

# CHAOTIC NEURAL NETWORK BASED MPEG-2 VIDEO ENCRYPTION FRAMEWORK OVER WIRELESS CHANNEL

# TARIQ ADNAN FADIL (1040210542)

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

hisitem

# School of Computer and Communication Engineering UNIVERSITI MALAYSIA PERLIS (UniMAP)

2014

# ACKNOWLEDGMENT

Pursuing a doctoral degree is considered a hard and long journey that one cannot make it alone. First of all, my great thank is truly to My Lord (*Allah الله*) who has awarded me all the health, strength, and belief to complete this work. I would like also to thank all those who have assisted me in my way to doctoral degree as follows:

My most special thanks are to my supervisors Dr. Shahru Nizam Yaakob and Prof. Dr. R. Badlishah Ahmad, for their continuous, valuable and indispensable advices, their unlimited support, encouragement, and patience.

My special thanks for my lovely parents, brothers, and sisters in Iraq for their unlimited love, advice, motivation, and sacrifices.

I would like to acknowledge the Malaysian Ministry of Education and UniMAP for supporting me financially during my study.

Finally, thanks to all my friends. I am indebted to them and words will never express the gratitude I owe to them.

Tariq Adnan Fadil University Malaysia Perlis (UniMAP)

# TABLE OF CONTENTS

Page

| DECLARATION OF THESIS                                                                                                                                                                                        | i     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| ACKNOWLEDGEMENT                                                                                                                                                                                              | ii    |
| TABLE OF CONTENTS                                                                                                                                                                                            | iii   |
| LIST OF TABLES                                                                                                                                                                                               | vii   |
| LIST OF FIGURES                                                                                                                                                                                              | viii  |
| LIST OF ABBREVIATIONS                                                                                                                                                                                        | xii   |
| LIST OF SYMBOLS                                                                                                                                                                                              | XV    |
| ABSTRAK                                                                                                                                                                                                      | xvii  |
| ABSTRACT                                                                                                                                                                                                     | xviii |
| LIST OF ABBREVIATIONS<br>LIST OF SYMBOLS<br>ABSTRAK<br>ABSTRACT<br>CHAPTER 1 INTRODUCTION<br>1.1 Overview<br>1.2 Problem Statement<br>1.3 Research Questions<br>1.4 Research Objective<br>1.5 Thesis Outline |       |
| 1.1 Overview                                                                                                                                                                                                 | 1     |
| 1.2 Problem Statement                                                                                                                                                                                        | 3     |
| 1.3 Research Questions                                                                                                                                                                                       | 4     |
| 1.4 Research Objective                                                                                                                                                                                       | 5     |
| 1.5 Thesis Outline                                                                                                                                                                                           | 5     |
|                                                                                                                                                                                                              |       |

# CHAPTER 2 LITERATURE REVIEW

| 2.1 Introduction                                                   | 7  |
|--------------------------------------------------------------------|----|
| 2.2 Overview                                                       | 7  |
| 2.3 Symmetric and Asymmetric Ciphers                               | 10 |
| 2.4 Multimedia Performance Requirements                            | 12 |
| 2.4.1 Encryption Efficiency                                        | 13 |
| 2.4.2 Security                                                     | 14 |
| 2.4.3 Video Codec Compliance                                       | 15 |
| 2.4.4 Compression Efficiency                                       | 15 |
| 2.4.5 Syntax Compliance                                            | 16 |
| 2.4.6 Applicability for Perceptual Encryption                      | 16 |
| 2.5 Chaos Theory and Artificial Neural Network toward Cryptography | 17 |

| 2.5.1 Diffusion Property                                                                                                                                                                      | 18 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2.5.2 One-way Property                                                                                                                                                                        | 19 |
| 2.5.3 Parallel Implementation                                                                                                                                                                 | 20 |
| 2.5.4 Confusion                                                                                                                                                                               | 21 |
| 2.5.5 Parameter Sensitivity                                                                                                                                                                   | 22 |
| 2.5.6 Randomness Similarity                                                                                                                                                                   | 24 |
| 2.6 Video Quality Measurement                                                                                                                                                                 | 25 |
| 2.6.1 Objective Metric                                                                                                                                                                        | 25 |
| 2.6.2 Subjective Metric                                                                                                                                                                       | 26 |
| 2.7 Orthogonal Frequency Division Multiplexing (OFDM)                                                                                                                                         | 28 |
| 2.8 OFDM Mathematical Model                                                                                                                                                                   | 30 |
| <ul> <li>2.6.2 Subjective Metric</li> <li>2.7 Orthogonal Frequency Division Multiplexing (OFDM)</li> <li>2.8 OFDM Mathematical Model</li> <li>2.9 Related Work: Analytical Methods</li> </ul> | 35 |
| 2.9.1 The Correlation-Preserving Video Encryption Scheme                                                                                                                                      | 35 |
| 2.9.2 SECMPEG and Aegis                                                                                                                                                                       | 37 |
| 2.9.3 Video Encryption Algorithm (VEA)                                                                                                                                                        | 38 |
| 2.9.4 Puzzle Algorithm                                                                                                                                                                        | 40 |
| 2.9.5 Frequency Domain Scrambling Approach                                                                                                                                                    | 42 |
| 2.9.6 Zigzag Permutation Algorithm                                                                                                                                                            | 43 |
| 2.9.7 Double Coupling Logistic Maps                                                                                                                                                           | 44 |
| 2.9.8 Non-Linear 3D Chaos based Encryption Technique                                                                                                                                          | 45 |
| 2.9.9 2D-Coupled Map Lattice (CML)                                                                                                                                                            | 49 |
| 2.9.10 Progressive Chaotic Video Encryption Scheme (PCVE)                                                                                                                                     | 50 |
| 2.10 Summary                                                                                                                                                                                  | 50 |
| $\bigcirc$                                                                                                                                                                                    |    |

# CHAPTER 3 CNN BASED VIDEO ENCRYPTION FRAMEWORK

| 3.1 Introduction                     | 52 |
|--------------------------------------|----|
| 3.2 Research Methodology             | 52 |
| 3.3 System Model Framework Structure | 53 |
| 3.4 Video Cryptography Algorithm     | 54 |
| 3.5 I-Frame Video Coding             | 58 |
| 3.5.1 Color Transform                | 58 |
| 3.5.2 Image Down Sampling            | 60 |

| 3.5.3 Discrete Cosine Transform                                                                                                                                                                                                               | 60 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 3.5.4 Quantization                                                                                                                                                                                                                            | 63 |
| 3.5.5 Scanning Pattern (Zigzag Scan)                                                                                                                                                                                                          | 64 |
| 3.5.6 Quantized Vector Data Encryption                                                                                                                                                                                                        | 65 |
| 3.5.7 Entropy Coding                                                                                                                                                                                                                          | 67 |
| 3.6 P-Frame Video Coding                                                                                                                                                                                                                      | 68 |
| 3.6.1 Motion Estimation                                                                                                                                                                                                                       | 70 |
| 3.6.2 Motion Estimation Procedure                                                                                                                                                                                                             | 71 |
| 3.6.3 Motion Vector Data Encryption                                                                                                                                                                                                           | 73 |
| 3.6.4 Block-Based Matching Algorithms for Motion Estimation                                                                                                                                                                                   | 74 |
| 3.6.5 Three-Step Search (TSS)                                                                                                                                                                                                                 | 74 |
| 3.6.6 Motion Compensation                                                                                                                                                                                                                     | 76 |
| 3.7 OFDM Simulation Model                                                                                                                                                                                                                     | 77 |
| 3.8 Video Decoding                                                                                                                                                                                                                            | 79 |
| 3.9 Summary                                                                                                                                                                                                                                   | 80 |
| <ul> <li>3.6.4 Block-Based Matching Algorithms for Motion Estimation</li> <li>3.6.5 Three-Step Search (TSS)</li> <li>3.6.6 Motion Compensation</li> <li>3.7 OFDM Simulation Model</li> <li>3.8 Video Decoding</li> <li>3.9 Summary</li> </ul> |    |
| · s V                                                                                                                                                                                                                                         |    |

| 4.1 Introduction                                         | 82  |
|----------------------------------------------------------|-----|
| 4.2 Basic Parameters                                     | 83  |
| 4.3 Video Coding Result                                  | 84  |
| 4.4 Video Bitstream Transmission Result                  | 99  |
| 4.4.1 AWGN Channel                                       | 100 |
| 4.4.2 Frequency Selective Rayleigh Fading Channel        | 101 |
| 4.5 CNN Cryptography Algorithm Result                    | 104 |
| 4.6 Analysis of Bitstream Resistance against Known       | 106 |
| Plaintext Attack                                         |     |
| 4.7 Analysis of Applying "Perceptual Encryption" Feature | 106 |
| 4.8 Comparison Performance Analysis                      | 107 |

# **CHAPTER 5 CONCLUSION AND FUTURE WORK**

| 5.1 Conclusion               | 112 |
|------------------------------|-----|
| 5.2 Research Contribution    | 114 |
| 5.3 Proposal for Future Work | 115 |

REFERENCES 116 LIST OF PUBLICATIONS 123 LIST OF AWARDS 124 APPENDIX A 125

# LIST OF TABLES

| NO. |                                                                        | PAGE |
|-----|------------------------------------------------------------------------|------|
| 2.1 | Quality Level in Subjective Metric                                     | 27   |
| 3.1 | Scanning Pattern                                                       | 65   |
| 4.1 | Test Result for Video Compression System of Video Dimensions (176×144) | 96   |
| 4.2 | Parameter Values for Video Bitstream Transmission                      | 99   |
| 4.3 | Variations of PSNR and BER for Different $E_b/N_o$ Values at           | 100  |
|     | AWGN Channel                                                           |      |
| 4.4 | Variations of PSNR and BER for Different $E_b/N_o$ Values at           | 101  |
|     | Frequency Selective Rayleigh Fading Channel                            |      |
| 4.5 | Comparison with Other Previous Studies                                 | 111  |
|     | Comparison with Other Previous Studies                                 |      |

# LIST OF FIGURES

NO.

| 2.1  | Image Encryption by using AES Algorithm                                                             | 9  |
|------|-----------------------------------------------------------------------------------------------------|----|
| 2.2  | Architecture of Symmetric and Asymmetric ciphers                                                    | 11 |
| 2.3  | Simple Neuron Layer with Diffusion Property                                                         | 20 |
| 2.4  | Simple Neuron Layer with One-Way Property                                                           | 20 |
| 2.5  | Comparison of Data Block Processing Schemes                                                         | 21 |
| 2.6  | Piecewise Linear Chaotic Map                                                                        | 22 |
| 2.7  | Initial-Value Sensitivity of the Chaotic Logistic Map                                               | 23 |
| 2.8  | Statistical Results of Chaotic Sequence                                                             | 24 |
| 2.9  | Ciphertext Corresponding to Different Quality Levels                                                | 27 |
| 2.10 | Comparison of the Bandwidth for Conventional Multicarrier and<br>Orthogonal Multicarrier Techniques | 29 |
| 2.11 | OFDM Radio Transmission System                                                                      | 31 |
| 2.12 | OFDM Symbol Representation Showing Guard Time Insertion                                             | 33 |
| 2.13 | Correlation-Preserving Video Encryption Scheme                                                      | 36 |
| 2.14 | Puzzling Step                                                                                       | 40 |
| 2.15 | Obscuring Step                                                                                      | 41 |
| 2.16 | Encryption Process of (Yang et al., 2008)                                                           | 45 |
| 2.17 | Overall Encryption Process                                                                          | 46 |
| 2.18 | Architecture of the encryption scheme                                                               | 49 |
| 3.1  | Research Methodology                                                                                | 53 |
| 3.2  | Overall System Model Block Diagram                                                                  | 55 |
| 3.3  | Bifurcation Diagram of a Logistic Map                                                               | 56 |
|      |                                                                                                     |    |

| 3.4  | CNN Block Diagram Architecture                                            | 57 |
|------|---------------------------------------------------------------------------|----|
| 3.5  | Neural Network Architecture                                               | 57 |
| 3.6  | Intra-Frame (I-Frame) Coding Block Diagram                                | 59 |
| 3.7  | Example of a DCT Transform of a Block of Pixels                           | 62 |
| 3.8  | DCT Effect on Image Frequency Coefficients Concentration                  | 63 |
| 3.9  | Flowchart Diagram of CNN Encryption Algorithm Process                     | 67 |
| 3.10 | P-Frame Coding Block Diagram                                              | 70 |
| 3.11 | Motion Estimation and Motion Vector                                       | 72 |
| 3.12 | Convergence Paths of Three-Step Search Algorithm                          | 75 |
| 3.13 | Motion Compensated Inter-Coding                                           | 77 |
| 3.14 | OFDM Simulation Model                                                     | 78 |
| 3.15 | Video Decoding Side Block Diagram                                         | 80 |
| 4.1  | Performance of Video Compression with Quality 90 and 30<br>Frames per GOP | 85 |
| 4.2  | Performance of Video Compression with Quality 90 and 15<br>Frames per GOP | 86 |
| 4.3  | Performance of Video Compression with Quality 90 and 10<br>Frames per GOP | 86 |
| 4.4  | Performance of Video Compression with Quality 90 and 5<br>Frames per GOP  | 87 |
| 4.5  | Performance of Video Compression with Quality 70 and 30 Frames per GOP    | 87 |
| 4.6  | Performance of Video Compression with Quality 70 and 15<br>Frames per GOP | 88 |
| 4.7  | Performance of Video Compression with Quality 70 and 10<br>Frames per GOP | 88 |
| 4.8  | Performance of Video Compression with Quality 70 and 5<br>Frames per GOP  | 89 |

| 4.9  | Performance of Video Compression with Quality 50 and 30<br>Frames per GOP                          | 89  |
|------|----------------------------------------------------------------------------------------------------|-----|
| 4.10 | Performance of Video Compression with Quality 50 and 15<br>Frames per GOP                          | 90  |
| 4.11 | Performance of Video Compression with Quality 50 and 10<br>Frames per GOP                          | 90  |
| 4.12 | Performance of Video Compression with Quality 50 and 5<br>Frames per GOP                           | 91  |
| 4.13 | Performance of Video Compression with Quality 30 and 30<br>Frames per GOP                          | 91  |
| 4.14 | Performance of Video Compression with Quality 30 and 15<br>Frames per GOP                          | 92  |
| 4.15 | Performance of Video Compression with Quality 30 and 10<br>Frames per GOP                          | 92  |
| 4.16 | Performance of Video Compression with Quality 30 and 5<br>Frames per GOP                           | 93  |
| 4.17 | Performance of Video Compression with Quality 10 and 30<br>Frames per GOP                          | 93  |
| 4.18 | Performance of Video Compression with Quality 10 and 15<br>Frames per GOP                          | 94  |
| 4.19 | Performance of Video Compression with Quality 10 and 10<br>Frames per GOP                          | 94  |
| 4.20 | Performance of Video Compression with Quality 10 and 5<br>Frames per GOP                           | 95  |
| 4.21 | Original and Decoded Video Sense Result for Different Quality Values                               | 97  |
| 4.22 | Compressed Bitrate versus Quality Values                                                           | 98  |
| 4.23 | Compression Ratio versus Quality Values                                                            | 98  |
| 4.24 | Original and Decoded Video Frames for Different $E_{\text{b}}/N_{\text{o}}$ Values at AWGN Channel | 102 |

| 4.25 | Original and Decoded Video Frames for Different Values of<br>Eb/No for Frequency Selective Rayleigh Fading Channel | 103 |
|------|--------------------------------------------------------------------------------------------------------------------|-----|
| 4.26 | Sensitivity Behaviour Result                                                                                       | 105 |
| 4.27 | Plaintext Histogram                                                                                                | 105 |
| 4.28 | Ciphertext Histogram                                                                                               | 105 |
| 4.29 | Bitstream Protection against Known Plaintext Attack<br>Demonstration Test Result                                   | 107 |
| 4.30 | Demonstration of "Perceptual Encryption" Feature Test Result                                                       | 108 |

# LIST OF ABBREVIATIONS

| 2G         | Second Generation                                                                             |
|------------|-----------------------------------------------------------------------------------------------|
| 3G         | Third Generation                                                                              |
| ATM        | Asynchronous Transmission Mode                                                                |
| AVI        | Audio/Video Interleaved                                                                       |
| AWGN       | Additive White Gaussian Noise                                                                 |
| B-Frame    | Bidirectional Prediction Frame                                                                |
| BER        | Bite Error Rate                                                                               |
| BMA        | Block-Matching Algorithm                                                                      |
| BPSK       | Binary Phase Shift Keying                                                                     |
| CBR        | Bite Error Rate<br>Block-Matching Algorithm<br>Binary Phase Shift Keying<br>Constant Bit Rate |
| CCIR       | International Radio Consultative Committee                                                    |
| CIF        | Common International Format                                                                   |
| CR         | Compression Ratio                                                                             |
| CNN        | Chaotic Neural Network                                                                        |
| CODEC      | Coder/Decoder                                                                                 |
| СР         | Cyclic Prefix                                                                                 |
| dB         | Decibel                                                                                       |
| DCT        | Discrete Cosine Transform                                                                     |
| DCT<br>DFT | Discrete Fourier Transform                                                                    |
| DPCM       | Differential Pulse Code Modulation                                                            |
| DVD        | Digital Versatile Disk                                                                        |
| DVB        | Digital Video Broadcasting                                                                    |
| EOB        | End Of Block                                                                                  |
| FDM        | Frequency Division Multiplexing                                                               |
| FDMA       | Frequency Division Multiple Access                                                            |
| FEC        | Foreword Error Control                                                                        |
| FPS        | Frame Per Second                                                                              |
| FFT        | Fast Fourier Transform                                                                        |
| GOP        | Group Of Picture                                                                              |
| GSM        | Global System Mobile                                                                          |
| HDTV       | High Definition Television                                                                    |
|            |                                                                                               |

| HTTP    | Hyper Text Transfer Protocol               |
|---------|--------------------------------------------|
| HVS     | Human Visual System                        |
| H.263   | A video coding standard                    |
| ICI     | inter-carrier interference                 |
| I-Frame | Intra-Frame                                |
| IP      | Internet Protocol                          |
| ISDN    | Integrated Services Digital Network        |
| ISI     | Intersymbol Interference                   |
| ISO     | International Standard Organization        |
| LOS     | Line OF Sight                              |
| ITU     | International Telecommunication Union      |
| MAD     | Mean Absolute Difference                   |
| MB      | Macro Block                                |
| M-JPEG  | Motion-Joint Photographic Expert Group     |
| MSD     | Mean Square Difference                     |
| MPEG    | Moving Picture Expert Group                |
| MSE     | Mean Square Error                          |
| MV      | Motion Vector                              |
| OFDM    | Orthogonal Frequency Division Multiplexing |
| P/S     | Parallel to Serial                         |
| P-Frame | Prediction-Frame                           |
| PDF S   | Probability Density Function               |
| PSNR    | Peak Signal to Noise Ratio                 |
| PSTN    | Public Switched Telephone Network          |
| QCIF    | Quarter Common International Format        |
| QOS     | Quality Of Services                        |
| RGB     | Red, Green, Blue                           |
| RLC     | Run Length Coding                          |
| S/P     | Serial to Parallel                         |
| SNR     | Signal-to-Noise Ratio                      |
| STD     | Standard Deviation                         |
| ТСР     | Transmission Control Protocol              |
| TSS     | Three-Step Size                            |
|         |                                            |

| VBR                                                                                                                                                                                                                                   | Variable Bit Rate                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| VLC                                                                                                                                                                                                                                   | Variable Length Coding                                 |
| WiMaX                                                                                                                                                                                                                                 | Worldwide Interoperability for Microwave Acess         |
| YC <sub>b</sub> C <sub>r</sub>                                                                                                                                                                                                        | Color model, where Y is Luminance, $C_b$ and $C_r$ are |
|                                                                                                                                                                                                                                       | chrominance (color) components.                        |
| ZP                                                                                                                                                                                                                                    | Zero Padding                                           |
| ZRL                                                                                                                                                                                                                                   | Zero Run-Length                                        |
| Mbps                                                                                                                                                                                                                                  | Mega bit per second                                    |
| QoS                                                                                                                                                                                                                                   | Quality of Service                                     |
| RF                                                                                                                                                                                                                                    | Radio Frequency                                        |
| VoD                                                                                                                                                                                                                                   | Video-on Demand                                        |
| Mbps       Mega bit per second         QoS       Quality of Service         RF       Radio Frequency         VoD       Video-on Demand         Optimise       Video-on Demand         Optimise       Protected by original conviction |                                                        |

# LIST OF SYMBOLS

| $C_b$ Blue Chrominance Signal $C_g$ Green Chrominance Signal $C_r$ Red Chrominance Signal $\hat{A}$ Fourier Coefficients of the Signal $\hat{d}$ Compensated data symbols $d(k)$ Received data symbols $D_{n,n}$ Minimum Distortion of the candidate block $E_b/N_o$ Bit energy to noise ratio $A_f$ Sub-carrier Spacing $F(u,v)$ DCT transformed coefficient at position $(u,v)$ $fx,y)$ Inverse DCT transformed at position $(x,y)$ $f_o$ Frequency of the Source $f_i$ Frequency of the source $f_i$ Frequency of the int subcarrierHNumber of Lines $h(\tau - t)$ Impulse response of the ratio channel $I(r,c)$ pixel value of the original frame at the (r,c) location $r(r,c)$ k $k$ Positive integer $n(t)$ Sample function of noiseNSub-carriers number $p(\varphi)$ Probability Density Function $r(t)$ Received signal $s(t)$ Digital information sent by transmitter $C(t)$ OFDM signal $\tau$ Delay Spread $T_u$ Useful symbol duration $T_g$ Guard interval duration $T_{eout}$ Veight factor green color $w_r$ Weight factor green color $w_r$ Weight factor green color $w_r$ Weight factor red color $\Lambda(n)$ Transmitted sequence signal $g(n)$ Received signal $f_d$ Change in Frequency of the Source seen at t                                                         | BW                | Bandwidth                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------|
| $C_g$ Green Chrominance Signal $C_r$ Red Chrominance Signal $\hat{d}_i$ Fourier Coefficients of the Signal $\hat{d}_i$ Compensated data symbols $\hat{d}_i(k)$ Received data symbols $D_{m,n}$ Minimum Distortion of the candidate block $E_d/N_o$ Bit energy to noise ratio $\Delta f$ Sub-carrier Spacing $F(u,v)$ DCT transformed coefficient at position $(u,v)$ $f(x,y)$ Inverse DCT transformed at position $(x,y)$ $f_o$ Frequency of the Source $f_i$ Frequency of the inf subcarrierHNumber of Lines $h(\tau - t)$ Impulse response of the radio channel $l(r,c)$ pixel value of the original frame at the location $\hat{r}_{r,c}$ pixel value of the reconstructed frame at the location $r(r,c)$ K $P(\phi)$ Probability Density Function $P(r)$ Rayleigh distribution $r(t)$ Sample function of noiseNSub-carriers number $p(\phi)$ Probability Density Function $P(r)$ Rayleigh distribution $r(t)$ Received signal $s(t)$ Digital information sent by transmitter $C(t)$ OFDM signal $\tau$ Delay Spread $T_U$ Useful symbol duration $T_g$ Guard interval duration $T_g$ Guard interval duration $r_g$ Weight factor green color $w_g$ Weight factor green color $w_g$ Weight factor green color $w_g$ Weight factor green color $w_$                                           | C <sub>b</sub>    | Blue Chrominance Signal                                   |
| $C_r$ Red Chrominance Signal $\hat{d}_i$ Fourier Coefficients of the Signal $\hat{d}(k)$ Compensated data symbols $d_r(k)$ Received data symbols $D_{m,n}$ Minimum Distortion of the candidate block $E_d/N_o$ Bit energy to noise ratio $\Lambda f$ Sub-carrier Spacing $F(u,v)$ DCT transformed coefficient at position $(u,v)$ $f(x,y)$ Inverse DCT transformed aposition $(x,y)$ $f_o$ Frequency of the Source $f_i$ Frequency of the i-th subcarrierHNumber of Lines $h(\tau - t)$ Impulse response of the radio channel $l(r,c)$ pixel value of the original frame at the location $(r,c)$ k $k$ Positive integer $n(t)$ Sample function of noiseNSub-carriers number $p(\varphi)$ Probability Density Function $P(r)$ Rayleigh distribution $r(t)$ Delay Spread $\tau$ Delay Spread $T_U$ Useful symbol duration $T_{rotad}$ Total symbol duration $T_{rotad}$ Total symbol duration $W_w$ Weight factor pree nolor $w_r$ Weight factor pree nolor $w_r$ Weight factor pree nolor $w_r$ Weight factor green color $w_r$ Weight factor pree nolor $w_$                                                                         |                   | -                                                         |
| $\hat{A}_i$ Fourier Coefficients of the Signal $\hat{d}_i(k)$ Compensated data symbols $D_{m,n}$ Minimum Distortion of the candidate block $E_bN_o$ Bit energy to noise ratio $\Delta f$ Sub-carrier SpacingF(u,v)DCT transformed coefficient at position $(u,v)$ $f(x,y)$ Inverse DCT transformed at position $(x,y)$ $f_o$ Frequency of the Source $f_i$ Prequency of the Source $f_i$ Frequency of the radio channel $h(\tau - t)$ Impulse response of the radio channel $l(r,c)$ pixel value of the original frame at the $(r,c)$ location $\hat{l}(r,c)$ Pixel value of the reconstructed frame at the location $(r,c)$ Rayleigh distribution $r(t)$ Sample function of noiseNSub-carriers number $p(\varphi)$ Probability Density Function $P(r)$ Rayleigh distribution $r(t)$ Useful symbol duration $r_i$ Delay Spread $T_0$ Total symbol duration $T_{out}$ Total symbol duration $T_{out}$ Veright factor green color $w_b$ Weight factor green color $w_r$ Weight factor green color $x_r$ </th <td></td> <td>-</td> |                   | -                                                         |
| $\hat{d}(k)$ Compensated data symbols $d_r(k)$ Received data symbols $D_{m,a}$ Minimum Distortion of the candidate block $E_r/N_o$ Bit energy to noise ratio $\Delta f$ Sub-carrier Spacing $F(u,v)$ DCT transformed coefficient at position $(u,v)$ $f(s,y)$ Inverse DCT transformed a position $(x,y)$ $f_o$ Frequency of the Source $f_i$ Frequency of the I-th subcarrierHNumber of Lines $h(\tau - t)$ Impulse response of the radio channel $l(r,c)$ pixel value of the original frame at the (r,c) location $\hat{h}(r,c)$ Pixel value of the reconstructed frame at the location<br>$(r,c)$ kPositive integern(t)Sample function of noiseNSub-carriers number $p(\phi)$ Probability Density Function $P(r)$ Rayleigh distribution $r(t)$ Delay Spread $\tau$ Delay Spread $T_U$ Useful symbol duration $T_{rotal}$ Total symbol duration $T_{rotal}$ Total symbol duration $W_{x}$ Weight factor blue color $w_{g}$ Weight factor green color $w_{r}$ Weight factor green color $x_{r}$ Guard interval duration $T_{rotal}$ Transmitted sequence signal $y(n)$ Received signal $f_{d}$ Change in Frequency of the Source seen at the Receiver $\Delta f_{d}$ Change in Frequency of the Source seen at the Receiver                                                                     | Λ 1               | -                                                         |
| $d_r(k)$ Received data symbols $D_{m,n}$ Minimum Distortion of the candidate block $E_n/N_o$ Bit energy to noise ratio $\Delta f$ Sub-carrier SpacingF(u,v)DCT transformed coefficient at position $(u,v)$ $f(x,y)$ Inverse DCT transformed at position $(x,y)$ $f_o$ Frequency of the Source $f_i$ Frequency of the i-th subcarrierHNumber of Lines $h(\tau - t)$ Impulse response of the radio channel $I(r,c)$ pixel value of the original frame at the (r,c) location $f(r,c)$ Pixel value of the reconstructed frame at the location $n(r,c)$ Rayleigh distribution $r(t)$ Sample function of noiseNSub-carriers number $p(\varphi)$ Probability Density Function $P(r)$ Rayleigh distribution $r(t)$ Useful symbol duration $T_s$ Symbol duration<                                                                                                                            |                   | Compensated data symbols                                  |
| $D_{m,n}$ Minimum Distortion of the candidate block $D_{m,n}$ Bit energy to noise ratio $\Delta f$ Sub-carrier Spacing $F(u,v)$ DCT transformed coefficient at position $(u,v)$ $f(x,y)$ Inverse DCT transformed at position $(x,y)$ $f_o$ Frequency of the Source $f_i$ Frequency of the i-th subcarrierHNumber of Lines $h(\tau - t)$ Impulse response of the radio channel $l(r,c)$ pixel value of the original frame at the $(r,c)$ location $\hat{l}(r,c)$ Pixel value of the reconstructed frame at the location $(r,c)$ kkPositive integern(t)Sample function of noiseNSub-carriers number $p(\phi)$ Probability Density Function $P(r)$ Rayleigh distribution $r(t)$ Delay Spread $T_U$ Useful symbol duration $T_s$ Symbol duration $T_s$ Symbol duration $T_{sald}$ Total symbol duration $T_{sald}$ Total symbol duration $w_b$ Weight factor green color $w_r$ Weight factor green color $w_r$ Weight factor green color $x(n)$ Transmitted sequence signal $\zeta(r)$ Change in Frequency of the Source seen at the Receiver $\Delta f_d$ Change in Frequency of the Source seen at the Receiver                                                                                                                                                                                   |                   | Received data symbols                                     |
| $E_{\theta}N_{\phi}$ Bit energy to noise ratio $\Delta f$ Sub-carrier Spacing $F(u,v)$ DCT transformed coefficient at position $(u,v)$ $f(x,y)$ Inverse DCT transformed at position $(x,y)$ $f_{\phi}$ Frequency of the Source $f_i$ Frequency of the i-th subcarrierHNumber of Lines $h(\tau - t)$ Impulse response of the radio channel $l(r,c)$ pixel value of the original frame at the $(r,c)$ location $\hat{l}(r,c)$ pixel value of the reconstructed frame at the location $(r,c)$ Rayleigh function of noiseNSub-carriers number $p(\phi)$ Probability Density Function $P(r)$ Rayleigh distribution $r(t)$ Delay Spread $\tau$ Delay Spread $T_U$ Useful symbol duration $T_s$ Guard interval duration $T_{lotal}$ Total symbol duration $W$ Number of pixel per line $w_b$ Weight factor blue color $w_r$ Weight factor green color $w_r$ Weight factor green color $x(n)$ Transmitted sequence signal $y(n)$ Received signal $f_d$ Change in Frequency of the Source seen at the Receiver $\Delta f_d$ Change in Frequency of the Source seen at the Receiver                                                                                                                                                                                                                       |                   |                                                           |
| $\Delta f$ Sub-carrier Spacing $F(u,v)$ DCT transformed coefficient at position $(u,v)$ $f(x,y)$ Inverse DCT transformed at position $(x,y)$ $f_o$ Frequency of the Source $f_i$ Frequency of the i-th subcarrierHNumber of Lines $h(\tau - t)$ Impulse response of the radio channel $l(r,c)$ pixel value of the original frame at the $(r,c)$ location $\hat{l}(r,c)$ pixel value of the reconstructed frame at the location $(r,c)$ Resitive integern(t)Sample function of noiseNSub-carriers number $p(\phi)$ Probability Density Function $P(r)$ Rayleigh distribution $r(t)$ Received signals(t)Digital information sent by transmitter $\hat{s}(t)$ OFDM signal $\tau$ Delay Spread $T_U$ Useful symbol duration $T_s$ Symbol duration $T_s$ Guard interval duration $T_{otal}$ Total symbol duration $W_w$ Number of pixel per line $w_b$ Weight factor green color $w_r$ Weight factor green color $w_r$ Weight factor green color $w_r$ Weight factor red color $x(n)$ Transmitted sequence signal $y(n)$ Received signal $\Delta f_d$ Change in Frequency of the Source seen at the Receiver $\Delta f$ Sub-Carrier Spacing                                                                                                                                                          | .,                |                                                           |
| F(u,v)DCT transformed coefficient at position (u,v)f(x,y)Inverse DCT transformed at position (x,y) $f_o$ Frequency of the Source $f_i$ Frequency of the i-th subcarrierHNumber of Lines $h(\tau - t)$ Impulse response of the radio channel $l(r,c)$ pixel value of the original frame at the (r,c) location $\hat{l}(r,c)$ Pixel value of the reconstructed frame at the location $(r,c)$ Pixel value of noiseKPositive integern(t)Sample function of noiseNSub-carriers number $p(\phi)$ Probability Density Function $P(r)$ Rayleigh distribution $r(t)$ Defay Spread $\tau$ Delay Spread $\tau$ Delay Spread $T_U$ Useful symbol duration $T_{total}$ Total symbol duration $T_{total}$ Total symbol duration $w_b$ Weight factor blue colorwgWeight factor red colorx(n)Transmitted sequence signaly(n)Received signal $\Delta f_d$ Change in Frequency of the Source seen at the Receiver $\Delta f_d$ Change in Frequency of the Source seen at the Receiver                                                                                                                                                                                                                                                                                                                             |                   |                                                           |
| f(x,y)Inverse DCT transformed at position (x,y) $f_o$ Frequency of the Source $f_i$ Frequency of the i-th subcarrierHNumber of Lines $h(\tau-t)$ Impulse response of the radio channel $l(r,c)$ pixel value of the original frame at the (r,c) location $\hat{l}(r,c)$ Pixel value of the reconstructed frame at the location<br>$(r,c)$ kPositive integern(t)Sample function of noiseNSub-carriers number $p(\varphi)$ Probability Density Function $P(r)$ Rayleigh distribution<br>$r(t)$ Received signals(t)Digital information sent by transmitter $f(t)$ OFDM signal $\tau$ Delay Spread $T_U$ Useful symbol duration $T_{rotal}$ Total symbol duration $W_w$ Weight factor green colorwgWeight factor green colorwgWeight factor red colorx(n)Transmitted sequence signaly(n)Received signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                 |                                                           |
| $f_o$ Frequency of the Source $f_i$ Frequency of the i-th subcarrierHNumber of Lines $h(\tau - t)$ Impulse response of the radio channel $l(r,c)$ pixel value of the original frame at the (r,c) location $\hat{l}(r,c)$ Pixel value of the reconstructed frame at the location<br>$(r,c)$ kPositive integern(t)Sample function of noiseNSub-carriers number $p(\phi)$ Probability Density Function $P(r)$ Rayleigh distribution<br>$r(t)$ seceived signals(t)OFDM signal<br>$\tau$ $\tau$ Delay Spread $T_U$ Useful symbol duration $T_s$ Symbol duration $T_s$ Symbol duration $W$ Number of pixel per linewbWeight factor blue colorwgWeight factor red colorx(n)Transmitted sequence signaly(n)Received signal $\Delta f_d$ Change in Frequency of the Source seen at the Receiver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                                                           |
| $f_i$ Frequency of the i-th subcarrierHNumber of Lines $h(\tau-t)$ Impulse response of the radio channel $l(r,c)$ pixel value of the original frame at the (r,c) location $\hat{l}(r,c)$ Pixel value of the reconstructed frame at the location<br>(r,c)kPositive integern(t)Sample function of noiseNSub-carriers number $p(\phi)$ Probability Density Function $P(r)$ Rayleigh distribution $r(t)$ Received signals(t)Digital information sent by transmitter $\hat{s}(t)$ OFDM signal $\tau$ Delay Spread $T_U$ Useful symbol duration $T_s$ Symbol duration $T_{solid}$ Total symbol duration $W$ Number of pixel per linewbWeight factor green colorwrWeight factor red colorx(n)Transmitted sequence signaly(n)Received signal $\Delta f_d$ Change in Frequency of the Source seen at the Receiver $\Delta f_d$ Sub-Carrier Spacing                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                 |                                                           |
| HNumber of Lines $h(\tau - t)$ Impulse response of the radio channel $I(r,c)$ pixel value of the original frame at the (r,c) location $\hat{I}(r,c)$ Pixel value of the reconstructed frame at the location<br>(r,c)kPositive integern(t)Sample function of noiseNSub-carriers number $p(\phi)$ Probability Density Function $P(r)$ Rayleigh distribution $r(t)$ Received signals(t)Digital information sent by transmitter $\hat{s}(t)$ OFDM signal $\tau$ Delay Spread $T_U$ Useful symbol duration $T_s$ Symbol duration $T_{s}$ Guard interval duration $T_{otal}$ Total symbol durationWNumber of pixel per linewbWeight factor preen colorwgWeight factor red colorx(n)Transmitted sequence signaly(n)Received signal $\Delta f_d$ Change in Frequency of the Source seen at the Receiver $\Delta f_d$ Sub-Carrier Spacing                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                 |                                                           |
| $h(\tau - t)$ Impulse response of the radio channel $I(r,c)$ pixel value of the original frame at the (r,c) location $\hat{I}(r,c)$ Pixel value of the reconstructed frame at the location<br>(r,c)kPositive integern(t)Sample function of noiseNSub-carriers number $p(\varphi)$ Probability Density Function $P(r)$ Rayleigh distribution $r(t)$ Received signals(t)Digital information sent by transmitter $\hat{s}(t)$ OFDM signal $\tau$ Delay Spread $T_U$ Useful symbol duration $T_s$ Symbol duration $T_{otal}$ Total symbol duration $W$ Number of pixel per linewbWeight factor blue colorwgWeight factor red colorwrWeight factor red colorx(n)Transmitted sequence signaly(n)Received signal $\Delta f_d$ Change in Frequency of the Source seen at the Receiver $\Delta f_d$ Sub-Carrier Spacing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |                                                           |
| $\hat{l}(r,c)$ Pixel value of the reconstructed frame at the location<br>(r,c)kPositive integern(t)Sample function of noiseNSub-carriers number $p(\varphi)$ Probability Density Function $P(r)$ Rayleigh distribution $r(t)$ Received signals(t)Digital information sent by transmitter $\hat{s}(t)$ OFDM signal $\tau$ Delay Spread $T_U$ Useful symbol duration $T_s$ Symbol duration of the OFDM signal $T_g$ Guard interval duration $T_{total}$ Total symbol durationWNumber of pixel per linewbWeight factor green colorw_rWeight factor red colorx(n)Transmitted sequence signaly(n)Received signal $\Delta f_d$ Change in Frequency of the Source seen at the Receiver $\Delta f_d$ Sub-Carrier Spacing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $h(\tau - t)$     |                                                           |
| $\hat{l}(r,c)$ Pixel value of the reconstructed frame at the location<br>(r,c)kPositive integern(t)Sample function of noiseNSub-carriers number $p(\varphi)$ Probability Density Function $P(r)$ Rayleigh distribution $r(t)$ Received signals(t)Digital information sent by transmitter $\hat{s}(t)$ OFDM signal $\tau$ Delay Spread $T_U$ Useful symbol duration $T_s$ Symbol duration of the OFDM signal $T_g$ Guard interval duration $T_{total}$ Total symbol durationWNumber of pixel per linewbWeight factor green colorw_rWeight factor red colorx(n)Transmitted sequence signaly(n)Received signal $\Delta f_d$ Change in Frequency of the Source seen at the Receiver $\Delta f_d$ Sub-Carrier Spacing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I(r,c)            | pixel value of the original frame at the $(r,c)$ location |
| (r,c)kPositive integern(t)Sample function of noiseNSub-carriers number $p(\varphi)$ Probability Density Function $P(r)$ Rayleigh distribution $r(t)$ Received signals(t)Digital information sent by transmitter $S(t)$ OFDM signal $\tau$ Delay Spread $T_U$ Useful symbol duration $T_s$ Symbol duration of the OFDM signal $T_g$ Guard interval duration $T_{total}$ Total symbol durationWNumber of pixel per linewbWeight factor green colorwgWeight factor red colorx(n)Transmitted sequence signaly(n)Received signal $\Delta f_d$ Change in Frequency of the Source seen at the Receiver $\Delta f_d$ Sub-Carrier Spacing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                           |
| n(t)Sample function of noiseNSub-carriers number $p(\varphi)$ Probability Density Function $P(r)$ Rayleigh distribution $r(t)$ Received signal $s(t)$ Digital information sent by transmitter $s(t)$ OFDM signal $\tau$ Delay Spread $T_U$ Useful symbol duration $T_s$ Symbol duration of the OFDM signal $T_g$ Guard interval duration $T_{total}$ Total symbol durationWNumber of pixel per line $w_b$ Weight factor blue color $w_g$ Weight factor green color $w_r$ Weight factor red color $x(n)$ Transmitted sequence signal $y(n)$ Received signal $\Delta f_d$ Change in Frequency of the Source seen at the Receiver $\Delta f$ Sub-Carrier Spacing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                                                           |
| NSub-carriers number $p(\varphi)$ Probability Density Function $P(r)$ Rayleigh distribution $r(t)$ Received signal $s(t)$ Digital information sent by transmitter $s(t)$ OFDM signal $\tau$ Delay Spread $T_U$ Useful symbol duration $T_s$ Symbol duration of the OFDM signal $T_g$ Guard interval duration $T_{total}$ Total symbol durationWNumber of pixel per line $w_b$ Weight factor green color $w_g$ Weight factor red color $w_r$ Weight factor red color $x(n)$ Transmitted sequence signal $y(n)$ Received signal $\Delta f_d$ Change in Frequency of the Source seen at the Receiver $\Delta f$ Sub-Carrier Spacing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | k                 | Positive integer                                          |
| $p(\varphi)$ Probability Density Function $P(r)$ Rayleigh distribution $r(t)$ Received signal $s(t)$ Digital information sent by transmitter $C(t)$ OFDM signal $\tau$ Delay Spread $T_U$ Useful symbol duration $T_s$ Symbol duration of the OFDM signal $T_g$ Guard interval duration $T_{total}$ Total symbol durationWNumber of pixel per line $w_b$ Weight factor blue color $w_g$ Weight factor green color $w_r$ Weight factor red color $x(n)$ Transmitted sequence signal $y(n)$ Received signal $\Delta f_d$ Change in Frequency of the Source seen at the Receiver $\Delta f$ Sub-Carrier Spacing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n(t)              | Sample function of noise                                  |
| s(t)Digital information sent by transmitter $\mathcal{C}(t)$ OFDM signal $\tau$ Delay Spread $T_U$ Useful symbol duration $T_s$ Symbol duration of the OFDM signal $T_g$ Guard interval duration $T_{total}$ Total symbol durationWNumber of pixel per linewbWeight factor blue colorwgWeight factor green colorwrWeight factor red colorx(n)Transmitted sequence signaly(n)Received signal $\Delta f_d$ Change in Frequency of the Source seen at the Receiver $\Delta f$ Sub-Carrier Spacing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N S               | Sub-carriers number                                       |
| s(t)Digital information sent by transmitter $\mathcal{C}(t)$ OFDM signal $\tau$ Delay Spread $T_U$ Useful symbol duration $T_s$ Symbol duration of the OFDM signal $T_g$ Guard interval duration $T_{total}$ Total symbol durationWNumber of pixel per linewbWeight factor blue colorwgWeight factor green colorwrWeight factor red colorx(n)Transmitted sequence signaly(n)Received signal $\Delta f_d$ Change in Frequency of the Source seen at the Receiver $\Delta f$ Sub-Carrier Spacing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $p(\varphi)$      | Probability Density Function                              |
| s(t)Digital information sent by transmitter $\mathcal{C}(t)$ OFDM signal $\tau$ Delay Spread $T_U$ Useful symbol duration $T_s$ Symbol duration of the OFDM signal $T_g$ Guard interval duration $T_{total}$ Total symbol durationWNumber of pixel per linewbWeight factor blue colorwgWeight factor green colorwrWeight factor red colorx(n)Transmitted sequence signaly(n)Received signal $\Delta f_d$ Change in Frequency of the Source seen at the Receiver $\Delta f$ Sub-Carrier Spacing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P(r)              | Rayleigh distribution                                     |
| s(t)Digital information sent by transmitter $\mathcal{C}(t)$ OFDM signal $\tau$ Delay Spread $T_U$ Useful symbol duration $T_s$ Symbol duration of the OFDM signal $T_g$ Guard interval duration $T_{total}$ Total symbol durationWNumber of pixel per linewbWeight factor blue colorwgWeight factor green colorwrWeight factor red colorx(n)Transmitted sequence signaly(n)Received signal $\Delta f_d$ Change in Frequency of the Source seen at the Receiver $\Delta f$ Sub-Carrier Spacing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | r(t)              | Received signal                                           |
| $\overline{\tau}$ Delay Spread $T_{\rm U}$ Useful symbol duration $T_s$ Symbol duration of the OFDM signal $T_g$ Guard interval duration $T_{total}$ Total symbol durationWNumber of pixel per linewbWeight factor blue colorwgWeight factor green colorwrWeight factor red colorx(n)Transmitted sequence signaly(n)Received signal $\Delta f_d$ Change in Frequency of the Source seen at the Receiver $\Delta f$ Sub-Carrier Spacing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s(t)              | Digital information sent by transmitter                   |
| $\overline{\tau}$ Delay Spread $T_{\rm U}$ Useful symbol duration $T_s$ Symbol duration of the OFDM signal $T_g$ Guard interval duration $T_{total}$ Total symbol durationWNumber of pixel per linewbWeight factor blue colorwgWeight factor green colorwrWeight factor red colorx(n)Transmitted sequence signaly(n)Received signal $\Delta f_d$ Change in Frequency of the Source seen at the Receiver $\Delta f$ Sub-Carrier Spacing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\mathfrak{L}(t)$ | OFDM signal                                               |
| $T_s$ Symbol duration of the OFDM signal $T_g$ Guard interval duration $T_{total}$ Total symbol durationWNumber of pixel per line $w_b$ Weight factor blue color $w_g$ Weight factor green color $w_r$ Weight factor red color $x(n)$ Transmitted sequence signal $y(n)$ Received signal $\Delta f_d$ Change in Frequency of the Source seen at the Receiver $\Delta f$ Sub-Carrier Spacing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | τ                 | Delay Spread                                              |
| $T_g$ Guard interval duration $T_{total}$ Total symbol durationWNumber of pixel per linewbWeight factor blue colorwgWeight factor green colorwrWeight factor red colorx(n)Transmitted sequence signaly(n)Received signal $\Delta f_d$ Change in Frequency of the Source seen at the Receiver $\Delta f$ Sub-Carrier Spacing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $T_{ m U}$        | Useful symbol duration                                    |
| $T_{total}$ Total symbol durationWNumber of pixel per line $w_b$ Weight factor blue color $w_g$ Weight factor green color $w_r$ Weight factor red color $x(n)$ Transmitted sequence signal $y(n)$ Received signal $\Delta f_d$ Change in Frequency of the Source seen at the Receiver $\Delta f$ Sub-Carrier Spacing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $T_s$             | Symbol duration of the OFDM signal                        |
| WNumber of pixel per line $w_b$ Weight factor blue color $w_g$ Weight factor green color $w_r$ Weight factor red color $x(n)$ Transmitted sequence signal $y(n)$ Received signal $\Delta f_d$ Change in Frequency of the Source seen at the Receiver $\Delta f$ Sub-Carrier Spacing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $T_g$             | Guard interval duration                                   |
| $w_b$ Weight factor blue color $w_g$ Weight factor green color $w_r$ Weight factor red color $x(n)$ Transmitted sequence signal $y(n)$ Received signal $\Delta f_d$ Change in Frequency of the Source seen at the Receiver $\Delta f$ Sub-Carrier Spacing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $T_{total}$       | Total symbol duration                                     |
| $w_g$ Weight factor green color $w_r$ Weight factor red color $x(n)$ Transmitted sequence signal $y(n)$ Received signal $\Delta f_d$ Change in Frequency of the Source seen at the Receiver $\Delta f$ Sub-Carrier Spacing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | W                 | Number of pixel per line                                  |
| $w_r$ Weight factor red color $x(n)$ Transmitted sequence signal $y(n)$ Received signal $\Delta f_d$ Change in Frequency of the Source seen at the Receiver $\Delta f$ Sub-Carrier Spacing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Wb                | Weight factor blue color                                  |
| $x(n)$ Transmitted sequence signal $y(n)$ Received signal $\Delta f_d$ Change in Frequency of the Source seen at the Receiver $\Delta f$ Sub-Carrier Spacing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Wg                | Weight factor green color                                 |
| $y(n)$ Received signal $\Delta f_d$ Change in Frequency of the Source seen at the Receiver $\Delta f$ Sub-Carrier Spacing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Wr                | Weight factor red color                                   |
| $\Delta f_d$ Change in Frequency of the Source seen at the Receiver $\Delta f$ Sub-Carrier Spacing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | x(n)              | Transmitted sequence signal                               |
| Δf Sub-Carrier Spacing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | y(n)              | Received signal                                           |
| i C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\Delta f_{ m d}$ | Change in Frequency of the Source seen at the Receiver    |
| $\varphi$ Noise signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\Delta f$        | Sub-Carrier Spacing                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | arphi             | Noise signal                                              |

| $\delta(t)$  | Pulse waveform of each of the symbol   |
|--------------|----------------------------------------|
| $\delta'(t)$ | Modified pulse waveform of each symbol |
| X            | Initial Value of Logistic Map          |
| $\mu$        | Control Parameter                      |

o this term is protected by original copyright

# Rangka Kerja Penyulitan Rangkaian Neural 'Chaotic' berasaskan MPEG-2 pada Saluran Tanpa Wayar

#### ABSTRAK

Perekabentuk kejuruteraan sistem menghadapi cabaran baharu daripada peningkatan permintaan terhadap aplikasi perkhidmatan multimedia yang selamat dan berkualiti tinggi melalui saluran jalur lebar untuk menyediakan penyelesaian yang cekap dan optima. Dalam tesis ini sifat teori 'chaos' digabungkan dengan rangkaian neural buatan untuk membina algoritma penyulitan 'cipher' yang dinamakan Rangkaian Neural 'Chaos' Rangka Kerja model ini dibina dan dimodel dengan menggabungkan (CNN). Rangkaian Neural 'Chaos' kedalam model 'codec' bagi menghasilkan 'bitstream' mampat yang selamat. Model ini direkabentuk dan dimodelkan berasaskan piawaian MPEG-2. Isyarat video 'bitstream' ini dihantar daripada sumber ke destinasi melalui teknik modulasi 'Orthogonal Frequency Division Multiplexing' (OFDM). Saiz isyarat video input yang diuji adalah 176 x 144 berpandukan format piawai QCIF. Rangka jujukan video dibahagikan kepada 30, 15, 10 dan 5 set yang di alirkan kepada model berkenaan. Rangka yang pertama dikenali sebagai Rangka-Kbagi setiap Kumpulan Gambar (GOP) dimampat sebagai imej yang statik. Manakalan rangka-rangka yang lain dimampat menggunakan algoritma gerakan 'estimation' dan 'compensation' dan selanjutnya di kod Algoritma carian tiga langkah (TSS) digunakan dalam semula seperti Rangka-I. algoritma gerakan 'estimation' dan 'compensation'. Nilai Pemberat dan 'bias' bagi algoritma CNN didapati daripada jujukan binari yang dijana daripada peta logistik 'chaotic' pada setiap pusingan. Parameter kawalan dan nilai awal bagi peta logistik 'chaotic' digunakan sebagai kekunci rahsia untuk algoritma 'cipher'. CNN digunakan untuk sulitkan/nyahsulit data gerakan dan data statik dalam model video 'codec'. Algoritma CNN sangat sensitif terhadap pengubahsuaian kekunci dan teks biasa dengan mempamirkan nilai PSNR 18.363 dB dan nilai entropi 7.833. Rangka kerja model sistem mampu mengawal kualiti video, kadar bit, penyusunan rangka dan bilangan Hasil simulasi menunjukkan aliran bit yang dialirkan terlindung daripada GOP. serangan teks biasa yang diketahui. Pengukuran subjektif serta objektif telah digunakan untuk menentusahkan kebolehupayaan rangka kerja model sistem secara keseluruhan.

(C)

#### Chaotic Neural Network Based MPEG-2 Video Encryption Framework Over Wireless Channel

#### ABSTRACT

The increasing demand for retrieving secure and high quality of multimedia service applications corresponding to available bandwidth channel proposes new challenges for system engineering designers to implement efficient and optimum solution ideas. In this thesis, chaos theory property is combined with artificial neural network to construct a cipher cryptography algorithm called a Chaotic Neural Network (CNN). The proposed system model framework is developed and modelled by embedding CNN inside video codec model to produce a secure and a compress bitstream. The proposed video codec model is designed and implemented based on MPEG-2 standard. The resultant video signal bitstream is transmitted from source to destination by using Orthogonal Frequency Division Multiplexing (OFDM) modulation technique. The size of tested input video signal is  $176 \times 144$  (QCIF standard format). The video sequence frames is divided into sets of 30, 15, 10, and 5 frames which are fed to the framework model. The first frame (I-Frame) for each Group of Pictures (GOP) is compressed as still image (i.e. by using DCT transform, Quantization, Zig-Zag scan, and Huffman entropy coding), while other frames are compressed by using motion estimation and compensation algorithm then encoded like (I-Frame). Three Step Search algorithm (TSS) is used as motion estimation and compensation algorithm in this thesis. Weights and biases of CNN algorithm are set based on binary sequence generated from the chaotic logistic map for each iterate. Control parameter and initial value of chaotic logistic map are used as secret keys of the cipher algorithm. CNN is used to encrypt/decrypt both of motion and quantized data vectors of video codec model. CNN algorithm shows high sensitivity behavior for both key and plaintext modification with low PSNR value of -18.363 dB and high entropy value of 7.833. OFDM model performance is investigated and simulated over AWGN and 2-path frequency selective Rayleigh fading channel. Mathematical formulation expression is given and software programming code implementation is written by using MATLAB to simulate and test the overall system model framework. The proposed system model framework has the ability to control the required video quality value factor, bit rate, frames arrangement, and GOP number. Results indicate that the transmitted bitstream has been protected from known plaintext attack. Perceptual encryption feature was satisfied and applied successfully. Finally, subjective and objective measurement metrics are used to verify the performance of overall system model framework.

# **CHAPTER 1**

## **INTRODUCTION**

#### 1.1 Overview

Multimedia encryption techniques are closely related to some other techniques, such as encryption techniques (Mollin, 2006), multimedia compression (Sayood, 2005), multimedia communication (Rao, et al., 2006), and digital watermarking (Cox, J., Miller, M. L., & Bloom, J. A., 2002). First, multimedia encryption aims to encrypt multimedia content with encryption techniques, and thus, multimedia encryption is based on traditional encryption techniques. Second, multimedia content is often compressed before transmission or storage in order to save cost in space or bandwidth, and thus, multimedia encryption should consider the compression operations, for example, before compression, during compression or after compression. Third, multimedia content is often transmitted from the sender to the receiver through multimedia communication techniques, and thus, the multimedia encryption should satisfy different applications in multimedia communication.

Video compression and encryption are associated processes in secure multimedia systems and applications. Some video encryption algorithms are even fully embodied in a video codec. Standardized video compression technologies like MPEG-1 (ISO/IEC, 1993), MPEG-2 (ISO/IEC, 2000), H.261 (ITU-T, 1993), H.263 (ITU-T Recommendation H.263, 1998), and MPEG-4/ H.264 AVC (Advanced Video Coding) (ITU-T Recommendation H.264, 2007; ISO/IEC, 2005) are widely deployed for economically storing digital videos on storage constrained devices or efficiently transmitting them over bandwidth-limited networks. All video coding standards utilize the hybrid coding approach, i.e. they compress video data by using intra-frame and

inter-frame coding simultaneously (Salomon, 2004). Although there are differences in the concrete coding algorithms applied, the compression standards are built upon the same fundamental set of function elements.

The intra-frame coding is used to reduce spatial redundancy that exists within the frame. It compresses an entire video frame independently of any other frames. The resulting coded frame is denoted as I-frame. A video frame is divided into a number of macro blocks (16×16 pixels). The macro blocks can be further divided into distinct blocks (8×8 pixels). Each block is processed through three sequential procedures: DCT Discrete Cosine Transform) transformation, quantization, and entropy coding (Effelsberg & Steinmetz, 1998). The inter-frame coding encodes the differences between frames to reduce temporal redundancy that exists between successive frames.

Before encoding a block of pixels, the motion compensated prediction technique is used to search for a good match block in the reference frames. If such block is found, only the motion vector representing the motion of the block and the differences between the current and referred block need to be encoded. When no match block can be found in the reference frames, the block has to be compressed using the intra-frame coding method. The coded block is therefore called I-block. There are two kinds of frames using the motion compensated prediction: P (Predicted) frame, which is compressed using only previously decoded frames as reference frames, and B (Bi-directionally predicted) frame, which is predicted from past and future frames.

#### **1.2 Problem Statement**

Today, more information that include text, audio, image and other multimedia has been transmitted over wireless channel. Digital video signal applications are widely used in our daily life. Transmission of video signal consumes more time and occupies huge bandwidth channel due to the large size of video file compared with other multimedia types. Therefore, video data signal should be compressed before transmission to destination.

Video signal protection represents another important factor during transmission. Due to some inherent features of video, such as bulk data capacity and high correlation among pixels, traditional cryptographic techniques such as Data Encryption Standard (DES) and Rivest-Shamir-Adelman (RSA) are no longer suitable for practical image encryption. The aim of the traditional encryption algorithms is to shuffle the plain image, it make ciphers look like random. For the property of initial-value sensitivity, ergodicity or random similarity, chaos was used in data protection (Deng, 2005; Lian, et al., 2007). Chaos-based encryption has given a new and efficient way to deal with the intractable problem of highly secure image encryption due to the exceptionally desirable properties of mixing and sensitivity to initial condition and control parameter of chaotic map. As well as, artificial neural network can be used for data protection design schemes because it's complicated and time-varying structures (Bigdeli, et al., 2012). In this thesis, chaotic logistic map is combined with artificial neural network to construct a cipher cryptography algorithm called a chaotic neural network (CNN). In general, Symmetric cryptography algorithms show weakness to known plaintext attack, however, the transmitted video bitstream in this research is protected from this type of attack, and the produced video signal satisfy high visual degradation which is enough for unauthorized people or attacker to understand the contents.

On the other hand, the ability to achieve low bit error rate is severely restricted by the frequency selectivity of the channel due to multiple paths propagation which leads to unacceptable degradation of system performance. This problem can be overcome by using Orthogonal Frequency Division Multiplexing (OFDM) modulation technique. The limitation of channel bandwidth problem is overcome by controlling the quality scale factor of resultant video signal. The aim of this research is to demonstrate the key problem emphasizes on video signal challenges of compression, encryption, and urele urele voile transmission from source to destination over wireless channel.

#### **1.3 Research Questions**

This thesis aims giving answers to following research questions:

- (1) How to achieve acceptable video quality model with reasonable bitrate?
- (2) How to achieve secure model algorithm for the delivered video signal?
- (3) How to achieve robust and reliable video signal transmission over wireless channel?

#### **1.4 Research Objective**

The objectives of this research are as follows:

- 1- To compress the video signal using MPEG-2 standard. The proposed model has the ability to control the required quality factor and bitrate level corresponding to available variable bit rate (VBR) bandwidth channel.
- 2- To encrypt the resulting compressed video signal by using Chaotic Neural Network (CNN) cryptography algorithm, the developed algorithm is based on combining the chaos theory and artificial neural network.
- 3- To evaluate the performance of the above two objectives by transmitting it over wireless channel for both AWGN and multipath Rayleigh fading channel. OFDM modulation technique has been used for video bitstream transmission from source to destination. 1.5 Thesis Outline

The outline of this thesis as follows:

Chapter 1 presents overview, problem statement, methodology, research aim and objective, and thesis outline.

Chapter 2 presents literature review and describes different related research studies and their respective properties.

Chapter 3 focuses on research methodology of developed system model framework to investigate the performance of video compression, encryption, and transmission.

Chapter 4 presents results and discussion; analysis and performance investigation of the developed system model was done in this chapter as well as with comparison performance with other previous studies.

Chapter 5 presents the conclusion and suggestion for research future work.

o this term is protected by original copyright