HARMONIC CURRENT EFFECT ON THE SIZING OF NEUTRAL CONDUCTOR OF LOW VOLTAGE DISRIBUTION NETWORK

UNIVERSITI MALAYSIA PERLIS 2015

Harmonic Current Effect on the Sizing of Neutral Conductor of Low Voltage Distribution Network

Azharudin bin Mukhtaruddin (1330911013)

; his ter

A thesis submitted in fulfillment of the requirements for the degree of Master of Science

School of Electrical Systems Engineering UNIVERSITI MALAYSIA PERLIS

UNIVERSITI MALAYSIA PERLIS

DECLARATION OF THESIS		
Author's full name	: Azharudin bin Mukhtaruddin	
Date of Birth	: 20 April 1973	
Title	: Harmonic Current Effect on the Sizi	ng of Neutral
	Conductor at Low Voltage Distribut	ion Network
Academic Session	: January 2015	
I hereby declare that	t the thesis becomes the property of Univ	ersiti Malaysia Perlis
(UniMAP) and to be	placed at the library of UniMAP. This thesis	is classified as:
CONFIDENT	TAL ected	
RESTRICTE	D. Qro	
OPEN ACCE	SS	
I, the author, give per	rmission to the UniMAP to reproduce this the	esis in whole or in part
for the purpose of res	earch or academic in exchange only (except	during a period of
years, if so requested	years, if so requested above).	
	Certified by:	Certified by:
730420-08-5085	Dr. Muhammad Mokhzaini b Azizan	Dr. Muzamir b Isa
Date:	Date:	Date:

ACKNOWLEDGMENT

In the name of Allah, the Most Gracious, the Most Merciful

The quests for knowledge in seeking the truth will forever be the destiny of human kind. In that journey, I would sincerely express the utmost gratitude to my family whose understanding and patient will never be surpassed. And to supervisors, Dr. Muhammad Mokhzaini Azian and Dr. Muzamir Isa, whose cooperation and patient will forever endure. Special appreciation goes to Mr. Baharuddin Ismail and Prof. Dr. Syed Idris Syed Hasan for their assistance in finishing this report. The author also would like to thank the Ministry of Education for the financial support under the FRGS grant number 9003-00351, which enable this report to be completed unhindered.

othis temis report to be co

TABLE OF CONTENTS

PAGE

THESIS DECLARATION	
ACKNOWLEDGMENT	ii
TABLE OF CONTENTS	iii
LIST OF FIGURES	vi
LIST OF TABLES	viii
LIST OF ABBREVIATION	
LIST OF SYMBOLS	
ABSTRAK	xvii
LIST OF TABLES LIST OF ABBREVIATION LIST OF SYMBOLS ABSTRAK ABSTRACT CHAPTER 1 INTRODUCTION	
to.	
CHAPTER 1 INTRODUCTION	
1.1 Introduction to Power System Harmonic and Power Quality	1
1.2 Problem Statements	2
1.3 Research Objectives	3
1.4 Scopes of Research	3
1.5 Arrangement of Report	4

CHAPTER 2 LITERATURE REVIEW

 \bigcirc

2.1	Overview of Harmonic in Electrical Power System	5
2.2	Standards Related Harmonic in Electrical Power System	7
2.3	Effects of Harmonic on Electrical Power System	11
2.4	Analysis of Electrical Power System Harmonic	13
2.4.1	Fast Fourier Transform (FFT)	14

2.4.2	Formulation of Fast Fourier Transform (FFT)	17
2.4.3	Total Harmonic Distortion (THD)	22
2.5	Effect of Harmonic on Electrical Power System Quantities	23
2.5.1	Root Means Square (RMS)	24
2.6	Neutral Current under Harmonic Condition	26
2.7	Simulation in Harmonic Studies	30
2.8	Effect of Harmonic on Electrical Cables Current Carrying Capacity	30
СНАР	TER 3 RESEARCH METHODOLOGY	
3.1	Simulation on Effect of Harmonic Current on Neutral Conductor	37
3.2	Simulation Circuit	40
3.3	Current Value, Cable Sizing and Cable Laying Scheme	44
3.4	THDi and Neutral Current/Phase Current Ratio	46
3.5	Harmonic De-rating Factor (HDF)	46
3.6	Heating Effect Method	53
3.7	Cable's Ampacity Reduction Factor According IEC 60364-5-52:2009	54
3.8	Cable Adjustment Factor Due to Harmonic Presence, NEC 2014	56
C		
СНАР	TER 4 RESULT AND DISCUSSION	
4.1	Simulated Data Analysis	57
4.2	Waveform Analysis	57
4.2.1	Determination of Lower and Upper C-P _R Pairs	58
4.2.2	Analysis of Neutral Current	62

4.2.3 Effect of Harmonic on Phase and Neutral Current 65

4.2.4	Analysis of Third Harmonic Current	70
4.3	Basic Cable Size Equation (IEC, 2009)	73
4.4	Chindris' Method	74
4.5	De-rating of Cable Ampacity due to Presence of Harmonic	75
4.5.1	Harmonic De-rating Factor (HDF) Method	76
4.5.2	Heating Effect Method	84
4.5.3	Standard IEC 60364-5-52: 2009	87
4.5.4	National Electric Code 2014	90
4.6	Comparison of Methods on Selecting Neutral Cable Size	93
4.7	Performance of Heating Effect using Different Load Basis	97
4.8	Application of Eq. 4.2	100

CHAPTER 5 CONCLUSIONS AND FUTURE WORK

5.1	Importance of Harmonic Analysis	105
5.2	Cable De-rating due to Harmonic Presence	104
5.3	Contribution of this thesis	107
5.4	Conclusion and Future Direction	108
	\odot	

REFERENCES	110
LIST OF PUBLICATIONS	123

LIST OF FIGURES

NO.		PAGE
2.1(a)	Pure sinusoidal current waveform	5
2.1(b)	Non-sinusoidal waveform	5
2.2	Waveform with harmonic content.	16
2.3	Harmonic spectrum for waveform in Figure 2.2	16
2.4	Halfwave symmetry waveform (Arrilaga & Watson 2003)	18
2.5	Discrete time domain function (Arrilaga & Watson 2003)	20
2.6	Discrete frequency domain function (Arrilaga & Watson 2003)	20
2.7	I _n /I _p ratio versus THD _i (Arthur & Shanahan, 1996)	28
2.8	I_n/I_p ratio and THD _i relation at different γ_{max} (Chindris et al., 2004)	29
3.1	Phase A current waveform for $C = 1 \ \mu F$, $P_R = 4803 \ W$	38
3.2	RMS for Phase A current C = 1 μ F, P _R = 4803W	38
3.3	Phase A current waveform for C = 4000 μ F, P _R = 2623 W	39
3.4	RMS for Phase A current C = 4000 μ F, P _R = 2623 W	39
3.5	Circuit used in the simulation	41
3.6	Flow chart of determining C-P _R pair	43
3.7 C	Multi-core cable (Tenaga Cable Industries Sdn. Bhd., n.d.)	44
3.8	Cables laid in conduit installation method type B2 (IEC, 2009)	45
3.9	Copper conductor resistance and ampacity (The Okonite Co. 2001)	49
4.1	Output window for harmonic analysis using Simulink	58
4.2	Waveform for pair C-P _R (1 μ F, 4803W)	59
4.3	Waveform for pair C-P _R (60 μ F, 4710W)	59
4.4	Waveform for pair C-P _R (2000 μ F, 2687 W)	60
4.5	FFT spectrum for waveform in Figure 4.4	60

4.6	Harmonic spectrum for I_n at pair C P _R (60 μ F, 4710 W)	62
4.7	I_n waveform for pair C-P _R (60 μ F, 4710 W)	64
4.8	I_n waveform for pair C-P _R (140 μ F, 4418 W)	64
4.9	I _p increment versus THDi	66
4.10	Evolution in In versus THDi	68
4.11	I _n versus I _p	69
4.12	Ratio of I _n /I _p	70
4.13	Graphical representation of r_{ac} to r_{dc} ratio at different frequencies	80
4.14	Cable size determination using inverse HDF	83
4.15	Cable size determination using heating effect method	87
4.16	New design current as in IEC 603645	90
4.17	Graphical representation of Table 4.19	93
4.18	Comparison of neutral conductor size using different methods	97
4.19	Cable size calculation using heating effect method	98
4.20	Cable size calculation using heating effect method for different current basis	99
4.21	Application of Eq. 4.2	104
4.22 ©	Application of Eq. 4.2 compared to all methods covered in the study	104

LIST OF TABLES

NO.		PAGE
2.1	ICT equipments proliferation trend in Malaysia (MCMC, Q4 2010, Q4 2011, Q4 2012 and Q4 2013)	6
2.2	Characteristics of power system electromagnetic phenomena (IEEE, 2009)	7
2.3	Sequence of harmonic order (Blackburn, 1993)	26
3.1	Internal resistance for selected cable sizes	40
3.2	Transformation of r_{dc} for copper cables (Leader Cable Industry Berhad n.d.)	48
3.3	r _{ac} ratios for 3-core un-armoured thermosetting cables (Coates, 2007)	49
3.4	Conductor diameter D_c and distances between cable, S_d , for selected cable (TCISB, n.d.)	51
3.5	Reduction factors in four-core and five-core cables (IEC, 2009)	55
3.6	Adjustment Factors (NEC, 2014)	56
4.1	Full simulation result	61
4.2	Phase angle for different harmonic orders in phase A B and C	63
4.3	I_n with third harmonic content of less than 90%	63
4.4 ©	Comparison of phase current in phase A B and C	65
4.5	Comparison between simulated and calculated phase current	67
4.6	Comparison of measured and calculated I_3 in neutral conductor	70
4.7	Comparison between calculated and measured I_n	72
4.8	Neutral cable sizing calculation using Eq. 3.1	73
4.9	Determining neutral cable size according to Chindris (2004)	74
4.10	Harmonic signature for 2.5 mm ² cable	76
4.11	Skin effect, y_s , at different frequencies for selected cable sizes	77

4.12	Proximity effect due to vicinity cables, y_{sp} , at different frequencies	78
4.13	r_{ac} for 2.5, 4.0, 10.0 and 16.0 mm ² copper cable at different frequencies	79
4.14	HDF for 2.5 mm^2 cable	80
4.15	Cable size determination using HDF	81
4.16	Cable size determination using heating effect method	84
4.17	Conductor size selection based on IEC 603645	88
4.18	De-rated cables according to NEC 2014	90
4.19	Cables ampacity de-rating due to adjustment factor in NEC	91
4.20	Comparison of neutral conductor size using different methods	95
4.21(a)	Cable sizes using different load bases at selected THDi. THDi = 80%	99
4.21(b)	Cable sizes using different load bases at selected THDi. THDi = 90%	100
4.21(c)	Cable sizes using different load bases at selected THDi. THDi = 100%	100
4.22	Application of Eq. 4.2	101
	Application of Eq. 4.2	
\mathbf{r}		

LIST OF ABBREVIATIONS

AC	alternating current
AH	Ajit Hiranandani
BS	British Standard
DC	direct current
DFT	Discrete FT
DSM	Department of Standard Malaysia
FA	Fourier Analysis
FS	Fourier Series
FT	direct current Discrete FT Department of Standard Malaysia Fourier Analysis Fourier Series Fourier Transform Fast FT
FFT	Fast FT
HDF	harmonic derating factor
HS (1)	harmonic signature
ICT	Information and Communication Technology
IEC	International Electrotechnical Commission
IEE	Institution of Electrical Engineers
IEEE	Institution of Electrical and Electronics Engineers
IT	Information Technology
MCMC	Malaysian Communications and Multimedia Commission

MS Malaysian Standard

- NEC National Electrical Code
- NEV neutral earth elevated voltage
- National Fire Protection Association NFPA
- Neher-Meyer NM
- p.u. per unit
- PVC polyvinyl chloride
- Personal Computer PC
- by original copyright residual current device RCD
- RMS root means squar
- SI unit International Standard unit
- **SMPS** switched mode power supply
- THD total harmonic distortion
- TNB Tenaga Nasional Berhad
- TRIAC Triode for Alternating Current
- UPS uninterruptible power supply
- VAR voltage-ampere reactive
- VSD variable speed drive
- WT wavelet transform

XLPE cross-linked polyethelene

o this item is protected by original copyright

LIST OF SYMBOLS

a_0	d.c. term for Fourier series
a_h	h-th harmonic term for Fourier series
α_h	harmonic signature for h-th harmonic order
b_h	h-th harmonic term for Fourier series
<i>b</i> _{harm}	ratio of neutral current to phase current
β_1	phase shit for fundamental waveform
β_H	phase shit for h-th harmonic order waveform
С	capacitor, µF
C_{f}	correction factor (heating effect method)
C-P _R	capacitor-resistive load pair
CS	conductor size
D _c	diameter of a conductor's conductor
f	frequency, Hz
f_k	function at k-th harmonic order for discrete signal
f(t)	signal function in time domain
$f(t_n)$	signal function in time domain at n-th sample in discrete signal
$F(f_k)$	discrete Fourier Transform function
$F(\Omega)$	signal function in frequency domain

r_{3k}	ratio of harmonic current at h-th harmonic order to fundamental current
h	harmonic order, $h = positive$ integer number
Н	total per unit heat
i	current instantaneous value
i_1	fundamental current instantaneous value
i _H	total harmonic current instantaneous value
<i>i</i> _n	current instantaneous value at n-th for samples of periodic signal
Ι	current root means square value
I_b	full load design current
I _{rms}	current root means square value
I_0	direct current current root means square value
I_1	fundamental current root means square value
I ₃	third harmonic current
U <i>I</i> _{3-p}	third harmonic phase current
I_d	distortion current
I _{design}	design current (IEC method)
I_h	h-th harmonic current
I_H	total harmonic current root means square value
$I_{mn}(i)$	RMS value of rated current in the presence of harmonics for i th cable

I_n	neutral current
I_{op}	operating current
I_p	phase current
I _{RMS}	design current (in heating effect method)
k	k-th harmonic order in discrete signal
k_s	coefficient in skin effect
k_p	coefficient in proximity effect
Ν	number of samples per period in discrete signal
ω	angular frequency $2\pi f$
P _R	pure resistive load, W
r _{ACh}	ratio of r_{ac} for h-th harmonic to r_{ac} for fundamental order
<i>r_{ac}</i>	a.c. resistance.
r _{dc}	d.c. resistance
r_{dc}	d.c. resistance at maximum operation temperature
rsX	internal resistance for cable. X is A, B or C to indicate phase A, B or C,
S	distance for two adjacent cables (measured from centre to centre)
t	time, second
Т	period
THD_{v}	voltage THD

THD _i	current THD
$ au_{\mathrm{x}}$	metal resistance temperature coefficient at x degree celcius
θ	maximum operating temperature for cable
\mathscr{P}_A	ambient temperature
\mathscr{P}_{op}	operating temperature
θ	phase angle
Θ_h	signal phase shift for h-th harmonic content
W	rotary matrix (in DFT)
X_S	coefficient in skin and proximity effects (?)
$y_s(h)$	skin effect at h-th harmonic order
$y_{sp}(h)$	proximity effect due to vicinity conductor at h-th harmonic order
$y_{cp}(h)$	proximity effect due to vicinity metallic conduit at h-th harmonic order
OTHI	2

Kesan Arus Harmonik ke Atas Saiz Pengalir Kabel pada Rangkaian Pembahagian Voltan Rendah

ABSTRAK

Fenomena harmonik dalam sistem elektrik kuasa merupakan satu masalah yang telah lama tetapi pada hari ini mula kembali menjadi isu penting. Isu ini pelu diberi perhatian memandangkan penggunaan beban tidak linear, antara punca harmonik, meningkat terutamanya pada sistem voltan rendah. Meskipun demikian, kajian terhadap masalah ini dilihat semakin menurun. Pertamannya kajian dilakukan untuk melihat bagaimana arus harmonik mendatangkan kesan tertentu pada sistem beban seragam voltan rendah 3-fasa. Saiz kabel antara 2.5 mm² hingga 16.0 mm² telah dipilih. Pada tahap voltan ini, pangguna, samada terlatih atau tidak, begitu banyak berinteraksi dengan sistem. Ini menjadikannya penting untuk dikaji. Seterusnya kajian dibuat untuk memahami akhirnya arus harmonik mempengaruhi saiz kabel pengalir neutral. Adalah didapati peningkatan harmonik dalam sistem membawa kepada pertambahan arus neutral. Di samping itu, harmonik juga menyebabkan keupayaan mula membawa arus sesebuah pengalir menjadi berkurangan. Beberapa kaedah seperti kaedah pengurangan harmonik, kaedah kesan pemanasan, teknik yand diperkenalkan oleh Arthur dan Shanahan seterusnya oleh Chindris, serta kaedah daripada piawai IEC dan NEC telah dipilih bagi mendapatkan saiz pengalir neutral di bawah pengaruh harmonik. Keputusan yang didapati daripada setiap kaedah dianalisa serta dinilai keberkesanannya. Simulasi dan analisis telah dilakukan menggunakan Fast Fourier Transform yang dilaksanakan menggunakan MATLAB. Perbandingan bagi setiap keputusan terhadap pengiraan asas saiz pengalir juga telah dilakukan Adalah didapati setiap kaedah, termasuk yang dicadangkan oleh badan piawai, mempunyai kekurangan sendiri. Analisa lanjut ke atas keputusan daripada dua kaedah terpilih membuahkan kaitan matematik antara harmonik dan saiz pengalir neutral. Satu daripada formula matematik tersebut dikenalpasti sebagai terbaik berdasarkan beberapa criteria. Menggunakan formula berkenaan, proses mengenalpasti saiz konduktor neutral boleh dilakukan dengan tepat, cepat dan menggunakan langkah pengiraan yang pendek. Thisit

Harmonic Current Effect on the Sizing of Neutral Conductor at Low Voltage Distribution Network

ABSTRACT

Power system harmonic phenomenon was an old problem, but with renewed and unprecedented threat. This matter deserved to get a refreshing look as proliferation of non-linear loads, one of the harmonic sources, has been increasing exponentially especially at low voltage network. Despite this fact, research into the problem seemed to be declining. Firstly the effect of harmonic current in low voltage, balanced three-phase system has been researched. Cable sizes involved in this study were 2.5 mm² to 16 mm². This level of system has been thought to be important since interaction between users, trained or not, and systems was commonly taken place. Secondly how harmonic eventually neutral conductor sizing has been studied. It has been confirmed that with the increased of harmonic content, neutral current value would be increased. In addition, neutral conductor initial ampacity has been found to be de-rated under the presence of harmonic. Harmonic derating factor, heating effect method, proposed techniques by Arthur and Shanahan, followed by Chindris as well as guidelines from IEC and NEC standards have been identified to be applied to determine the neutral conductor sizing under harmonic presence. Analysis of results from each method as well as their performance has been done. Simulation and analysis using Fast Fourier Transform has been carried out using MATLAB environment. Comparison between each method including comparison to the basic conductor sizing formulation has also been carried out. It has been concluded that each method, including those proposed by standards, had its own shortcomings. By further analysing results from two of the methods, two new mathematical relationships that correlate harmonic content and neutral conductor sizing have been developed. One of the two formulations has been identified as the best based on several criteria. This formula contributes towards correct, faster and shorter step of determining neutral conductor sizing under harmonic presence. Thisitem

CHAPTER 1

INTRODUCTION

1.1 Power System Harmonic and Power Quality

Quality is a moving target that becomes finer as the society advancing. It has never been out of fashion. Power quality enjoyed the same evolution. Nowadays, more users asking for better power quality due to several reasons. However, sometimes the same users contribute to poorer power quality, the very opposite attribute they are looking at the first place.

One of the phenomena in power quality is harmonic (Bollen, 2003). One of the harmonic sources is non-linear loads. It is a class of load that mainly consists of the commonly used electronic-based equipments and other not so common loads such as electric furnace. It was and is now increasingly becoming a primary source of power quality problems, especially in the low voltage system.

Our temptations to use these non-linear loads keep on increasing. At the home level, entertainment set has become more complex with the emergence of audio and visual enhancer. Automation also has been the norm even for ordinary home, not to mention the craze for information and communication technology (ICT) 'gadgets'. All these, and plus plenty other examples, are non-linear loads.

The same occurred in the work places. For example, more electronic-based equipments are utilised in general offices as well as in health care facilities than ever. The need to use energy-efficient apparatus in the name of the green movement and economic reason also introduces many harmonic-producing equipments such as uninterruptable power supply (UPS) and variable speed drive (VSD). Non-linear loads sometimes overwhelmingly overrun a workplace; an excellent example is computer centres. All these examples are evident about harmonics as an old problem, but with a renewed and higher level threat.

Like any other bad quality attribute, harmonic brings harmful influence to the environment it sits in – electrical power system (IEEE, 2009). Several modern equipments have been found to be susceptible to distortion in the power supply waveform caused by harmonic. These equipments may stall as the result of such poor condition of supply. Harmonic also has been blamed for unnecessary tripping. Tripping alone is already annoying, let alone tripping due to not-so genuine reasons. Harmonic also can physically attacks electrical equipments. Harmonic has been known to cause overheating in equipments and resulted in unwanted consequences.

That effect also extends to the safety-related; take an example of return path of a 3-phase alternating current (AC) supply system – neutral conductor. Under balanced condition, a neutral conductor carries zero return current. However, once harmonics gets in, neutral current will naturally build up. Adequate knowledge must be developed to understand the relationship between harmonic content in phase conductors and effect on neutral current.

Clearly neutral conductor is directly affected by the presence of the harmonic. Effect on a neutral conductor due to the presence of harmonic has been considered and inspected on this report. This matter is important as it also has safety consequences.

1.2 Problem Statement

The formal problem statement of this research indicates development for understanding the effect of harmonic presence on neutral current. Following the fact that harmonics influenced the overall neutral current, it is also important to determine whether the neutral conductor sizing also affected. The study focused on the low voltage system since it may affect the safety, well-being and economic aspect of the power supply system. This is important since at his level more users are directly in close contact with the system's environment.

1.3. **Research Objectives**

In this study, two objectives have been designated:

- 1. To investigate the sizing of the neutral conductor under the presence of harmonic.
- 2. To establish a relationship between harmonic and corresponding neutral by original conductor sizing selection.

1.4 **Scope of Research**

- 1. To investigate how harmonic phenomena affects neutral conductor sizing for a balanced loads system. However, all other ampacity derating factors were neglected.
- 2. Cable sizes investigated for this study were 2.5 mm^2 to 16.0 mm^2 due to the fact that this range of cable sizes has a unique neutral conductor sizing selection guideline as stated in standard IEC 60364-5-52.
- 3. Cables were assumed to be laid in non-metallic conduit located on wall surface.
- 4. A 50 m length of cable was also assumed for calculation purposes.
- 5. Fast Fourier Transform (FFT) had been chosen as the harmonic analysis technique due to its suitability for issues in this study.
- 6. MATLAB Release 2010b had been selected to do the simulation, analysis and related calculation.

1.5 Arrangement of Report

This report consists of five chapters. Several sub-chapters may make up the chapters. The arrangement of the chapters is as the following.

'Chapter 1: Introduction' consisted of the basis of this study. It began with a brief write up about the core issue of this research. In this chapter the research problem statement, objectives as well as scopes were introduced.

'Chapter 2: Literature Review' made up by relevant information, opinion, ideas, facts and theories from various reputable sources. Here, brief discussions on selected topics have also been incorporated. The emphasis has been on the issue of how harmonics presence is affecting neutral current. Effect on neutral conductor current carrying capability under the harmonic condition was another focus. Both issues were imperative in developing the harmonic-neutral conductor ampacity relationship.

'Chapter 3: Research Methodology' laid theoretical and mathematical framework used in the analysis for this study. Among the important points in this chapter was the derivation of harmonic-neutral conductor size formulation.

'Chapter 4: Results and Discussion' was the chapter where all the theories and formulae were called into practical application. All data that have been processed, transformed into information and developed into knowledge. Comparison between results from selected techniques were presented. Apart from that, discussion about the new mathematical formulation and its performance could also be found.

Chapter 5: Conclusion is where all the discussions and findings would be digested and understood. Available in this chapter was a list of contribution related to this. Also a lenghty discussion was carried out in highlighting how the objectives of the study were fulfilled. Finally, future direction of this thesis was drawn.