the process of detecting the
QRS complex in different ECG morphologies/ rhythms. The RFEM approach
mentioned in Section 3.3.1 was applied by a straightforward algorithm using an
instantaneous processing technique-on the ECG signal (beat by beat), as a result, the
overall processing speed becomes very high. In addition, it takes rising to falling edge
mutation as a base rule to accomplish the QRS complex subject detection. All steps of
applying RFEM “approach on the ECG signal were presented in a single graphical
diagram as iltustrated in Section 3.3.1 Figure 3.5. The theoretical basis for each step was
then'inaterpreted in more detail with related demonstrative diagrams and mathematical
definitions. Moreover, the based technique for delineating time characteristic of the
QRS complex in the RFEM approach was represented by set of instructions in

Algorithm Il with quite interpretation for each instruction.

The second proposed detection approach in the same stage of the proposed ECG
system named HSDPTW, focused on detecting P and T waves to delineate the
boundaries and peak time locations of these waves. The HSDPTW approach mentioned

in Section 3.2.2.2 was applied by allocating two limited intervals in the left and right
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sides of the QRS complex. Allocating the limits of both intervals was mainly based on
the time characteristics of the QRS complex which were pre detected by the RFEM
approach. At each interval, a main search algorithm was implemented to delineate the
peak time location of the P and T waves based on conditional rising to falling edge
mutation within the limits of the search interval. When the peak time location was
allocated by the main algorithm, the process of delineating boundary time locations was
started directly by another algorithm in a subroutine form called bysthe main algorithm.
This subroutine takes the delineated peak time location as acbase point to apply two
search iterations towards the boundaries of the P and T waves to delineate the onset and
end time locations of these waves. All instructions. of the main algorithm and calling
subroutine were presented with quite interpretation in Algorithm 11, IV for P wave, and

Algorithm V, VI for the T wave, respectively.

Through the third stage of-the proposed ECG system which was focused on
diagnosing high risk cardiac ‘diseases. A new approach to diagnose LVH cardiac disease
has been proposed using a proposed FIS design. This system is based on eight voltage
parameters whieh‘were obtained by the time characteristics of the ECG waves, and two
criteria (Skolow, Cornell) which were adopted for diagnosing LVH cardiac disease. The
traditienal and proposed diagnostic parameters were represented by seven input MFs,
while the final diagnosis decision was represented by three MFs in the proposed FIS

using the fuzzy Mamdani method.
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CHAPTER 4

RESULTS AND DISCUSSION

4.1 Introduction

The general block diagram of the proposed system for analyzing a 12 lead ECG
signal, detecting ECG waves and delineating their time characteristics, and diagnosing
high risk cardiac diseases was presented in Chapter 3 Section 3.1 Figure 3.1. In each

step of this system, there is one approach or more which have been proposed.

In this chapter, each approach in the proposed ECG system is validated with
some ECG records which are collected.from one or more standard online databases or
by the raw ECG data which is recenstructed from ECG paper printout recordings using
the proposed approach of -digital recovery. The findings from (digital recovery,
detecting ECG waves, delineating their time characteristics, and diagnosing a specific
high risk cardiac,disease called LVVH) approaches take different forms, thus many
scenarios are-suggested to evaluate the overall performance of these approaches. At the
same time, these evaluation scenarios are compatible with those that were considered by
well known published works in literature in order to facilitate the validation of the

obtained results with ones found in existing works.

4.2 Performance Evaluation of proposed Digital Recovery Approach

In Chapter 3 Section 3.2.2.1, a new approach for digital recovery of 12 ECG

data from the colour scanned image of ECG paper printout recording (printed ECG
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chart) has been proposed. Two simulations are conducted to validate the performance of
this approach. The first scenario is a graphical evaluation of the 12-lead raw ECG data
that is reconstructed from the printed chart after scanning it with a high resolution (600
dpi), and then saving the resulting image as 24-bit BMP standard format as shown in
Figure 4.1. The second evaluation is performed analytically by validating some standard
ECG parameters like heart rate, QT interval, QTc, etc which are computed
automatically by the modern ECG machine and the correspondi{@' values for these

parameters that are obtained by the reconstructed ECG data. K\QO

For Use O MORTARA 10542050 : . @ - CEam sonomED
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Figure 4.1: The Scanned Image of ECG Printed Chart Using 600 dpi.
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4.2.1 Graphical Evaluation of the 12-lead ECG Data

The graphical evaluation of the proposed digital recovery approach is performed
by re-plotting the reconstructed 12-lead raw ECG data with respect to the baseline,
which was pre detected by the same approach. All steps illustrated in the main block
diagram of the proposed digital recovery approach shown in Chapter 3 Section 3.2.2
Figure 3.2 are applied on the scanned ECG image shown in Figure 4.1 (the 1% ECG
record from the validation data). The findings from the first stepcof the proposed digital
recovery approach are three slices of rectangular image, each of these slices compounds
four ECG leads. In the second step, these slices-are digitized using the sampling
algorithm presented in Chapter 3 Section 3.2.2;1-Algorithm | to generate twelve signals.

These signals represent the reconstructed 12 lead ECG data.

Each one of the reconstructed-12 lead ECG is plotted separately in a single graph
with respect to the detected baseline as shown in Figure 4.2.a-1, respectively. In these
graphs, the detected baseline level is labelled with a dashed red line. In addition, the y-
axis scale of all graphs is limited to (-1.5 mV - +1.5mV) or totally 3mV because the
original drawing of ECG signal shown in Figure 4.1 varies to 6 large squares in all three
row areas of the printed chart, and each large square represents an amplitude voltage of

0.5mV as discussed in Chapter 2 Section 2.3.1.
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Figure 4.2: Graphical Evaluation of Reconstructed 12 lead Raw ECG Data
Resulted from Applying Proposed Digital Recovery Approach on Digital Scanned
Image of Printed ECG Chart, Lead (a) I, (b) aVR, (c) V1, (d) V4, (e) II, (f) avL, (9)

V2, (h) V5, (i) I, (j) aVF, (k) V3, and (I) V6.

Finally, to prove the ability of the proposed digital recovery approach to process

various types of ECG printed chart, this evaluation is repeated for another ECG record
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with a different shape of printout paper, the original ECG record, as well as the
drawings of the reconstructed 12 lead ECG data with respect to the ECG baseline

detected are illustrated in Appendix A.

As in all continuous signals, the reconstructed raw ECG data obtained by the
proposed digital recovery approach is not adopted without true time considerations. The
most significant challenge is how to convert graphical data that is represented by sets of
pixels to a continuous signal with fixed sampling frequency. ThiS.problem has been
addressed successfully by computing a number of pixels that are restricted within a
small square NP in the scanned image. These pixels-correspond to the standard
representation of each small square in the ECG .recording. As a standard, each small
square in the ECG recording represents 0.1-mV as voltage amplitude and 40 ms as a

time period (Azeem et al., 2005; Bowhrick & Borg, 2006; Hampton, 2013).
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Figure 4.3: Scaling Factors of Time and Voltage Amplitude which are Represented
by Number of Pixels in One Small Square of ECG Printed Chart.

The previous presentation proves that the reconstructed ECG data must be

scaled with time and voltage amplitude proportionate to the scaling factors that are
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determined from the number of pixels in a small square inside a scanned image for the
purpose of adopting this data as a true ECG signal. The image slice in Figure 4.3 shows
the scaling factors of time and voltage amplitude that is corresponded to one small

square within the scanned image.

4.2.2 Analytical Evaluation of Single ECG Lead

In general, the main idea behind a digital recovery approach is to reconstruct
digitally raw data from other media like a paper printoutrecording to facilitate the use
of this data for modern archiving applications or formaking an accurate analysis and
diagnosis by expert computerized systems {(Sanroman-Junquera et al., 2012). The
process of digital recovery is extremelyamportant if the reconstructed data has similar
behaviour to the original ECG chart<along the entire recording time of the ECG signal.
Thus, the reconstructed raw ECG data must be evaluated accurately to know the ability
of adopting this data.in_later application and processing issues. Two types of analytic
evaluation are presented in the following sections to compute the precision of the

reconstructed-raw ECG data.

4.2.2.1 Qualitative evaluation

This type of evaluation aims to prove the quality of the reconstructed ECG data
with respect to the original data represented by the printed chart. In this evaluation, the
reconstructed raw ECG data is plotted in the same graph that contains the original ECG
chart after scaling it in time and voltage amplitude. The printed chart of lead Il in three
ECG records is used as the testing data in this evaluation; the combined drawings for

the tested ECG records are shown in Figure 4.4.a, b, and c, respectively. The visual
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inspection comparison between the original ECG chart and another that was plotted
using the reconstructed raw ECG data proves the highest degree of congruence between
the reconstructed and original ECG signal in both voltage amplitude and time. This
congruence covers all parts of the ECG signal, even those with high chattering
variation. As a result, the significant congruence in graphical behaviour between the
reconstructed raw ECG data and the original ECG signal gives great trusting to consider
digital raw ECG data for future works of detecting ECG waves and diagnosing different

cardiac diseases
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Figure 4.4: Combined Drawing of Original and Reconstructed ECG Signal with
Identical Distribution of Validation Points in.L.ead Il Signals (a) 1st Patient, (b)
2nd Patient, and (¢).3rd Patient.

4.2.2.2 Quantitative Evaluation

The header partition of ‘the 12 lead ECG record shown in Figure 4.1 contains
little information which are obtained automatically by the ECG machine itself. In this
information, there-are five significant parameters (Ventricular Rate, PR interval, QRS
duration, QT-interval, and QTc interval), which are mostly used for analyzing and
diagnesing the ECG signal (C. Lin et al., 2010; Yeh et al., 2010; Zigel et al., 2000).

Another type of analytical evaluation named "quantitative evaluation" is
performed by recalculating these parameters using the reconstructed raw ECG data, and
then comparing them with the corresponding values which were calculated
automatically by the ECG machine. The 1% parameter is the ventricular rate or the heart
rate, which is determined by computing a number of small squares between two
consecutive QRS complexes then dividing them by 1500 (Azeem et al., 2005; Bowbrick

& Borg, 2006; Foster, 2007). The reconstructed raw ECG data must be scaled first by
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NP in order to maintain a similar sampling time of the standard ECG signal before the

ECG rate is computed as defined in Equation (4.1).

1500 1500
Distance of two consecutive Rpyqrs /NP (R; — R,)/NP

Ventpge = (4.1)

The 2" parameter is the PR interval, which represents the interval that is limited
from the beginning of the P wave to the beginning of the QRS complex (end of the Q-
wave). This interval can be determined with the reconstructed data by scaling the
number of pixels which are limited within this interval by the NP value as defined in

Equation (4.2).

Distance(Qgna,» Pstart ). “(R¢ — Rs)
PRInterval = NP 2 NP

(4.2)

Another interval named the QRS duration which represents the width of this
complex and is determined in the same manner as the PR interval, except that this
duration is limited between the two ends of the QRS complex (start and end) of the Q

and the 'S\waves, respectively, as defined in Equation (4.3).

Distance(QRSstart , QRSgna) _ (Rg — Rg)
NP NP

QRSDuration = (43)

The last parameters reported are QT and QTc (corrected) interval. The QT
interval represents the total electrical duration of the ventricles. It is limited from the
beginning of the QRS complex to the end of the T-wave as defined in Equation (4.4).
The corrected QT interval (QTc) interval can be arrived at using Bassett's formula

(Bazett, 1997) defined in Equation (4.5) to obtain the corrected value of the QT interval.
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Distance(QRS complex siqri) Tena)  (Ry — Ry)
NP NP

QTlnterval = (44)

QTlnterval _ (R4 - Rl)
\/RRInterval (sec) \/R7 - RZ

QTCInterval = (45)

Table 4.1: Validation Results and Accuracy of Five Standard ECG parameters
obtained in Lead Il of Three Patients ; 1 small square (SS) = 0.04 s (Standard
Sampling Time of ECG signal)

Original Data Recovered Data
» Parameter Parameter | Referenced | Paramet &efert_anced
= g = Name Value Period Valug Period |Accuracy
5|88 Estimated o Scaled
a (- - No. of SS [. © No. of SS
Ventricular | 62 RPM X2 X7 _|(61.5RPM | R2- R7 | 99.19%
Rate 24.2 24.4
— | PR Interval 158 ms X5+5X6 160 ms R5-R6 98.73%
P1 % _ 3.95 4
< QRS duration| 101 ms X6—X8 98 ms R6«+R8 97.02%
2.525 2.45
QT , QTc 454 ms; X1lX4 460 ms, R1-R4 | 98.67%
Interval 458 ms 11.35 465 ms 11.5
Ventricular | 79°RPM X2 X7 |77.72RPM| R2~ R7 | 98.38%
Rate 18.95 19.3
— | PR Interval 171 ms X5-X6 172.4 ms R5-R6 99.18%
P2 % 4.275 4.31
L QRSduration| 110 ms X6-X8 112.4 ms R6-RS8 97.81%
2.75 2.82
QT , QTc 389 ms, X1X4 392 ms, R1-R4 99.20%
Interval 423 ms 9.725 445 ms 9.8
Ventricular | 84 RPM X2, X7 |[85.22RPM| R2<~ R7 | 98.54%
Rate 17.85 17.60
— | PR Interval 190 ms X5-X6 186.4 ms R5-R6 98.10%
P3 'c:é _ 4.75 4.66
@ QRS duration| 89 ms X6-X8 85.6 ms R6+R8 96.18%
2.225 2.14
QT , QTc 378 ms, X1oX4 | 3732ms, | R1oR4 | 98.73%
Interval 419 ms 9.45 449.63 9.33
Average Accuracy 98.31%

The results of computing theses parameters in the original and the reconstructed

ECG data for the same ECG records that are used in qualitative evaluation are
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illustrated in Table 4.1. The analytic results illustrated in this table show that the
average accuracy exceeds 98% which demonstrates the consistency and robustness of
proposed digital recovery approach to generate accurate digital 12 lead ECG data. In
addition, the scanned images of these records are presented in Appendix B including

header information and details for the 12 lead ECG chart.

4.3 Performance Evaluation of Proposed Approaches for Detecting ECG waves

In this section, the performance of the proposed approach RFEM mentioned in
Chapter 3 Section 3.3.1 for detecting the QRS complex and HSDPTW mentioned in
Chapter 3 Section 3.3.2 for detecting P and_T. waves are evaluated by applying these
approaches on some ECG samples whichywere collected from standard ECG databases
such as MIT-BIH, QT, etc databases. A selection of suitable ECG databases for each
detection approach depends~mainly on the detailed annotated information in this

database as mentioned in, Chapter 2 Section 2.3.2.

4.3.1 Perfarmance Analysis of Proposed RFEM Approach

In this section, two simulations were conducted to evaluate the performance of
the proposed RFEM approach to delineate the time characteristics of the QRS complex
in an ECG signal. The first simulation is performed to evaluate the delineation of Rpgax
time location in the QRS complex, while the second simulation is performed to evaluate
the delineation of other time characteristics in the QRS complex Qonset, Qenp, SonseT,
and Sgnp. The obtained results in both simulations are compared with other QRS
complex detection methods proposed in literature to prove the robustness of the

proposed approaches in the QRS complex detection subject.
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4.3.1.1 Graphical Evaluation of Rpgak time locations

In this section, the proposed RFEM approach for detecting the QRS complex is
applied on the ECG records from MIT-BIH arrhythmia database (G. B. Moody & Mark,
1990) to validate the delineation of Rpgax time location in the QRS complex. The
selection of the ECG records in this database comes from the annotation information
inside them, where each ECG record was annotated manually by cardiologists with the
Reeak time locations along the ECG recording time (G. B. Moody & Mark, 2001) as
mentioned in Chapter 2 Section 2.3.2.1. Therefore, it is eaSily to validate the Rpgax time

locations by comparing the obtained results with the.manual annotations.

The graphical evaluation of Rpgax time location is performed by applying the
proposed RFEM approach on eight ECG records (100, 107, 111, 118, 122, 210, 232,
and 234) from MIT-BIH. These“ECG records were selected with different ECG
morphologies to prove the ability of the proposed approach to delineate the Rpeak time
location in various ECG signal rhythm changes. The delineation results of the Rpgax
time locationsx«0btained by the RFEM approach and the corresponding manual
annotation time locations recorded in MIT-BIH of eight ECG records are shown in
Figure’4.5.a to h, respectively. The closest match between the delineated Rpeak time
locations marked with the green circular markers and the manual annotation time
locations marked with the vertical dashed lines in Figure 4.5 prove the robustness of the
proposed RFEM approach to give the correct position of the peak time locations in

various ECG rhythms and obvious amplitude variations.
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4.3.1.2 Graphical Evaluation of QRS time characteristics

In this section, another graphical evaluation is provided to evaluate the
delineation results of QRS complex time characteristics (Qonset, Qenp, Rreak, SonseT,
and Sgnp). This evaluation is performed by applying the proposed RFEM approach on
some ECG records which were collected from QTDB. As mentioned in Chapter 2
Section 2.3.2.2, each ECG record in QTDB (Laguna et al., 1997).was annotated with
Qonset, Rpeax, and Sonser time location, which meant that it ‘isceasily to validate the
time characteristics of the QRS complex obtained by the (proposed approach with those
annotated inside QTDB. Five ECG records from five €ategories in QTDB were selected
as the validation data for this evaluation. The" delineation results of (Qonser, Qenp,
Reeak, Sonset, and Sgnp) for these records are shown in Figure 4.6.a to f. All ECG
charts in this figure are marked~with the corresponding manual annotation by
cardiologists, the peak time locations are marked with the vertical dash-dotted lines and

the boundaries time locations are marked with vertical dotted lines.
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QRS Time Characteristics for Processing QTDB Records: (a) ""SEL16256""
Normal Sinus Rhythm DB, (b) ""SEL853" Super Ventricular DB, (c) ""SEL116"
Arrhythmia DB, (d) "SEL14157*/Long-Term DB, and (e) "SEL106" European
ST-T DB.

The significant congruence between the annotated time locations represented by
vertical lines and-the delineated time locations represented by small markers in Figure
4.6 proves the’ capability of RFEM to track the ECG signals with different rhythm and
wave morphologies, as well as delineating all time characteristics of QRS complex with
highest accuracy. In addition, an evaluation of delineation accuracy in proposed
approach can be performed by calculating the time deviation (TDV) between the

manual annotation readings and the delineation results obtained by the proposed RFEM

approach as defined in Equation 4.6.

TDV[QRS; jimits | = Annotated|[QRS, jimits | — Delineated[QRS; jimits | (4.6)

The histograms in Figure 4.7.a, b, and ¢ show the distribution of (Qonset, Rreak,

and Sonset) time deviations for all delineated time characteristics in the five ECG
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records used in this evaluation. A total of 99.45%, 100%, and 99.30% of time deviations
for QonseT, Rreax, and Sonser, respectively are located within + 4 ms of time deviations
(marked with red dashed lines) which represent + 1 ECG sample as a time deviation
error between the annotated and the delineated time characteristics. This is due to the
fact that the sampling frequency of all ECG records in QTDB is 250 Hz. Therefore, the
time duration for a single ECG beat is 4 ms as mentioned in Chapter 2 Section 2.3.2.2.
The lowest percentage time deviation error for (Qonser, Rreax<and Sonser) gives
another indication of the ability of the proposed RFEM approach to provide accurate

delineations for all QRS time characteristics.
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Figure 4.7: Histogram of Time Deviations Between the Delineation Results of
Proposed RFEM Approach and the Manual Annotation Results of Five ECG
Records From QTDB for QRS Time Characteristics: (a) Onset of Q wave, (b) Peak
of R wave, and (c) Onset.of S wave.

4.3.1.3 Validation of RFEM Proposed Approach

As mentioned in Chapter(2,Section 2.4.1.1, many methods have been proposed
in literature for the purpase’ of QRS detection. Most of these methods have been
validated with standard 48 ECG records from MIT-BIH, which are described in Chapter
2 Section 2.3.25-by calculating three statistical metrics. The first is sensitivity (Se)
which is.used to evaluate the ability of the applied detection method to detect true ECG
beats:according to the false negative beats FN (the QRS complex was present but was
not detected) with respect to the total true positive beats TP (the correctly detected QRS
complexes) as defined in Equation 4.7. The second metric is positive predictivity or
(specificity) P*, which is used to evaluate the ability of the applied detection method to
differentiate between true and false beats according the false positive beats FP (the QRS
complex was not present but was detected) with respect to the total true positive beats
TP as defined in Equation 4.8. The third metric is the percent of failure detection (Fd)

percentage, which is used to evaluate the detection accuracy of the applied detection
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method according to the summation of false positive and negative beats (FP and FN)

with respect to the overall analyzed beats TB as defined in Equation 4.9 (Ghaffari et al.,

2009; C. Lin et al., 2010; J. P. Martinez et al., 2004; Z Zidelmal et al., 2014).

Se

+

T TP+ FP

FP + FN
Fa=—p

“TP+FN

X 100%

X 100%

X 100%

(4.7)

(4.8)

(4.9)

The simulation results of (Se, P*, and. Fd) obtained by applying the proposed

RFEM approach on 48 ECG records from MIT-BIH DB are illustrated in Table 4.2.

Table 4.2: SimulationResults of Statistical Metrics of Applying
Proposed RFEM Approach on 48 ECG Records from MIT-BIH DB.

Record | TB ] TP FP | FN | Se(%) | P'(%) | Fd(%)
100 2273 2273 0 0 |100.00 | 100.00 | 0.00
101 1865 1865 0 0 | 100.00 | 100.00 | 0.00
102 2187 2187 0 0 | 100.00 | 100.00 | 0.00
103 2084 2084 0 0 | 100.00 | 100.00 | 0.00
104 2229 2226 3 0 |100.00| 99.87 | 0.13
105 2572 2561 2 9 | 99.65 | 99.92 | 0.43
106 2027 2023 2 2 | 99.90 | 99.90 | 0.20
107 2137 2133 0 4 | 99.81 | 100.00| 0.19
108 1763 1733 5 25 | 9858 | 99.71 | 1.70
109 2532 2524 0 8 | 99.68 | 100.00 | 0.32
111 2124 2123 0 1 | 99.95 | 100.00 | 0.05
112 2539 2539 0 0 | 100.00 | 100.00 | 0.00
113 1795 1793 2 0 |100.00 | 99.89 | 0.11
114 1879 1879 0 0 | 100.00 | 100.00 | 0.00
115 1953 1953 0 0 | 100.00 | 100.00 | 0.00
116 2412 2406 0 6 | 99.75 | 100.00 | 0.25
117 1535 1535 0 0 | 100.00 | 100.00 | 0.00
118 2278 2278 0 0 | 100.00 | 100.00 | 0.00
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Table 4.2: (Continued)

Record B TP
119 1987 1987
121 1863 1863
122 2476 2476
123 1518 1518
124 1619 1619
200 2601 2572
201 1963 1953
202 2136 2133
203 2980 2944
205 2656 2650
207 1862 1847
208 2955 2944
209 3005 3005
210 2650 2632
212 2748 2748
213 3251 3251
214 2262 2259
215 3363 3355
217 2208 2204
219 2154 2154
220 2048 2048
221 2427 2422
222 2483 2483
223 2605 2602
228 2053 2050
230 2256 2256
231 1571 1571
232 1780 1769
233 3079 3075
234 2753 2753

109496 | 109258

Sum

T
o

Se(%) | P (%) | Fd(%)
100.00 | 100.00 | 0.00
100.00 | 100.00 | 0.00
100.00 | 100.00 | 0.00
100.00 | 100.00 | 0.00
100.00 | 100.00 | 0.00
0054 | 99.34 | 1.11
99.64 | 99.85 | 051
99.01 | 99.95 | 0.14
90.16 | 99.63 | 1.21
99.77 | 100.007" 0.23
99.35 | 99:84)| 0.81
99.76 |-.99.86 | 0.37
100.00{100.00 | 0.00
99.43 | 99.89 | 0.68
100.00 | 100.00 | 0.00
100.00 | 100.00 | 0.00
99.01 | 99.96 | 0.13
99.76 | 100.00 | 0.24
99.86 | 99.95 | 0.18
100.00 | 100.00 | 0.00
100.00 | 100.00 | 0.00
99.88 | 99.92 | 0.21
100.00 | 100.00 | 0.00
100.00 | 99.88 | 0.12
99.85 | 100.00 | 0.15
100.00 | 100.00 | 0.00
100.00 | 100.00 | 0.00
99.61 | 99.77 | 0.62
99.87 | 100.00 | 0.13
100.00 | 100.00 | 0.00

171 1 99.85 | 99.94 | 0.21

~
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Total

Moreover, the obtained statistical metrics (Se, P+, and Fd) are used by most well
known ECG waves detection methods proposed in literature as the base rules to prove
the robustness of these methods to provide accurate detection by comparing them with
the corresponding metric values obtained by other detection methods using the same set

of ECG records. The simulation results of (Se, P+, and Fd) obtained by applying the
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proposed RFEM approach on 48 ECG records from MIT-BIH DB and eight other QRS

detection methods are illustrated in Table 4.3. The validation results in this table show

that the RFEM approach has the lowest Fd percentage: according to the minimum

number of FN and FP beats obtained which proves the delineation accuracy provided by

this approach. Moreover, the highest percentage of P* was performed by the RFEM

approach, which reflects the ability of this approach to minimize false positive beats,

while the Se percentage obtained by the RFEM approach was compatible (with slightly

improvement) to those in other methods proposed in literature for QRS complex

detection.

Table 4.3: Simulation Results of Statistical Metrics (Se, P*, and Fd) obtained by
Proposed RFEM Approach and Other Eight QRS Detection Methods.

Method

B

\OA\TJP

FP

FN

Fd(%)

Se(%)

P*(%)

RFEM
(Proposed Approach)

109496

109258

67

171

0.21

99.85

99.94

Wavelet-Based ECG
Delineator (J. P.
Martinez et al., 2004)

109428

109208

153

220

0.34

99.80

99.88

Automatic Detection of
ECG waves by PT (A.
Martinez et al., 2010)

109428

109111

35

317

0.32

99.71

99.97

QRS Detection using
EMD (Hadj Slimane &
Nait=Ali, 2010)

110050

109792

84

174

0.24

99.84

99.92

QRSdetection
using combined | Al90-1

110050

109548

215

294

0.42

99.69

99.66

adaptive
threshold Algo.2
(Christov, 2004)

110050

109616

239

240

0.44

99.74

99.65

KNN algorithm (Saini et
al., 2013)

109966

109608

151

207

0.33

99.81

99.86

QRS Detection using S-
Transform & Shannon
Energy (Z Zidelmal et al.,
2014)

108494

108323

97

171

0.25

99.84

99.91

Wavelet Coefficients

based QRS Detection

(Zahia Zidelmal et al.,
2012)

109494

109101

193

393

0.54

99.64

99.82
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Finally, as mentioned in Chapter 3 Section 3.3.1, the RFEM approach was

designed to track the ECG signal and delineates time characteristics of the QRS

complex using a straightforward instantaneous processing algorithm, thus processing

the ECG signal becomes faster. The average processing time required to delineate the

QRS time characteristics of each ECG record of 10 minutes is about 1.0 to 1.5 seconds.

The processing time performed by the RFEM approach is much faster than the times of

QRS complex detection methods as illustrated in Table 4.4,

Table 4.4: Comparison of Average Required Time of Processing ECG Signal Using
Proposed RFEM Approach and Other Three-QRS Complex Detection Methods.

# | Method Validation \8&@3 Technique Processing time of
ECG Data 10 min ECG signal
RFEM .
1 | (Proposed [a\:g\évristtr:?r:ght forward 1-15s
Approach)
Difference equation
2 \?Vgrl:g (;(;(;‘839‘ operation between current | 30 s
' 48 records | and previous ECG beat
Detection of ECG | from MIT-
3 characteristics BIH Multi-scale feature 60's
points using WT Arrhythmia | extraction of WT
(Li et-al., 1995) Database
Rpeak Detection by
Shannon energy
4 | envelope (SEE) SEE estimator 2.24s

(Manikandan &
Soman, 2012)

4.3.2 Performance Analysis of Proposed HSDPTW Approach

Two simulations were conducted to validate the performance of the proposed

HSDPTW approach. Both simulations are applied on the ECG records from QTDB. The

ECG records in QTDB were selected from seven existing ECG databases; also each

ECG record was annotated with onset, peak, and end time locations for P and T waves
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as mentioned in Chapter 2 Section 2.3.2.2. The first simulation is performed to evaluate
the delineation results of P and T waves graphically using seven ECG records selected
randomly from the QTDB in different categories. The second simulation includes the
analytic results of the boundaries and the peak time locations in P and T waves which
are delineated by HSDPTW using twenty eight ECG records (four ECG records from
each category). Finally, the delineation results obtained by HSDPTW is compared with
similar results that were obtained by some well known P and T. detection methods
proposed in literature using the same ECG records to prove the robustness of HSDPTW
to delineate accurate time characteristics of P and T waves)in comparison with existing

methods.

4.3.2.1 Evaluation metrics of P and T waves delineation

The performance evaluation of the proposed HSDPTW approach can be
performed by determining four statistical metrics (Se, P*, mean (m), and standard
deviation (s)). These four metrics were mostly used by other P and T wave detection
methods (Ghaffari et al., 2009; C. Lin et al., 2010; Madeiro et al., 2013; A. Martinez et
al., 2010;J. P. Martinez et al., 2004) to evaluate their delineations results. The first two
metrics are the same as in the evaluation of the proposed QRS detection approach as
mentioned in Section 4.3.1.3.

Other statistical metrics (m and s) are used to determine the time deviation
between delineated and annotated time locations of peak and boundaries in P and T
waves as defined in Equation 4.10 and 11, respectively. The average values of (m and s)
give a clear indication of the accuracy of the proposed detection approach due to its
ability to perform peak and boundary time locations closest to the annotation time

locations prepared by cardiologists.
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TP
1 | |
m = ﬁzl(xldet — Xign) (4.10)
1=

TP (yi  _
_ jzi_l(xldet m)? )

TP

where Xi indicates time locations of onset, peak and end time locations in the P

and T wave and TP is the total number of true detected waves (either:P or T waves).

4.3.2.2 Graphical Evaluation of P and T wave Delineation in Various Categories

In this section, a graphical evaluation 0f-onset, peak, and end time locations of
both P and T waves has been performed by applying the proposed HSDPTW approach
on seven ECG records selected randomly from QTDB (one record from each category).
The delineation results of the,P and T wave time characteristics for these records are
shown in Figure 4.8..All ECG charts in this figure are marked with the corresponding
manual annotation-time characteristics by cardiologists, the peak time locations are
marked with-vertical dash-dotted line, while the boundary time locations are marked
with/the vertical dotted lines. The significant match between the annotated time
locations, which are marked by vertical line, and delineated time locations which are
represented by small markers in Figure 4.8, prove the ability of the proposed HSDPTW
approach to perform accurate time locations of boundaries and peak for P and T waves.

From the selection of ECG records used in this evaluation from different ECG
categories, it can be seen the P and T waves in these records have variant shape,
amplitude, and wave duration. In addition, the T wave may be inverted in some ECG

records. The P wave has tall amplitude in ECG records shown in Figure 4.8.c, e and f,
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but normal amplitude in other ECG records except for the ECG record shown in Figure
4.8.f which has low amplitude of the P wave. With respect to the T wave, the ECG
records shown in Figure 4.8.a, b, d, and f have tall amplitudes. Additionally, the ECG
records shown in Figure 4.8.a, b, d, and f have a wide T wave interval, while the T
waves in the ECG records shown in Figure 4.8.g, were inverted. In spite of the previous
variation in the different P and T wave parameters, the proposed HSDPTW approach
tracks the ECG signal and provides accurate delineation of the boundaries and peak

time locations for different ECG P and T wave morphologies.
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Figure 4.8 Delineation Results of (Onset, Peak, and End) Time Locations of P and
T waves in Seven QTDB Records: (a) ""SEL-232" Arrhythmia DB, (b) ""SEL-307"
ST Change DB, (c) ""SEL-808"" Super Ventricular DB, (d) ""SEL-16483" Normal
Sinus Rhythm DB, (e) ""SEL-122" European ST-T DB, (f) ""SEL-39" Sudden Death
DB and (g) ""SEL-14157"" Long-Term DB.
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4.3.2.3 Analytical Results of Delineating Time Characteristics in P and T waves

In this section, twenty eight ECG records were processed through the proposed

delineation HSDPTW approach, and all delineated (onset, peak, and end) of P and T

wave time locations were then evaluated by calculating the statistical metrics mentioned

in Section 4.3.2.1 to prove the ability of this approach to perform accurate delineation

for all these time characteristics. The selected ECG records were collected from QTDB

as four random records from each of the seven categories in QT-DB.described in Chapter

2 Section 2.3.2.2. The delineation results of the onset, peak; and end) time locations for

all twenty eight ECG records are illustrated in Table 4.5.

Table 4.5: Analytical Results of StatisticalMetrics (Sensitivity, Specificity, Mean,
and Standard Deviation) Obtained by Applying Proposed HSDPTW Delineation
Approach on 28 ECG Records From QTDB

©
S
GQJ' § Parameters Pon Preak Porr Ton Treak Torr
04
Stored Beats 1129 1122
S| _FN_CFP 0. 4 0 7
1 | Se(%), P+(%) 100 , 99.65 100 , 99.37
Wil mts(ms) |-08+24|-08+25[-19+44|-1.2+41]06+127 |-68299
NPT 3.35
Stored Beats 1019 1183
S| S|_(FN), (FP) 0,3 0,2
E 1| Se(%) , P+(%) 100 99.71 100 99.83
B b m+s(ms) |-47+36| 1.1+34 | 05+25 |-1.6+9.0| 1.0+6.1 | 49+89
;C: P.T (5) 3.64
T Stored Beats 1573 1631
o S |_(FN), (FP) 0, 7 0, 4
= | | Se(%), P+(%) 100 99.56 100 99.76
S| 5 m = s (ms) -11+28| 01+65 | 44+32 |-08+6.2|-05+103|-16+75
P.T (s) 3.48
Stored Beats 784 847
& | _(FN), (FP) 0,3 0,5
1| Se(%), P+(%) 100 99.62 100 99.41
b m+s(ms) |-22+70| -1.8£#9.2 | 42+85 |-7.8+48| 1.1+ 110 | 46+7.3
P.T (s) 2.24
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Table 4.5: Continued

©
|-
2 § Parameters Pon Preak Porr Ton Treak | Torr
x
Stored Beats 1282 1347
S|__(FN), (FP) 0, 8 0, 0
2| Se(%) , P+(%) 100 , 99.38 100 , 100
u m + s (mMs) 6.6+45 | 15434 | -3.9+4.2 | -47+8.3 0865 |-0.8£6.8
P.T(5) 335 . A
Stored Beats 1497 1499
g,§ (FN) , (FP) 0,0 0, 0
Sl Se(%), P+(%) 100 , 100 100 , 100
oy m + s (Ms) 36419 | -21+15|-08+21 | -23+36|-1.3+552.2+38
iy P.T (s) 3.44
T Stored Beats 1036 0 1039
o3[  (FN), (FP) 0., 0 0,0
=l | Se(%), P+(%) 100+~ 100 100 , 100
W m+s(ms) 42427 | 7%1.9]-37426 | -46+16]-02+11[1.9+1.2
P.T () Q" 3.27
Stored Beats 1202 1289
§ (FN) , (FP) 0, 15 0, 14
2l Se(%) , P+(%) 100 , 98.77 100 , 98.93
L m + s (Ms) 45+72 | -41+68|-1.9+58 | -24+51 | -05+7.0 |-1.6+5.0
P.T (s) 3.26
- S(t:x%%%s 49538 ;022
o 0 )
A Se(@) , P+(%) 9958 , 99.16 100 , 99.12
g ('-}J}\'\\ﬁpi? En;s) 47+31 | 11+23 [ 22413 |-21#37 | 0.7+56 |-02+3.4
<K& T(s 3.39
2] Stored Beats 747 755
|2l (FN), (FP) 0. 15 0. 14
=l Se(%), P+(%) 100 , 98.77 100 , 98.93
Ellk; P.T (s) 25+31 | 15426 | 15+23 | -06+19 | -1.3+29 |-1.0+23
= P.T (s) 2.13
S _ |__Stored Beats 1447 1550
gg_ N (FN), (FP) 0, 12 0, 15
2| Se(%) , P+(%) 100 , 99.17 100 , 99.04
- 7 m + s (ms) -38+92|-11+74|54+77 |-32+73| 25+48 |47+28
= P.T (s) 2.28
— Stored Beats 988 1110
§§ (FN), (FP) 0, 4 0, 2
| Se(%) , P+(%) 100 , 99.59 100 , 99.82
L m + s (Ms) 20+53| 08238 | 1.9+69 | -89+68 | -04£20|-1.6£6.1
P.T (s) 2.22
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Table 4.5: Continued

©
S
GDJ' § Parameters Pon Preak Porr Ton Treak Torr
o
.o | Stored Beats 712 1030
S| _(FN), (FP) 0,0 0,0
— | Se(%) , P+(%) 100 , 100 100 , 100
o[ mzs(ms) 05+10 | 07+08[08+35[-06+64| 02+09 |-07+13
c|?| PT(s) 2.17
| o | Stored Beats 818 1110
£ |S|_(FN), (FP) 0,0 0,0
] :' Se(%) , P+(%) 100 , 100 100 , 100
S|m| ms(ms) |-003+13[05+07 | 1.3+14 |-42%19] 0207 | 0819
=17 P.T (s) 2.06
€ | » | Stored Beats 1085 M 1084
S |3 _(FN), (FP) 0,6 .9 0, 7
T | = [Se(%) , P+(%) 100 , 9945 (& 100 , 99.35
m | mts(ms) | 39+14 |-27+15]12+03 | 09%12] 03+05 |-01+07
E1?] PT(s) A 35
= | | Stored Beats 759 759
g (FN), (FP) 0, 0 0,0
— | Se(%) , P+(%) 100 , 100 100 , 100
| mts(ms) | 123425 | 7723 67424 |-48+ 1.3] 03 +05 | -1.9+08
@ P.T(s) 3.44
| Stored Beats | 0 894 858
S| FN, FP 0.3 0.4
< [Se(%) , P+(%) 100 , 99.33 100 , 99.53
Wl m J_r-e;(?,ﬁ’s) 71+12 |42+ 13]99 +22| 38244 7.1+56 | 6.0£45
P (s) 3.25
« <Stored Beats | | 1412 | | 1412
SN (FN), (FP) 0, 12 0 , 10
| S1Se(%) , P+(%) 100 , 99.15 100, 99.29
|| mts(ms) | 54211 [34410|142+10[384107]139+166[138+123
c P.T (s) 3.6
g_ o |_Stored Beats 1001 1025
5|3 _(EN), (FP) 0, 10 0,10
W | < | Se(%) , P+(%) 100 , 99.01 100 , 99.03
Wl m#s(ms) | -19+7.1 |-3082|33+72[-07+31| 25+16 | 43+18
P.T (s) 343
 |_Stored Beats 749 749
a!| (FN), (FP) 0, 9 0 , 10
3 Se(%) , P+(%) 100 , 9881 100 , 98,68
W) mis(ms) | -07+42 [-04+65/48+62|-01%34| 07£32 |-08+34
P.T (s) 3.47
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Table 4.5: Continued

©
S
2 § Parameters Pon Preak Porr Ton Treak Torr
o
Stored Beats 582 896
31 (EN), (FP) 0,2 0, 12
= Se(%) , P+(%) 100, 99.65 100 , 98.67
n| mz*s(ms) 30+29 |-22 £24|29 + 25|-04+105| 02+ 64 |1.03+95
P.T (s) 2.21
2 Stored Beats 1147 1162
28| (EN), (FP) 0,8 0, 11
g d Se(%) , P+(%) 100 , 99.30 100 , 99.06
Elo| _mis(ms) | 21445 |13+ 37/0.8 £27]48+106| 441108 | 59183
o P.T (s) 2.43
2 Stored Beats 1335 N 1394
S|2| (FN), (FP) 0,0 N 0,0
3|2 Se(%) . P+(%) 100 , 100 100 , 100
T|o| _m#s(ms) 13+33 |-15 ¢ 2.8\0.@‘&2 31[72+107] 08+68 | 1.6£7.9
m P.T (s) . 2.38
o Stored Beats 1625 1615
< (FN), (FP) 4c, 10 6 , 11
= Se(%) , P+(%) 99.75 , 99.35 99.62 , 99.32
o mzs(ms) 96 + 55-57 + 58/ 05 +54 [ 1.9 +84 | 11.7+11.3 |13.6 +10.9
@ P.T (s) 2.39
©| Stored Beats | . 1230 1256
§ (FN) , (FP) .\t;,‘ 0,11 0,25
—| Se(%) , P+(%). | 100 , 99.11 100 , 98.04
g m+s(ms) | -27 +26|-09+19[-07+22[42+65] 1.4+55 [118+77
PT 2.19
O|~| Stored Beats 910 1079
2 5 (FN) , (FP) 0, 12 0, 21
£ :' Se(%) , P+(%) 100 , 98.69 100 , 98.08
Ll m*s(ms) |-21 #301|-1.9+3.03|-406+53|-0.1 + 53| 0.9 + 46 |89 + 9.9
=2 P.T (s) 2.13
Sl Stored Beats 659 637
T/ (FN), (FP) 0, 12 0, 15
o || Se(%), P+(%) 100 , 98.21 100 , 97.69
% g m + s (ms) 43+ 16 |-24+11|-11.1+21| 07+38 | -54+87 | -09+58
P.T (s) 2.12
<| Stored Beats 1006 1024
3| (FN), (FP) 0, 10 0, 15
= Se(%) , P+(%) 100 , 99.01 100 , 9855
g m + s (ms) 22217 |09 £11]-03+1.8/14+55]|-022%18|-34 £35
P.T (s) 2.17
Average Se, P+ (%) 99.97 99.36 99.98 99.26
Average m+s (ms) | 30+ 2.9 |-0.7+44[0.7+46|-33+49| 0254 |-04+57
Average Processing Time (s) \ 2.745
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As mentioned in Chapter 3 Section 3.3.2, the proposed HSDPTW approach to
delineate time characteristics of P and T waves requires previous delineating of the QRS
complex time locations, thus certain QRS detection method must be applied first. The
proposed QRS detection RFEM approach mentioned in Chapter 3 Section 3.2 with an
overall detection result of Se =99.95% and P =99.97% is considered for the QRS
subject detection. The validation results presented in Table 4.5 prove that the proposed
HSDPTW approach performs significant average Se (99.97% and‘99.98%) for P and T
wave, respectively which proves the ability of HSDPTW to-minimize the probability of
detecting false negatives waves. Moreover, at a high, degree, the proposed HSDPTW
approach has a good average P* (99.36 % and-99.26%) for P and T wave detection,
respectively. This relative decline comes,from missing some P and T waves in the
QTDB annotated data file in spite of the existence of these waves in the tested ECG
signal and confirmation by site cardiologists. Therefore, these missing waves were
detected as false positive~waves (FP) which leads to a decreasing percentage of P*.
Continuously, the robustness of HSDPTW to delineate accurate time locations of peak
and boundaries.that are closest to those annotated manually by cardiologists can be
proved through the average time deviation expressed by m which does not exceed one
ECG sample (4 ms) as well as the average s (5 ms) for the P wave (6 ms) for the T
wave. The resulting s and m values are satisfactory due to the huge size of the ECG
signals with different categories.

The instantaneous processing based technique followed by the detection
algorithms in HSDPTW to delineate the time characteristics of P and T wave and the
simple mathematical calculations were implemented inside these algorithms. As a
result, the average processing time required to perform the complete delineation of peak

and boundary time locations in the P and T wave is about 2.745 s for a 15 minute
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recording (about 225,000 ECG beats) as illustrated in Table 4.5. Furthermore, the
processing time (P.T) required by HSDPTW to perform a complete delineation of the P
and T wave in each of the 28 ECG records used to validate the proposed approach is
presented in the same table. The processing time in all ECG records was obtained by a

MATLAB implementation on a 2.1-GHz Core-i3 of (4GB RAM).

4.3.2.4 Validation of Proposed HSDPTW Approach

In this section, the performance of the proposed HSDPTW approach is evaluated
by comparing the statistical evaluation metrics (Se, P+,-m, and s) of the onset, peak, and
end time locations in the P and T wave obtained,by the proposed approach using the
ECG records from QTDB with the corresponding metrics obtained from five PT
detection methods (Ghaffari et al., 2009; C. Lin et al., 2010; Madeiro et al., 2013; A.
Martinez et al., 2010; J. P. Martinez et al., 2004) proposed in literature using the same
ECG database. The validation results presented in Table 4.6 demonstrate the
effectiveness of the " HSDPTW to delineate onset, peak and end time locations of the P
and T waves with significant accuracy through a higher percentage of Se and P* with
respect to'the other detection methods considered for validation.

Through the average values of m and s illustrated in Table 4.6, the time
deviations determined by the peak time locations in P and T wave are more accurate
than those for the boundary (onset and end) time locations. In other words, the proposed
delineation approach successfully performs exact computations of the peak time
location, while for the onset and end time locations; it provides an approximation in
some cases due the various shapes of the end points in ECG waves for different
categories. However, the average values for m and s are higher than 4 with respect to

the up-to-date detection methods considered for validation.
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Table 4.6: Comparison the Statistical Metrics (Se, P*, m, and s) of the Delineated
Onset, Peak, and End Time Locations in P and T wave Obtained by

the Proposed HSDPTW Approach and Other Five Detection Methods Using ECG

Records From QTDB, (N/A: not applicable, N/R: not reported)

T o
o8
)
Method 2 8| Pon | Peeak | Porr | Ton | Teeak | Torr
g p
Se(%) | 99.97 | 99.97 | 99.97 | 99.98 .| 99.98 | 99.98
HSDPTV\é ‘ P*(%) | 99.36 | 99.36 | 99.36 | 99.26(~ 99.26 | 99.26
(Proposed work) m+s |30+29|-07+44(0.7+46|-33+49| 02454 |-04+57
Automatic Se(%) | 9865 | 9865 | 98.65 N/A 99.20 | 99.20
Delineation by PIT P*(%) | 9752 | 9752 | 97.52 N/A 9901 | 99.01
(A.Martinezetal., | " |26+145|324257 (073147 | NA |53+129|58+227
2010) .
ECG waves detection|._ ,
by Bayesian Se(%) | 9893 | 9893479893 | 99.01 | 99.81 | 99.81
hand P*(%) | 9740 | 974¢- | 9740 | 96.07 | 98.97 | 98.97
?‘Cppli(')act aI” 2%(1365)5 Mm+s |37+17.3| 41+86 | 41+86 | 7.1+185 | 1.3+105|4.3+20.8
.Linetal., -
T wave Detection by |._,
skewed Gaussian |96 | N/R N/R N/R N/R 99.32 | 99.32
function(Madei P*(%) | NIR N/R N/R N/R 99.47 | 99.47
unction(Madeiroet | " " | ONjR N/R N/R N/R | 14+90 [28+153
al., 2013) =
Detection of P and T Se(%) | 99.46 | 99.46 | 99.46 | 99.87 | 99.87 | 99.87
Wavg N MUlti-ECG \ovio)y | gg'gs | ogs3 | 9883 | 99.80 | 99.80 | 99.80
|(—(§ﬁ #SIDQtDYV;OOg) m+s |-1.2+6.3]41+4105|0.7+6.8 |-1.4+57| 0.3+41 [0.8+10.9
affari et al., -
A Wavelet-Based  |Se(%) | 9887 | 98.87 | 98.87 N/A 99.77 | 99.77
ECG Delineator (J. P.[P*(%) | 91.03 | 91.03 | 91.03 N/A 97.79 | 97.79
20+14.8[3.6+132|19+138| N/A |02+13.9|-16+18.1

Martinez.et al., 2004)

m+s

4.4 Performance Evaluation of LVH Cardiac Disease Diagnosis

In this section, the performance of proposed approach presented in Chapter 3

Section 3.4.1.4 of the diagnosis of LVH cardiac disease is evaluated by applying this

approach on 50 ECG records which were pre-diagnosed by cardiologists. The ability of

this approach to provide accurate diagnosis results is evaluated by calculating three

statistical metrics (sensitivity, specificity, and accuracy). Additionally, the simulation
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results of these metrics are validated with the corresponding results obtained by well-

known LVH diagnostic criteria proposed in literature.

4.4.1 Selection of Tested ECG Data for Diagnosing LVVH Cardiac Disease

The process of selecting suitable ECG data for the proposed diagnosis system is
a more difficult issue due to the limited resources of 12-lead ECG data with specific
cardiac disease especially high risk cardiac diseases like LVH.Thus, only 50 12-lead
ECG records were selected to validate performance of>the proposed diagnosing
approach. The first group of tested data includes 34 ECG records which were collected
from the INCART database, whereas most ECG. records in this database were diagnosed
manually by cardiologists as mentioned-in Chapter 2 Section 2.3.2.3. The selected
records include 11 patients that suffered from LVH cardiac disease and other patients
with different cardiac diseases such as Acute Myocardial Infarction (AcMI), Transient
Ischemic Attack (TIA), “Ventricular Bigeminy (VBG), Atrioventricular nodal block
(AVNB), Sinus Node Dysfunction (SND), Atrial Fibrillation (AF), Premature
Ventricular. Contractions (PVCs), Earlier Myocardial Infarction (EarMI), WPW, and ST
elevation (STele). The second group of tested data includes 26 ECG records which were
reconstructed using the proposed digital recovery approach presented in Chapter 3
Section 3.2.2.1; the printed charts of these records were collected from three cardiology
references (Azeem et al., 2005; Hampton, 2013; Jenkins & Gerred, 2011). The
reconstructed ECG data includes 10 records with LVVH cardiac disease and 11 records of

normal patients.
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4.4.2 Quantitative Evaluation of Diagnosing Process

The quantitative evaluation of the proposed diagnosis approach can be
performed by computing three statistical metrics which are mostly used to evaluate the
performance of different approaches of diagnosing cardiac diseases based on ECG
analysis using various computerized intelligent systems (Chang et al., 2012; Han &
Kamber, 2006; Jager, Moody, Taddei, & Mark, 1991). The first metric is sensitivity
which is also used to evaluate ECG wave detection as mentioned.in’ Section 4.3.1.3. The
same mathematical relation defined in Equation 4.7 isCusSed to determine diagnosis
sensitivity but the computed parameters for this. ¥elation have different concepts.
Where, TP denotes the total number of true_positive diagnosis (LVH was present and
was diagnosed), and FN stands for false negative diagnosis (LVH was present but was

not diagnosed).

The second metric is-specificity which is defined by Equation 4.12, where TN
denotes the total number of true negative diagnosis (LVH was not present and was not
diagnosed), and: FP stands for the false positive diagnosing (LVH was not present but

— X 0 4.

The last considered metric for this evaluation is the accuracy of the diagnosis
which is defined in Equation 4.13. The computed accuracy describes the overall
performance of the diagnosis approach because it considers the positive (true and false)

as well as negative (true and false) events.
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A - IN+TP x 100% (4.13)
CUraey = TPy FP+ FN+ TN 0 '

4.4.3 Analytical Results of Proposed LVH Diagnosing Approach

In this section, the proposed approach of diagnosing LVH cardiac disease is
applied on the 50 ECG records mentioned in the previous section. Each of these records

includes standard 12 leads of ECG signal.

The first step of this implementation process is to determine eleven ECG voltage
parameters required to compute (MDV, Exprl and Expr2) that are mentioned in Chapter
3 Section 3.4.1.4. As, all these parameters are .related to QRS complex characteristics,
either voltage amplitude of the R or S wave, a certain method of QRS detection is
needed to delineate these characteristics. The proposed RFEM approach of QRS
detection mentioned in Chapter3d Section 3.3.1 is considered to delineate time locations
of R and S waves, and-then to determine the required voltage parameters for three
diagnostic expressions (MDV, Exprl and Expr2). The simulation results of eleven
voltage parameters as well as the corresponding proposed decision values obtained by
MDYV expression for the 50 ECG records which were selected previously as the tested

data for the proposed diagnosis process are illustrated in Table 4.7.

The final decision related to the diagnosis of LVH cardiac disease is obtained by
a logical value defined in Chapter 3 Section 3.4.1.2 Equation 3.22. This relation
represents the proposed diagnostic criterion of diagnosing LVH cardiac disease which is
integrated using the proposed FIS shown in Chapter 3 Section 3.4.1.4 Figure 3.13. The

results of diagnosing LVH cardiac disease obtained by the proposed approach and nine
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traditional diagnostic criteria (Sokolow, Cornell voltage, REC-CRT, and CRTAL ...

CRTA®) described in Chapter 3 Section 3.4.1.1 are illustrated in Table 4.8.

Table 4.7: The ECG Voltage Parameters of the LVH Diagnostic Criteria and

MDYV values of the Proposed Diagnostic Criterion

Voltage Parameters

HEIEE ~lelalclalalalalalal s
lelglsg 212|322 |2|3le|2|2|8
i’?u dlHlxlFg|lo|la|lodx ||| 2
a0

1101 F| AHT [101]123] 94 |57 [122] 5.1 |@2'[11.9|136[10.1[11.1] 50.4
2[102] F | AHT [127| 98|87 ]66 |97 | 68|81 [117[149[105|NA] 453
3[105| M| AcMI |26 [ 49 [ 18|28 |24 79 9090 [153]157] 96 | 521
4 [110{ F | AVNB [122| 27 [ 94 | 9.1 | 46[107 {116 [106] 5.1 [10.3|12.6] 46.9
5 111 M| AVNB [ 89 [ 54 [ 87|52 [%5 [ 9679835405 [104] 241
6[115| M| TIA |46 |129]105] 69 [169]105[120[147] 32 [15.9]18.9] 76.9
7[n7[M]| TIA |[34]47]52{12]34[107]{130[169[149] 56 | 65| 46.6
8 [120] F| LvH |47 158(120] 6.8 [17.8]106] 0.1 [13410.2[17.6]15.4] 79.3
9121 F| LVH |20 10.3| 89 |188] 9.2 | 8.9 [11.3[11.9]165|14.0| 78.2
10[122| F | LVH |4313.3]18.2[17.1]33.9|13023039.2|27.9]26.3]20.2] 1280
11124 M | EarMI- 1.9 [ 80 | 7.8 [ 37 | 82 | 53 |238]16.7|16.8] 5.0 | 3.0 | 514
12[126| F | SND~ |43 |51 |57 [16]63]090|78|11.0|71[155]142] 5533
13]128 | M | PVCs | 1.2 [159| 8.7 [ 7.2 [148] 7.8 |16.1|13.3|16.0355]17.0] 1024
14[132| F | VBG | 11|66 |41[13]41]51|48|57|19]71][108]35.32
15[133'Wr| PVCs | 43 [107| 86 | 41 |12.4|11.9|23.8|209| 9.7 [120]120] 73.95
16|35 | F | LVH |86 |50.4|25.4]245]47.2]18.926.064.9|39.9]40.1]76.6 | 265.4
17|136| F | LVH |85 |27.8]18.9]109]26.1|19.1|18.334.8|17.8]29.3]49.9] 165.1
18[137| F | LVH |88 [43.9]242[21.0]39.2]145|25355.3|39.8|335]61.9] 2263
19/140| M| TIA |59 |42|72]42]36 528397 |121]159]12.1]5174
20[141 M| TIA |35 |55]47[35/[11[37]62[142|168]28.1/10.7]74.38
21144 | F | LVH |68 |44.3|23.3]23.7]435| 128|204 254|317 | 28.6|19.8] 1506
22[145| F | LVH |51 |424]21.4]10.8[38.6|12.8]14.7|21.8|32.3|26.917.8] 1471
23146 | F | LVH |53 |39.4]10.3]18.9[35.4 109|136 24.7|28.9 235 15.2] 1349
24[150 | M| AF |88 |67 [117]30[ 98 [109]162[135|10.0|12.4|105] 50.7
25155 | M | EarMI |12.0|23.3| 6.0 [16.7[14.9[12.0| 7.6 [18.0134| 86 | 6.2 | 71.1
26156 | M | EarMI | 5.9 |14.0| 38 [10.1]109] 7.7 | 42 [12.7|133| 52 | 38 | 475
27]158| F | AHT |67 |52 79[ 15[82[ 715045 |NA|92 102] 369
28160 | F | STelv | 7.0 |155]14.6] 53 [11.8] 6.3 | 49 | 83 | 8.7 |16.6|16.7] 687
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Table 4.7: Continued

Voltage Parameters

38
215123 | lelalelalalalelals
Eg mw | x| x
29168 M | wPw [ 98 [15.7] 49 [12.4] 20 [ 84 [127]151[104 [106 6.2 | 563
30[169| M | PVCs | 59 [205[125] 66 | 7.9 [ 6.1 |87 [18.016.7[21.2]137] 840
31170 M | WPw | 85 | 84 [11.7[ 35 |11.8[13.7 [27.5] 7.9 |11.4 [17.2 168 784
2[171 M| wpw [ 73 ]82]101] 16 [108]137[127] 87 |\867[152]16.7] 66.8
33(172|M | LVH | 7.7 |66.0 419 [103[31.1 [353 [22.7 | 424 [42.7 [31.2 [ 22.5 | 1919
34[173[M | LVH |58 [419[17.1{215]37.3 47 | 8.2 [2610 [22.0 [11.9[46.0 1488
35[H1|[M | LvH [107[17.0[17.0] 01 [229| 9.6 270|286 |21.4 [34.3|20.8 | 135.9
36 [P72| M | LVH [350 222|240 (250 7.5 [22.5].9.0 |245 [24.2 [ 235|220 1116
37|P73|M | LVH [27.0[11.5]18.0 [19.0 |31.0 [21.5 | 25.4 |31.3 [16.0 [ 42.0 [43.0 | 159.1
38[P74] M [Normal|11.3] 45 [11.3] 75 | 35 [22.3 [ 225 [13.1 | 21.0 [ 225 [ 20.0 [ 83.18
39[P75| F |Normal| 7.3 | 45 | 88 | 21 |'80 [11.0| 95 [105[133[125] 95 [52.63
40[R40| F | LVH |88 [12.8|14.6] 28 [19.3|28.8 361|314 [185[234 [14.4 1176
41|R85|M | LVH [17.1] 32 [142]123] 9.9 [236[27.9]25.1 [29.4 [36.1[35.2 | 1326
42|W1| F |Normal| 65 | 2.2 [57 [ 42 | 28 | 9.8 [233]165] 38 [ 67 | 7.3 [44.33
43|W2[M | LvH [153|158}16.9 147 | 7.9 [18.5 196 |14.8 [16.1 [31.9 [23.3 | 1005
44\W3| F | LvH |75 [ 62 |66 |66 |63 [190.1]224]16823.1[321]152]097.25
45|W4| F | LVH |1231 35 [ 95 |90 |39 [138]20.8(316 | 6.9 [188[16.4 |8167
46 |W5| M | LVH~| 155|146 |11.3[15.8 135|119 |14.9|11.9 | 188|289 27.3 | 106.4
47|W6| F | LvH 13537 [133] 55 | 95 |13.9]14.3|14.2|169|27.2| 23.3 | 88.56
48 |W7| F [Normal| 48 | 36 | 47 [ 2.1 | 43 | 65 [143[17.6] 7.1 [13.4]107 | 525
49 |W8| M- {Normal | 108 | 136 | 5.6 [12.3] 2.4 [10.3] 253258139103 | 6.4 |69.08
50 WO |'F |Normal|11.4 | 68 | 7.6 | 8.9 | 32 |14.8|24.8]24.3| 9.3 | 111|128 | 68.87

The validation results of diagnosing LVH cardiac disease illustrated in Table 4.8

show that some ECG records are diagnosed manually with LVH cardiac disease.

However, the determined diagnosis about LVH cardiac disease is not verified (i.e. false

negative diagnosing), for example Record 120, 121 are not diagnosed with LVH by

seven traditional criteria (Skolow, CRTAl to CRTAG6), while these records are

annotated manually with LVVH cardiac disease. Additionally, other ECG records in the

same table are normal or pre diagnosed manually with other cardiac diseases (non LVH

148




cardiac disease), but the determined diagnosis is LVH cardiac disease (i.e. false positive
diagnosing), for example Record 155 is diagnosed wrongly with LVH according to four
traditional criteria (Cornel, REC-CRTA, CRTAL, and CRTAZ2), while this record is
annotated manually with Earlier MI cardiac disease. On the other hand, the diagnosis
results obtained by the proposed system prove that all L\VH samples are recognized
successfully and all non-LVH samples are excluded. Furthermore, these results prove
the significant ability of proposed approach to provide an accurate diagnosis without

any interference with other cardiac diseases.

Table 4.8: Comparison Between the LVH Diagnosis Results Obtained by the
Proposed Approach and Nine traditional Diagnostic Criteria Using 50 ECG
Patients Suffering From Different Cardiac Diseases. (m: LVH, o: Other Cardiac
Diseases or Normal Patient)

. Dow S = aJd || @ | | v | o
NN I A A
¢ |8 235025 % 8|x0| 5|5 5|88 |8
e o O

1]101|F AHF " |o|o ool olo]lo|o|lo]o
2 (102 | F AHT O ] ] ] O o o O o | o
3 [ 105 | M. ©AcMI o|o|o|o| o|go|o|o]|lo|ao
4 1110 |.F AVNB i O O O i i i O o | o
5 | 1n12y{M| AVNB o|lo|o|o|o|o|lo|o| oo
6 (15| M TIA O ] ] ] O o o O o | o
7 17 [ ™M TIA | | | | | | | | o | o
8 [120 | F LVH | ] ] ] O O O O o | o
9 |121 | F LVH [ | ] [ ] [ ] i i i ] o | o
10122 | F LVH [ ] ] ] ] [ ] m] [ ] ] =
111124 | M EarMI i ] ] [ ] i i i ] o | o
12126 | F SND O ] ] ] O O O O o | o
131128 | M PVCs O ] O [ O O O O =
14132 | F VBG O ] ] ] O O O O o | o
151133 | M PVCs i ] ] [ ] i i i ] o | m
16 | I35 | F LVH [ ] ] ] ] [ ] [ ] [ ] ] =
17 1136 | F LVH [ | [ ] [ ] [ ] i [ | [ | [ ] " =
18| 137 | F LVH | ] ] ] | | | ] E | =

149



Table 4.8: Continued
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4.4.4 LVH Diagnosis Results Using Proposed FIS

In this section, the results of LVH cardiac disease diagnosis which are obtained
by the proposed FIS for some ECG records are presented. The structure design of the
proposed FIS illustrated in Chapter 3 Section 3.4.1.4 Figure 3.12 is implemented using
fuzzy graphical user interface (GUI) editor by a MATLAB environment. Six ECG
records from the tested data mentioned in Section 4.4.1 were selected as the validation
data in this implementation. Three ECG records (128, 150, and- 173) were selected from
male patients and pre diagnosed with PVCs, LVH, AF cardiac diseases, respectively.
Another three ECG records (110, 121, and 136) were-selected from female patients and
pre-diagnosed with AVNB, LVH, and LVH, tespectively. The final diagnosis in the
proposed FIS takes the form of activating one or more output MFs mentioned in
Chapter 3 Section 3.4.1.4 Figure 3.15 based on the conditional results of fuzzy rules that
are considered in the proposed-FIS. Moreover, the results of these rules are varied
according to the desired entry values by input ECG record.

Through the“implementation of the proposed FIS approach on six ECG records
presented above, the three cases (121, 136, and 173) are classified successfully as LVH
patients; 'and other cases (110, 128, and 150) are classified as non LVH patients.
However the behaviour of the proposed FIS approach to prepare the final classification
decision is different in all six cases. Therefore the implementation of each case is
highlighted in more details with the rules viewer diagram which is generated
automatically by the fuzzy GUI editor. This diagram views all input and output MFs in
the proposed FIS.

Three output MFs are considered in the proposed FIS, the first is Exprl, which
denotes the decision of Cornell or REC_CRTA diagnostic criterion; the second is

Expr2, which denotes the decision of Cornell and Skolow and successive occurrences in
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CRTAL-6 diagnostic criteria; the third is MDV, which denotes the decision of the
proposed diagnostic criterion through three MFs (MDV-Fe-LVH, MDV-Normal, and
MDV-Ma-LVH). These MFs reflect a diagnosis for LVH female patients, non LVH
patients, and LVH male patients, respectively.

In the 1% ECG record (121), the MDV-Fe-LVH and Exprl MFs are activated,
while Expr2 MF is not activated as shown in the rule viewer diagram in Figure 4.9.
According to these output MFs results, the final diagnosis is LVH.based on the main
diagnosis decision rule defined in Chapter 3 Section 3.4.1.2 Equation 3.22.

In the 2" ECG record (136), the diagnosis of LV H cardiac disease is not decided
by MDV criterion because both MDV-Fe-LVH and‘MDV-Normal MFs are activated.
At the same time, both Exprl and Expr2 MFs are activated as shown in Figure 4.10.
Thus, the final diagnosis due to the main diagnosis decision rule is LVH. The diagnosis
in this case views clearly the reasen-behind using some LVH traditional criteria in the
main diagnosis decision rule;

In the 3" ECGarecord (173), the diagnosis of LVH cardiac disease is prepared
smoothly because-all successive output MFs (MDV-Ma-LVH, Exprl, and Expr2) are
activated as'shown in Figure 4.11.

In other ECG records which are pre diagnosed with other cardiac diseases. The
MDV-Normal MF is activated and both Exprl and Expr2 are not activated in the 4" and
5" ECG records (110 and 150) as shown in Figure 4.12 and Figure 4.13, respectively.
Thus the diagnosis in both cases is prepared smoothly as non LVH patients. In the 6™
ECG record (128), the Exprl is activated, but both the Expr2 and MDV MFs are not
activated as shown in Figure 4.14. Thus, the final diagnosis is non LVVH according to the

logical value obtained by the main diagnosis decision rule.
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Figure 4.9: The Generated Rule Viewer Diagram by Proposed FIS on 121 Patient
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Figure 4.13: The Generated Rule Viewer Diagram by Proposed FIS on 150 Patient
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158



4.45 Validation of Proposed Diagnostic Approach

In this section, the performance of the proposed approach for diagnosing LVH

cardiac disease is evaluated by comparing the statistical evaluation metrics (sensitivity,

specificity, and accuracy) mentioned in section 4.4.2, which were obtained by the

proposed approach using the tested ECG records mentioned in section 4.4.1, with the

corresponding metrics which are obtained by nine LVH diagnostic criteria using the

same set of ECG records. The validation results presented in Table 4.9 show that only

one metric from the sensitivity or the specificity is high, and other is low or limited,

except for the proposed criterion which performed perfectly for both metrics.

Table 4.9: Comparison of Evaluation\Parameters for Diagnosing LVVH Cardiac

Disease Using Proposed Criterion‘and Other Nine Diagnostic Criteria
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Additionally, the results of diagnostic accuracy for all traditional diagnostic
criteria take the same limits of precision (not exceeding 90%), whereas a perfect
percentage of diagnostic accuracy (100%) is occurred by using the proposed diagnosis
criterion. The perfect results of statistical metrics (sensitivity, specificity, and accuracy)
obtained by the proposed approach demonstrate the robustness of this approach in
performing a correct LVH diagnosis among various cardiac diseases in the ECG tested

data.

4.5 Summary

In this chapter, many evaluation scenarigs have been conducted to validate the
performance of the proposed approaches. The)selection of suitable evaluation scenarios
for each approach depends mainly on. the types of ECG data used for validation, the
availability of this data in various rthythms/morphologies, and the availability of pre-
defined information for eachpatient like (cardiac disease, gender, etc), and the standard

metrics that were adopted for this evaluation.

For the first approach of digital recovery, two evaluations are presented to
validate“the robustness of this approach to generate highly precise 12 lead raw ECG
data. The first evaluation is performed to calibrate the graphical behavior of the
reconstructed data with respect to the baseline detected by the same approach. The
second is analytical evaluation that takes two forms; a qualitative evaluation that
computes the similarity between the printed ECG chart and the reconstructed ECG
signal using a single lead of three ECG charts, and a quantitative evaluation that
determines the accuracy of the generated raw data by calculating five standard

parameters for reconstructed data and comparing them with the corresponding

160



parameters which are computed by the ECG machine itself. The same three ECG charts

were used in this evaluation and final average accuracy exceeded 98%.

Regarding the RFEM approach which is proposed to detect the QRS complex in
the ECG signal and delineate its time characteristics, two graphical evaluations are
performed to compute accuracy of the delineated results. The first is applied to evaluate
Rpeak time locations using 48 ECG records from the MIT-BIH arrhythmia database,
which is mostly used by related QRS detection methods. However, the second is
performed to evaluate all time characteristics of the QRS \complex (Qonser, Qenp,
Reeak, Sonset, and Sgnp) using five ECG records from the’QT database which includes
manual annotations by cardiologists for all these- characteristics. Additionally, the
detection results obtained by the RFEM capproach are validated with eight QRS
detection methods in literature using three statistical metrics (Fd, Se, and P"), and the
average processing time to implement this approach is validated with the corresponding

processing time of three methaods in literature.

Regarding the HSDPTW approach which is proposed to detect the P and T
waves in the ‘'ECG signal and delineate boundary and peak time locations of these
waves, -the “delineation results of seven ECG records from QTDB are evaluated
graphically with the manual annotation characteristics in this database. The ECG
records were selected randomly from seven QTDB categories in order to prove the
ability of this approach to process different ECG morphologies. The analytic results of
the delineated time characteristics in both P and T waves and four statistical evaluation
metrics (Se, P*, m, and s), which are obtained by applying the HSDPTW approach on
28 ECG records from QTDB are presented in a single table mentioned in Section
4.3.2.3 Table 4.5. Additionally, these results are validated with corresponding ones

reported by five P and T detection methods proposed in literature.
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Regarding The FIS approach which is proposed to diagnose LVH high risk
cardiac disease using proposed diagnosis criterion. It is applied on the ECG records of
50 patients, only 21 patients suffered from LVH, while the others suffered from other
cardiac disease or normal patients. Three statistical evaluation metrics (S, P*, and
accuracy) are used to evaluate the performance of this approach. The analytic results
prove that the proposed FIS approach provides perfect percentages (100%) of diagnostic
accuracy, while the greatest accuracy occurred by the traditional LVH diagnostic

criteria not exceeding 90%.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusion

As mentioned in Chapter 3 Section 3.1, a new system with three main stages has
been proposed for analyzing a 12 lead ECG signal, detecting ECG waves (P, QRS
complex, and T), delineating the time characteristics of ECG waves, and diagnosing a
specific high risk cardiac disease called LVH.-Through the new ECG system, four
approaches have been proposed based on mew processing algorithms to improve the
performance of different subjects considered in this system with respect to existing
methods or to automate those using'computerized intelligent techniques with respect to
other subjects that were performed manually by cardiologists like diagnosing high risk

cardiac diseases.

The first\proposed approach in the new ECG system performs an operation of
digital recovery to reconstruct 12 lead raw ECG data from colored paper printout
recordings. In other words, an open bank of 12 lead ECG data can be generated by this
approach which can assist the researcher to do more work in terms of analyzing and
interpreting the ECG signal. This approach was characterized by low-cost computing,
low mathematical complexity, independent of any previous readings, high accuracy of
the resulting raw ECG data, independent of ECG frequency recording, and ability to
recover raw ECG data with different morphologies, size of paper printout and pen size
of printing. Furthermore, it was able to detect the ECG baseline using simple

calculations. Moreover, the resulting raw ECG data were smoothed and free from the
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printed text and handwriting inside the paper printout. As mentioned in Chapter 4
Section 4.2, the recovered 12 lead ECG data was evaluated graphically with respect to
the baseline detection, as well as two forms of analytical evaluation being performed for
a single lead in three ECG recordings with different morphologies. The validation
results prove the robustness of the proposed approach in reconstructing the ECG data in
the printed chart with all deviations of finite precision. In addition, high precision
matching exceeding than 98% was verified between the original and recovered ECG
data. Furthermore, the proposed digital recovery approach @pplies simple and fast
computing for processing a color scanned image of paperprintout containing an ECG
chart. Therefore, it can be easily integrated into a portable smart hardware system which
can be developed later to do more real time ECG signal analysis and cardiac diseases

diagnosis.

The second part of new (ECG system includes the process of detecting ECG
waves and then delineating“time characteristics of these waves to compute different
diagnostic parameters/features related to the ECG signal. Two approaches have been
proposed in this ‘subject. The first approach named RFEM was designed to detect the
QRS complex and delineate peak and boundary time locations of their components (Q,
R, and’S) waves. As the RFEM approach is based on a straight forward algorithm to
perform QRS detection without the need for any mathematical transformation or
estimation, it is characterized by high-speed processing time. The same instantaneous
strategy to detect the QRS complex was considered by another approach named
HSDPTW to detect P and T waves, and then delineate the boundaries and peak time
locations of these waves (Pon, Ppeaks Poffs Ton, Tpeaks and Pofr). Two algorithms were

applied by the HSDPTW approach to perform the detection of P and T waves within the
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fixed length search intervals which identified by previous time characteristics of the

QRS complex.

The delineated time characteristics determined by the RFEM and the HSDPTW
approaches were used to calculate significant diagnostic criteria for different cardiac
diseases. The highest detection accuracy verified by these approaches led to excellent
diagnosis results for different cardiac diseases. Additionally, the high processing speed
attained by these approaches enables these approaches to be.applied as the smart
hardware integrated chips inside ECG machine for real time precessing ECG signal and
to perform detailed delineation of all ECG waves instead of a general ECG wave

description which is performed by modern ECG machine.

The third part in the new ECG system focuses on diagnosing cardiac diseases
using computerized intelligent techniques. A new FIS for diagnosing the LVH cardiac
disease has been proposed based”on new diagnostic criterion. All the input voltage
parameters and the output-of the logical expressions related to the proposed diagnostic
criterion were expressed as the MFs in the proposed FIS. In contrast to the traditional
LVH diagnostic-criteria, the decision of the proposed criterion was obtained by three
logical expressions. Two of them were a combination of some traditional diagnostic
criteria, whereas the other expression (MDV) was obtained by the eight voltages from
the 12-lead ECG with a different level for each gender. The proposed diagnostic system
was validated successfully with 50 ECG samples from both genders with differing ages.
However, 29 samples from the total validated samples did not suffer from LVH; the
proposed diagnostic system achieved perfect results (100%) in terms of sensitivity,

specificity, and accuracy.

According the process of integrating the proposed LVH diagnosing system in a

single FIS intelligent model, the simplicity of conditioning statements for all input and
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output MFs in the proposed FIS, the perfect diagnosis accuracy, and the simplicity and
the highly processing speed of the based technique followed by the RFEM approach to
delineate the time characteristics of QRS complex and generate diagnostic parameters
for the proposed diagnosis system. The idea of implementing the proposed diagnosis
system on an intelligent hardware unit (which can be added to the ECG machine) to

perform actual diagnosis of LVH cardiac disease became more realistic.

5.2 Future Works

Based on the proposed approaches in this.thesis, some future works can be

suggested:

1- Implement the proposed digital recovery approach on a portable embedded
system with high resolution vision system and huge storage media. As the
system performs entire reconstructing raw ECG data in a single device, also
facilities the> process of capture and storage inside general hospitals or

clinical centres.

2-"Implement the proposed detection RFEM and HSDPTW approaches in a
single programmable micro chip unit to process the ECG output signal from
the ECG machine and provide detailed parameters and features that can be

beneficial for future diagnosis.

3- Develop more computerized intelligent systems for diagnosing other high
risk cardiac diseases like HOCM, WPW, LQTcS, ARVC, etc based on

detailed analysis of the 12 lead ECG signal.
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4- Design a computerized intelligent system for predicating SCD based on the
diagnostic results of high risk cardiac diseases, standard tests of HH, and

other hereditary issues.
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Appendix A

The 12-lead ECG chart shown in Figure A-1 is scanned with 600 dpi from the
original ECG printout paper. The distribution of ECG leads in this chart are different
from that shown in Figure 4.1, also the size of paper is different. The scanned image of
this chart is processed by the proposed digital recovery approach that is mentioned in
Chapter 3 Section 3.2.2.1 to recover the 12 lead raw ECG data in a digitally form. The
recovered 12 lead ECG data are plotted separately with the same scale for all graphs,
also the ECG base line which is pre detected in the same approach is plotted in each
graph with a dashed red line as shown in Figure A-2.

Figure A-1: The Scanned Image (with 600 dpi) of 12-Lead ECG Chart.
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Figure A.2: The Reconstructed 12-Lead Raw ECG Data of the ECG chart shown
in Figure A-1.
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Appendix B

The scanned images of the ECG records which were used in the analytic
evaluation of digital recovery approach mentioned in Chapter 4 Section 4.2.2 are shown
in Figure B.1, B.2, and B.3, respectively. In these figures, the partition that is rounded
by dashed red circle in the header part in each record contains the ECG parameters that
are computed automatically by the ECG machine itself and used for quantitative
evaluation. The colour grid part in each record contains the detail drawing charts of 12
lead ECG. These charts are used for qualitative evaluation. All images of ECG records
are scanned in 600 dpi.
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