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ANALISIS PENGIRAAN BERKOMPUTER BENDALIR DINAMIK KE ATAS 

CANTUMAN VENA MIKROVASKULAR BAGI MEMANJANGKAN 

KEMANDIRIAN 

ABSTRAK 

Penyakit arteri digital yang melibatkan anggota bahagian atas jarang berlaku tetapi masih 

memerlukan prosedur revaskularisasi. Maka pembedahan pintasan vena atau perantaraan 

vena dilakukan sebagai tindakan lanjut. Walaubagaimanapun, terdapat satu atau lebih 

diameter dalaman Reverse Saphenous Vein Graft (RSVG) yang diguna pakai tersumbat 

dan mengecil dengan teruknya kerana pembentukan geometri yang luar biasa seperti 

ketidaksamaan diameter dalaman dan kekusutan lebihan panjang selepas menjalani 

prosedur revaskularisasi. Menurut kajian lalu, pembentukan geometri yang ganjil, 

percanggahan saiz dan pembengkokan dalam salur darah menyebabkan aliran darah 

menjadi tidak normal dan menjadi punca kepada pembentukan thrombosis. Tambahan pula, 

kajian mereka yang terdahulu disokong oleh teori. Objektif penyelidikan ini adalah untuk 

mengkaji kesan aliran darah keatas model-model graf vena yang mengalami 

ketidaksamaan diameter dalaman dan kekusutan lebihan panjang yang mengaitkan 

pelanjutan jangka hayat mereka sendiri. Kaedah pengiraan berkomputer bendalir dinamik 

dalam tiga dimensi di guna pakai untuk menyelidik halaju, perbezaan tekanan dan tekanan 

ricih dinding ke atas model RSVG yang lurus ideal dan model-model yang mengalami 

pembentukan geometri yang luar biasa. Melalui kajian ini, kami menjangkakan aliran 

darah laminar yang berdenyut akan menunjukkan aliran yang tidak mengikut sifat 

hidrauliknya dalam model-model RSVG geometri yang luar biasa berbanding dengan 

model graf vena yang lurus ideal walaupun dalam ujian aliran darah berkeadaan tetap. 

Secara kesimpulannya, keputusan menunjukkan nilai tinggi pada halaju, perbezaan tekanan 

dan tekanan ricih dinding dalam permasalahan ketidaksamaan tetapi nilai yang rendah 

pada halaju, perbezaan tekanan dan tekanan ricih dinding dalam permasalahan kekusutan 

lebihan panjang. Sebarang aliran darah yang bersifat ganjil akan menyebabkan 

pembentukan thrombus dan mengurangkan jangka hayat RSVG itu sendiri. 
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A COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF PROLONGING 

SURVIVAL IN THE MICROVASCULAR VEIN GRAFTING 

ABSTRACT 

A digital artery disease in the upper extremity is uncommon to happen but the 

revascularization procedure is still needed. As action taken, the surgical vein bypassing or 

vein interposition is performed. However, one or more internal diameters of the applied 

Reverse Saphenous Vein Graft (RSVG) are blocked and severely narrowed due to the 

irregular geometry formation such as internal diameter mismatched and over the length 

kink after the revascularization. In previous researches, the irregular geometry formation, 

the size discrepancy and bent in the vessel caused the abnormal blood flow and initiated 

the thrombosis. Furthermore, their previous works were also supported by clinical 

theory.The objective of this study is to investigate the effect of the blood flow on internal 

diameter mismatched and over the length kink of the RSVG models that relates to their 

long term survival. A Three-Dimensional Computational Fluid Dynamic (3D CFD) 

method is employed to investigate the velocity, the pressure gradient and the Wall Shear 

Stress (WSS) on ideal straight and irregular geometry of the RSVG models. For this 

research, the pulsatile laminar blood flow demonstrates non-hydraulically flow in irregular 

geometry of the vein graft models compared to an ideal straight model even in a steady 

state laminar blood flow test. As a conclusion, the results showed high value in the velocity, 

the pressure gradient and the WSS in the mismatch problem but low value in the velocity, 

the pressure gradient and the WSS in the over length kink problem. Any abnormal blood 

flow behavior will initiate the formation of the thrombosis and reduce the vein graft 

survival. 

 

 

 

 

 

 

 

 

©
 T

his 
ite

m
 is

 p
ro

te
ct

ed b
y o

rig
in

al 
co

pyr
igh

t 



 

1 
 

CHAPTER 1 

 

INTRODUCTION 

 

1.1 Upper extremity vein grafting surgery 

 

A formation of atherosclerosis in the upper extremity rarely happened compared 

to the lower extremity (Jocelynet al., 2007; P., Berg et al., 2007). It happens if an 

internal diameter of the blood vessel becomes narrow and will increase the stiffness of 

the blood vessel wall or decrease in the flexibility of the blood vessel. As action taken, 

the surgical vein bypassing or vein interposition is performed to several patients who 

suffer with arterial disease in order to overcome the blockage especially in the digital 

artery (Van & Guthrie, 1906; Raafat et al., 2006; Jocelyn, et al., 2007; Zol et al, 2007). 

In 1906, the first vein grafting has been successfully done by Van Carrel A. and 

Guthrie. Based on the literature reviews on the vein grafting surgical technique, the 

artery segment which affected the thrombosis was end-to-end removed, and the 

previously cut saphenous vein graft from the lower limb was reversely attached (David, 

L. Andrew, & Thomas, 2001; George et al., 2008). The most suitable veins are 

available at the dorsum of the foot and ankle or the forearm (H., Piza-Katzer, 1979; 

David et al., 2001). 

One of the requirements is that the previously cut reversed saphenous vein graft 

(RSVG) should be closely similar in the length and internal diameter as previously 

removed artery segment (H., Piza-Katzer, 1979).Thus, the RSVG is suggested as an 
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ideally applied for the vein grafting procedure. There are several reasons for this 

(H.,Piza-Katzer, 1979;C.M.,Grondin& R.,Limet, 1977; C.Minale et al., 1984; David, L. 

Andrew,& Thomas, 2001). First, the saphenous vein is plentiful and applicable in 

performing multiple graft procedure; second it is easily harvested; third, it has large 

diameter and fourth, it is reachable to any artery because it is long (Sabik, 2011).  

 

1.1.1 Computational Fluid Dynamics Analysis 

 

Several numerical techniques, especially the Computational Fluid Dynamics 

(CFD) has rapidly developed into a useful tool to obtain greater understanding of the 

fluid behavior even at the micro vessels (Tzu-Ching et al,. 2011). A Three-Dimensional 

Computational Fluid Dynamics (3D CFD) uses the Finite Volume Methods (FVM) to 

solve a huge number of equations such as the Navier-Stokes equation and to analyze 

problems that involve the blood circulation flow. This requires powerful computers to 

perform and handle a large number of equations and iterations in calculation. The 

accurate results from the complex simulations can be achieved in many difficult cases 

such as the investigation of the turbulence pulsatile blood flows in the artificial human 

heart. Advances in the CFD enable us to predict the blood flow pattern in the vein 

grafting surgery as well as the artificial part design. 

The basic principle of the 3-D CFD modeling method is that the simulated flow 

region is divided into small mesh cells and formed the nodes; within each of nodes the 

flow is either kept under constant conditions or varied smoothly. The differential 

equations of momentum, energy, and mass balance are discretized and represented in 

terms of the variables at the center of or at any predetermined position within the cells. 

These equations are solved iteratively until the solution reaches the desired accuracy. 
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