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Hence, the numerical techniques help us to quickly understand the real flow 

environment and effectively communicate the conclusion. The CFD makes it possible 

to evaluate the field variables of the velocity, the pressure gradient between the 

proximal and distal of the vein graft model and the impact of the Wall Shear Stress 

(WSS) on the vein graft wall throughout a solution domain (Rory F. Rickard et al., 

2009). 

The 3D CFD analysis in this research is applied to calculate the velocity of the 

blood flow, the gradient of the blood flow pressure between the proximal and distal in 

the RSVG model, and the WSS impact on the RSVG wall that consist of the searching 

of the blood flow patterns in an applied irregular RSVG model; the oversize in the 

length and mismatching in the internal diameter between the RSVG model and the 

recipient artery and applying the boundary conditions of the blood flow models. 

 

1.2 Problem Statement and Research Scope 

 

Even though the procedure was successfully performed by surgeons, its 

durability and longevity is still unpredictable. There are many upper limb vein graft 

failure cases that have been reported (George D. Chloros et al., 2008). Based on 

previous reports, most defected finger was cool and pale (Dumanian GA et al., 1998, 

Jocelyn A. et al, 2007,P., Berg et al., 2007, and Zol B.,Kryger et al., 2007).  

Based on previous studies, the irregular vein geometry formation such as the 

kinking of the vein (H., Piza-Katzer, 1979; Qin, Liu et al., 2008) as well as a mismatch 

size of the internal diameter of the end-to end vein graft (H., Piza-Katzer, 1979; 

Chuang, DCet al., 1982; Rory F. et al., 2009) causes the vein graft failure. In fact, the 

length and internal diameters of the vein are strongly related to the vein graft lifespan 
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(Christopher L. et al., 2001; Sang-Wook, Lee et al., 2003). Hemodynamics studies 

including the blood flow patterns, the velocity, the gradient of the blood pressure and 

the WSS were believed to initiate the development and the growth of arterial stenosis 

but the previous studies lack of the realistic physiological considerations such as the 

irregular RSVG formations, blood flow pulsatility, especially in the microvascular vein 

grafting. 

For the present study, the 3D CFD method was used to find out the velocity of 

the blood flow, the pressure gradient between the proximal and distal of the vein graft 

models and the impact of the shear stress on the vein graft’s model that flow through 

the model of kink and the mismatch size of the RSVG segment in order to study the 

survival and to ensure the prolonging of the vein graft lifespan as well (Christopher L. 

Skelly, 2001;Sang-Wook Lee, 2003).  

We propose the oversize of the RSVG kinked length models with the variables 

amplitude of two cycled sinusoidal wavy RSVG since the over length kink RSVG 

failures occurred in variable length. We also propose the mismatch of the RSVG 

models to the recipient arteries are 1:1.1, 1:1.2 and 1:1.3. The ideal size of the vein 

graft model diameter ratio to the artery diameter is 1:1 and straight also have been 

proposed as an ideal straight vein graft in comparison with the mismatch size and the 

kink vein graft models since any fluid flows in the straight tube should be provided 

very accurate fluidic properties such as velocity etc. (Donald F. et al., 2003; I.G.Currie, 

2003; Lee Waite, 2005). 

The simulation work in understanding of the blood flow behavior in the 

microvessel vein graft is vital prior to any experimentation work as it will save life and 

the operation time on laboratory animals such as mice. This research assume that the 

govern blood is the Newtonian, incompressible fluid, homogenous and does not slip at 
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the vessel wall. The govern blood is assumed as Newtonian blood because the whole 

blood behaves as Newtonian fluid with a constant viscosity at 37°C, which is the 

human body temperature, is constant because it is biologically maintained by other 

human system. The whole blood is incompressible to ensure the Navier-Stokes 

equations can be applied in this research. The govern blood does not slip at the vessel 

wall because the whole blood is firmly attached to vessel wall. The whole blood is 

homogenous (single phase) in the whole human vessels. The vessel wall is assumed as 

cylindrical and rigid body and the blood flow in laminar flow because the vessel wall at 

digital artery is not tapered and low distend effect and the Reynolds numbers ranged 

from 9.375 to 36. 

 In order to obtain the blood flow characteristics, simulations have been carried 

out by using a variety of the Reynolds numbers ranged from 9.375 and 36.The various 

of Reynolds number based on cases are shown in Table 1.1. Despite this, the numerical 

models of the laminar at steady state (t=0s) and transient state (t ≠0s) are also utilized 

in this work to simulate the microvessel blood flow problems. The FVM approach is 

used to carry out the simulation commercial software ANSYS Fluent Version 12.1. 

Motivated by this concoction of problem statement and scope, the research on 

microvessel blood flow behavior in the irregular geometry formation model of the vein 

grafts has been executed and played a pivotal role in this research. 

 

Table 1.1 : Various numbers of Reynolds number based on cases. 

Case  Diameter, cm Re at Vmin Re at Vmean Re at Vmax 

Ideal Straight 0.10 9.375 18.75 28.13 

1 0.11 10.31 20.62 30.94 

2 0.12 11.25 22.50 33.75 

3 0.13 12.19 24.38 36.00 

A 0.10 9.375 18.75 28.13 

B 0.10 9.375 18.75 28.13 

C 0.10 9.375 18.75 28.13 
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1.3 Objective 

 

The main objective of this research is to investigate the relationships between 

the effect of blood flow on the irregular geometry and thrombosis formation in 

microvessels that relate to their long term survival. In order to achieve the purpose of 

this study, the main objective and the pre-objectives of the project are summarized as  

below: 

1. To validate the numerical models of the laminar models. This is because the 

reliability of the CFD models is of paramount importance in simulation and 

also to check any discrepancies between these models. 

2. To simulate the steady state and the pulsatile blood flow in irregular 

geometry formation model of the vein grafts. 

3. To identify any critical range of geometry dimensions. 

4. To study the relationship between the irregular geometry formation model 

of the vein grafts and prolonging survival. 

Some pre-objectives 

1. Concerning grid independence and number of nodes study. 

The grid independence study needs to be carried out for every irregular 

geometry model used in this research. This is because the created number of nodes 

in the irregular geometry model of the vein graft through meshing process varies 

according to the dimension of the irregular geometry model. To get an accurate 

result, a large number of nodes need to be archived in meshing. The simulation 

work was carried out continuously by setting the convergence history until the 

residual target of mass and momentum reach less than 1 x 10
-6

. 
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2. Accomplishment of the blood flow simulation algorithm, boundary condition, the 

User Define Function (UDF) as well as the irregular geometry models. 

The blood flow simulation algorithm, boundary condition, the UDF as well 

as the irregular geometry models have to be validated by peer reviewed simulation 

work. This is because the reliability of the simulation results can be questioned 

even though the grid independence is achieved. An incompressible Navier-Stokes 

Equation, Newtonian fluid, measuring velocity profile, the WSS impact on wall, 

pressure gradient, steady and pulsatile flow of the blood within irregular formation 

geometry of the vein graft model were chosen based on the simulation work 

previously done by other researchers. 

The research objective can only be achieved after the completion of all research 

pre-objectives. 

 

1.4 Dissertation Organization 

 

This dissertation is presented in six chapters. 

Chapter 1 deals with the introduction of the research and overview of this thesis. 

The fundamental of the upper extremity vein grafting surgery have been addressed in 

order to provide better solutions for the RSVG problem. This chapter also presents the 

CFD analysis, problem statement, research scope, objectives and finally the dissertation 

organization. 

Chapter 2 presents a brief analysis of the overall literature review from previous 

CFD analysis that had been done by researchers. This chapter discusses about the 

application and the ability of the CFD Analysis in hemodynamic system. It also covers 

current vessel failures and the CFD Analysis method had been proposed and conducted 
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by previous authors. Later, a discussion on the summary of literature review and the 

research proposal is presented. 

Chapter 3 discusses the theoretical blood flow in microvessels and the 

computational simulation study. In this chapter, the basic concepts of fluid mechanics 

are viewed as it is fundamental to describe the fluid dynamics. The simulation details, 

such as meshing, boundary conditions and the flow equations that have been applied in 

this study are also mentioned.  

Chapter 4 explains the research methodology.This chapter presents the 

validation of the blood flow simulation algorithms, the grid independence of irregular 

formation of the vein graft model, the boundary conditions in irregular formation of the 

vein graft model as well as the numerical models. 

Chapter 5 presents the results and discussion for the blood flow in steady state 

simulations on ideal vein graft model and the irregular formation of the vein graft 

models followed by the pulsatile blood flow results. 

Finally, the conclusion and future work recommendations are presented in 

Chapter 6. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1 Literature Review 

 

 This chapter provides the CFD Analysis method that has been applied by 

previous researchers. Their research methodologies are also discussed. Finally, the 

inferences in the vessel failure were mentioned at the end of this chapter. 

The CFD method is applied to determine the hemodynamic factors such as the 

deformation erythrocytes (Secomb T.W. et al.,2007; A. Jafari et al., 2009; Doddi, S.K. 

& Bagchi, P., 2009), the blood viscosity (Cole JS et al., 2003; Filipovic N. et al., 2009), 

the shear stress impact on the vessel wall (Klyscz T. et al., 1997; Cole JS et al., 2003), 

and the blood flow velocity(Jung F. &Zeintl H., 1997; Mette S. Olufsen et al., 2000; 

Filipovic N. et al., 2009;Tzu-Ching Shih, et al., 2011) in the complex 3D blood 

microvessels. Their previous researches exposed that the CFD technique not only can 

show the information of the blood flow motion but also the changing in shape of the 

Red Blood Cells flowing in the microvessels. As a conclusion, they found out that the 

numerical method become a powerful method to study the patterns of the blood flow 

especially in the geometrically complex vessel. 

A. Jafari et al. ( 2009 ) applied a commercially available Fluent ANSYS Inc. 

CFD package Fluent 6.2 which is based on the finite volume method in order to 

simulate the behavior of the blood flow in microvessels. The 3D CFD modeling and 
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simulation are also presented on the motion of a large number of deformable cells in 

the microchannels (Doddi, S.K. & Bagchi, P., 2009). 

The CFD method of the pulsatile flow, non-Newtonian of the blood flow 

through a femoral artery bypass model, have been conducted by Cole JS et al. (2003) in 

order to understand the bypass blood flows, and to identify factors of the blood flow 

which contribute to the progression of disease such as thrombosis. From their research, 

more effective bypass design could be developed and prolonged the lifespan of the 

femoral artery bypass. 

 Tzu-Ching Shih, et al. (2011) also applied the CFD method in his research to 

calculate the velocity of the Red Blood Cells (RBCs) in six cases microvessels of finger 

nail-fold. They reconstructed 3D images from 2D images of the microvessel. They 

assumed that the capillaries in a circular cross sections and the vessels walls as non-slip 

boundary conditions. An origin velocity of the Red Blood Cells flowing into each 

microvessel was calculated by the Optical Flow Estimation (OFE). The velocities of 

multiple points along each microvessel simulated by the CFD, Average results of the 

CFD, were compared with the Optical Flow Estimation (OFE) calculations, the 

Velocity of Optical Flow Estimation. The study indicates that the CFD method can be 

considered as one of acceptable methods by providing reasonable accuracy in the result 

of the RBCs velocity in the finger nail-fold microvessels. 

The relationships between the irregular geometry formation and the thrombosis 

were also previously studied by Qin Liu et al. (2008), Rory F. Rickard et al. (2009) and 

W. W. Jeong and K. Rhee (2009). Qin Liu et al. (2008) stated that the local shear 

stresses or shear rates, especially in the bent or stretched microvessels could induce the 

formation of the thrombus. For that reason, the bent or stretched microvessels was 

tested experimentally and simulated computationally. They found out that the thrombi 
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were originated at the inner wall of the curvature angle in these bent or stretched 

microvessel models. The 3D CFD using commercial software, Fluent ANSYS Inc., was 

used to determine the mechanical mechanism that induced the thrombus. The 

microvessels were modeled with variable shaped cross-sections (elliptic and circular) as 

well as different curvature (0°, 90° and 180°) in order to simulate the stretching and 

bending microvessels. From their CFD simulation result, the inner wall of the curved 

circular shaped microvessel models showed the highest values in the Wall Shear Rate 

and the Wall Shear Rate gradient at the inner wall of the curved circular-shaped 

microvessel models. They are found at the inner side when the vessels are bent and two 

apexes of the wall with shorter axis for the 0° (straight) elliptic shaped vessel. From 

their observation, the bent and elliptic-shaped microvessels have strongly related to the 

different value in the shear stresses or shear rates. They also found out that the value of 

shear stress or shear rates gradient between the outer and the inner wall of the 

microvessels become higher in more bent and the angle of the elliptic-shaped 

microvessels.  

Rory F. Rickard et al. (2009) stated that the vessel size mismatch could cause 

anastomotic failure in the microvascular surgery. In the surgical procedure, an end-to-

end attachment has to be applied if an end-to-side anastomosis is not available. Most of 

end-to end techniques are characterized to deal with the size mismatch. Their research 

objective was to numerically analyze the WSS and the blood flow patterns in four 

idealized end-to-end anastomoses artery models, where the upstream or the recipient 

artery is smaller than the downstream. The four techniques model were a wedge cut of 

the larger vessel, an oblique region of smaller blood vessel, a fish-mouth cut of small 

vessel and an invaginating attachment. The blood flow was remodeled by the FVM 

applying the commercially available CFD code Fluent ANSYS Inc. From their 
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experimental simulation works, the invagination model showed that the ring vortices 

happened. The word ‘vortices’ is a plural noun for the vortex and it happens when the 

flow is mostly in a spinning motion. The ring vortices also have been seen in the fish-

mouth model. However, the ring vortices effects were less seen in the invagination 

model compare to the fish-mouth model. The counter-rotating, spiral, complex vertices 

were found dispersed downstream in the oblique region. The first wedge model showed 

least flow separation, with the high flow became centralized but decelerated in the flow 

rate. The impacts of the WSS were similar for all models.  They concluded that by 

shortening the length of the wedge or increasing the downstream vessel radius to 

1.5mm led to separation in the blood flow.  

W. W. Jeong and K. Rhee (2009) believed that the existing and growth of the 

arterial stenosis caused hemodynamic factors including the blood viscosity 

characteristics, the shear stress and the blood flow pattern, but they are still lack in 

previous studies of realistic physiological considerations. They suggested that the flow 

pulsatility, non-Newtonian viscosity and the irregular surface geometry may cause 

arterial stenosis problem as a research inference. They used the arterial models that 

suffered with 48 percent occlusions under clinical blood flow function in order to 

explore the effect of the non-Newtonian viscosity and the irregularity at the surfaces on 

the blood flow regions. The CFD based on the FVM was applied for the non-

Newtonian and Newtonian characterized blood model in their research. Based on their 

observation after the experimental work, the WSS in those smooth surface simulation 

models were lower compared to the model in suffered irregularity at the surface. They 

found out that the non-Newtonian viscosity in the blood properties are strongly related 

to the increasing of the WSS. They also found out that the dimension less pressure drop 

and the time average of the WSS in steady state flow was lower than in the pulsatile 

 

 

 

 

 

 

 

 

©
 T

his 
ite

m
 is

 p
ro

te
ct

ed b
y o

rig
in

al 
co

pyr
igh

t 



13 
 

flow. However, the WSS and the pressure gave less effect in the pulsatility effects 

compared to the non-Newtonian viscosity in the blood properties. By the end of their 

research, they found out that the non-Newtonian viscosity in the blood properties and 

artery model with suffered irregularity in the surface could predict pressure drop and 

the WSS in the stenosis arteries. 

Minh Tuan Nguyen and Lee (2012) did the CFD simulations on the laminar 

flow in nine sinusoidal wavy shaped tubes conducted for mean Reynolds number of 

250, which is in the range of clinical flow-rate and investigated flow structures, 

pressure distribution and particle trajectories both in steady state and periodic flow 

conditions. For comparison purposes, six wave lengths and amplitudes of sine function 

for geometry of the tube models were tested. The results showed that small amplitude 

secondary curvature has significant influence on the nature of the flow patterns and the 

particle mixing mechanism. This reveals that the characterizing accurate geometry is 

essential in accurate predicting of in vivo hemodynamics and may motivate further 

studies on any possibility with regards to the reflection of the secondary flow on the 

vascular remodeling and the pathophysiology. 

 

2.2 Summary 

 

From literature reviews, the previous studies revealed that the CFD method 

could be applied in the human vessel and give the information of the blood flow 

behavior. For that reason, the 3D Fluent software is applied in this research. The vessel 

mismatch (the recipient artery is smaller than the vein graft) can cause anastomotic 

failure in the microvascular. As in our inference, the vessel size mismatched (the 

recipient artery is larger than the vein graft) also could cause anastomotic failures. 
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Thrombi were originated at the inner wall of the curvature angle in these bent in the 

microvessel models. We predict that the re-formation of thrombi also will occur in 

various amplitude of sinusoidal wavy vein graft. The end-to-end mismatched internal 

diameter and the kinked over length of the Reverse Saphenous Vein Grafts (RSVGs) 

have been proposed as the irregular geometries formation for this research. For the 

blood flow model, the laminar steady state and the laminar pulsatile state have been set 

as the blood flow model.  
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CHAPTER 3 

THEORETICAL BLOOD FLOW IN THE MICROVESSELS AND  

THE COMPUTATIONAL SIMULATION STUDY 

 

3.1 Review of Basic Fluid Mechanics Concept  

 

Density is the mass per unit volume of a substance and is given by the Greek 

character ρ (rho). The SI units for ρ are kg/m
3
and the approximate density for blood is 

1050 kg/m
3
. In other word, blood is slightly denser than water. 

           (3.1) 

 The specific weight is an inversely to density (ɤ= ), presented by Greek 

symbol ɤ (gamma), is defined as its weight over volume. Thus, ɤ can be related to 

density through the equation 

                                                                                                                       (3.2) 

Where 𝘨 is the gravitational force and is always used to present the weight of the 

system. 

3.1.1 Viscosity 

The common fluids, such as water, oil, petrol and air, the shear stress and shear 

stress rate are indicated by this equation which can be related to the relationship of the 

form 
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Shearing stress,  

Rate of shearing strain,  

Water (100 ) 

Air (60 ) 

 

 

                                                                                                                       (3.3) 

where the constant of proportionality is presented by the Greek symbol – (mu) and also 

called the dynamic viscosity, the absolute viscosity,  or simply the viscosity of the fluid. 

According to Equation 3.3, the graph plots of the shear stress, τ versus shear stress rate, 

 should be linear with the slope equal to the viscosity as shown inFigure 3.1. 

The particle of the fluid relates the actual value of the viscosity and also highly relates 

on temperature as shown in Figure 3.1 with the two curves for water. The Newtonian 

fluids can be defined when the shear stress of fluids is linearly related to the stress 

strain rate (also referred to the angular deformation rate). The formulation of Equation 

3.3 is a general formulation and applicable in more complex flow type of the 

Newtonian fluids. 

 Meanwhile, the non-Newtonian fluids can be defined when the shear stress of 

fluids are not linearly related to the shear strain rate. For this research, we assume that 

blood is homogenous and Newtonian fluid. 

 

 

 

 

 

 

 

 

Figure 3.1 Linear variation of shear stress with shear strain rate for common fluids. 

Crude Oil (60°F) 

Water (60°F) 
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3.1.2 Pressure Variation in a Fluid at Rest and Incompressible Fluid 

 

3.1.2.1 Pressure Variation in a Fluid at Rest 

 

          (3.4) 

 An Equation 3.4 is the fundamental equation for fluids at rest (no external force) 

and can be used to determine how pressure with the elevation level, where dp is 

differential in pressure and dz is differential in the elevation level. This equation 

indicates that the pressure gradient in the vertical direction is negative value which 

means that the pressure decreases if we move upward in a fluid at rest.  

 

3.1.2.2 Incompressible Fluid 

 

The specific weight is equal to the product of fluid density and                                                                                  

the acceleration of gravity (γ ), changes in γ are caused by a change in either ρ or 𝘨. 

For most engineering applications the variation in 𝘨 is negligible, so our concern to the 

product of fluid density and the acceleration of gravity. Commonly, a fluid with 

constant density (ρ= constant) is called an incompressible fluid. For this research, we 

also assume that blood is incompressible fluid and we also ignore about the 

acceleration gravity in our calculation. We usually neglect the liquids with the variation 

in density value and applicable even it is over large vertical distances, so that the 
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assumption of constant specific weight ( = constant) when dealing with any liquid is a 

good one.  

 

3.1.3 Differential Analysis of Fluid Flow - Microscopic Balances of Mass and 

Momentum 

 

 The main goal of biofluid mechanics in this research is to identify the 

relationship between variables so that the value of one or more of these variables can be 

determined in terms of given boundary conditions. As a first step, the basic balances of 

properties or “Conservation Laws” that involve multiple variables of interest will be 

introduced. The view of biofluid mechanics study is divided into two parts which are 

Macroscopic and Microscopic view. Since our study focuses on Microscopic Balances 

of Mass and Momentum in the microvessel blood flow, these laws relative to an 

infinitesimal or Microscopic volume will be evaluated. By doing the Microscopic 

approach, complex and detailed parameters can be determined such as local velocity, 

pressure and so on. 

 

3.1.4 Conservation of Mass– Derivation of the Continuity Equation   

 

 A system is defined as a collection of unchanging contents, so the conservation 

of mass principle for a system is simply stated as 

Time rate of change the system mass = 0 
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System 

Control Volume 

(a) 

 

Control Volume 

System 

 

(b) 

Control Volume 

System 

(c) 

Time rate of charge 

of the mass of the 

coincident system 

Time rate of change 

of the mass of the 

contents of the 

coincident control 

volume 

Net rate of flow of 

mass through the 

control surface 
= = 

or 

                                                                                                                    (3.5) 

Where  is the systemmass. 

 

 

 

Figure 3.2  System and control volume in the tube at three different instances of time. 

(a) System at time . (b) System and control volume at t, coincident condition. (c) 

System and control volume at . 

 

Figure 3.2 shows a system and a fixed, non-deforming control volume that is 

coincident at an instant of time. Thus, we can express Equation 3.6 which is also a 

derivation result from the Reynolds transport theorem that allows us to state, 

                                                                             (3.6) 

or can be expressed as 
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Because the amount of mass in volume is , it follows that the amount of mass in 

the control volume, , can be written as in Equation 3.7 

                                                                                                           (3.7) 

If the control volume has multiple inlets and outlet, Equation 3.6 can be 

arranged by replacing with Equation 3.7 for flow through each of the inlets and outlets 

to give Equation 3.8 

                                                   (3.8) 

 When a flow is at steady state flow (t=0s), all field properties at any specified 

point), including density, , remain constant with time and the time rate of change of the 

mass of the contents of the control volume is zero (Equation 3.9 and 3.10). 

                                                                                                                     (3.9) 

                   (3.10) 

 

 The control volume expression for conservation of mass, commonly called the 

continuity equation, is obtained by combining Equation 3.5 and Equation 3.8 to obtain 

Equation 3.11. 

               (3.11) 

From Equation 3.11 the mass can be conserved if the time rate of change of the mass of 

the contents of the control volume plus the net rate of mass flow through the control 
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surface of the control volume plus the net rate of mass flow through the control surface 

equal to zero. 

 For the mass flowrate,  symbol is often expressed, through a section of the 

control volume having area A as in Equation 3.12. 

                    (3.12) 

where  is the density of fluid, V is the normal velocity component of fluid to the area 

A, and Q=VA is the volume flowrate ( ). Note the symbols used to denote mass, m 

(kg), and mass flowrate, (kg/s). 

 The case of the fluid flow across the non-uniform section area A always 

happens. For that case, the appreciate fluid velocity to use in Equation 3.22 is the 

average value of the component of velocity normal to the section is involved. This 

average value, , is defined in Equation 3.13 and shown in the Figure 3.6.  

                                                                                                              (3.13) 

 

 

 

 

 

 

 

Figure 3.3 Uniform (Mean) and Non-uniform blood flow velocity profile through the 

straight tube 
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3.1.4.1 Differential Form of Conservation of Mass/Continuity Equation 

 

 The small and stationary cubical element will be taken as our control volume as 

illustrated in Figure 3.4. 

 

 

 

 

 

 

 

 

 

Figure 3.4 The differential element for the development of conservation of mass 

equation. 

 

At the center of the element the fluid density is  and the velocity has component u, v 

and w. Since the element is small the volume integral in Equation 3.10 can be 

expressed as 

                                                                                            (3.14) 
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y 

x 
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The rate of mass flow through the surfaces of the element can be obtained by 

considering the flow in each of the coordinate direction separately. For example, in 

Figure 3.5 flow in the x direction is depicted.  

 

 

 

 

 

 

 

 

 

Figure 3.5The differential element for the development of conservation of mass 

equation. 

 

If we let  represents the x component of the mass rate of flow per unit area at the 

center of the element, then on the right face 

                                                                                     (3.15) 

and on the left face 

                                                                                     (3.16) 
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Note that we are really using Taylor series expansion of  and neglecting higher order 

terms such as ,  and so on. When the right-hand sides of Equation 3.15 and 

Equation 3.16 are multiplied by the area , the rate in which the mass is crossing 

the right and left sides of the element is obtained, as illustrated in Figure 3.5. When 

these two expressions are combined, the net rate of mass flowing from the element 

through the two surfaces can be expressed as 

 

 

(3.17) 

For simplicity, only the flow in the x direction has been considered in Figure 3.8, but, 

in general, there will also be flows in the y and z directions. An analysis similar to the 

one used for the flow in the x direction shows that 

Net rate of mass outflow in y direction                                            (3.18) 

and 

Net rate of mass outflow in z direction                                           (3.19) 

Thus,  

Net rate of mass outflow                                      (3.20) 

 

From Equation 3.18, 3.19, and 3.20, these do not follow that differential equation for 

the conservation of mass is 

Net rate of 

mass outflow 

in x direction 
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                 (3.21) 

As mentioned previously, this equation is also commonly referred as the continuity 

equation. 

 The continuity equation is one of the fundamental equations of fluid mechanics 

and, as expressed in Equation 3.21, is valid for a steady or unsteady flow, and 

compressible or incompressible fluids. In vector notation, Equation 3.21 can be 

simplified as in Equation 3.22. 

                                                                                                         (3.22) 

Two special cases are of particular interest. For steady flow (t=0s) of compressible 

( ) fluids (Equation 3.23 or3.24) 

                                                                                                                 (3.23) 

or 

                                                                                          (3.24) 

This follows since the definition  is not a function of time for steady flow, but colud 

be a function of position. For incompressible fluids the fluid density, , is a constant 

( = constant) throughout the flow so that Equation 3.22 becomes (Equation 3.25 or 

3.26) 

                                                                                                                   (3.25) 

or 
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                                                                                                      (3.26) 

Equation 3.25 and 3.26 apply to both steady and unsteady flow of incompressible fluids.  

 

3.1.5 Conservation of Momentum 

 

 In deriving the differential form of this law, the dynamics associated with a 

fluid control volume ( ) are considered once again as shown in Figure 3.6.  

 

 

 

 

 

 

 

 

 

 

Figure 3.6 Mass flux across the surfaces of control volume 

 

 

 

 

 

 

 

 

 

©
 T

his 
ite

m
 is

 p
ro

te
ct

ed b
y o

rig
in

al 
co

pyr
igh

t 



27 
 

Newton’s Second Law of Motion is now applied, as written in Equation 3.27, in terms 

of the time rate of change of momentum (Equation 3.28): 

                    (3.27) 

 

 

(3.28) 

 In general, the linear momentum per unit volume fluid can be expressed as   

so that by multiplying this term by the rate of volume change, we can obtain the time 

rate of change of the linear momentum. To determine the flux of a property across the 

Control Volume surface, the appropriate expression for the rate of volume change is 

( ) dA, where  is the outward directed normal to a particular surface. For a change 

of the property within the Control Volume, the rate of the volume change is simply 

given by . As in the derivation of the Continuity Equation, the Control Volume 

considered is constant and we can express the above equality in Equation 3.29. 

                             (3.29) 

If we take the limit of  as it approaches zero. 

Each of these terms can be evaluated separately as follows: 

1. Sum of the external forces (Equation 3.30) 

                                                                                                (3.30) 

2. Net rate of momentum efflux across the control volume (Equation 3.31) 

Sum of the 

external forces 

acting on the 

Control Volume 

Net rate of efflux of 

linear momentum 

across the Control 

Volume 

Time rate of change 

of linear momentum 

within the Control 

Volume 

= = 
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(3.31) 

At this point, we can also use the Continuity Equation to substitute terms (Equation 

3.32) 

                                                                        (3.32) 

and reduce this limit to (Equation 3.33) 

                                         (3.33) 

3. Time rate of change of momentum within the control volume (Equation 3.34) 

                                                           (3.34) 

Substituting for the limits and combining the terms gives Equation 3.35 

                                                                        (3.35) 

 The change of momentum has been expressed in terms of its components 

velocities. Let us look at the external forces in further details. They consist of the sum 

of the body forces, , and the surface forces, . The forces are typically due to the 

presence of gravitational, electromagnetic, and electrostatic fields. If the only body 

force is gravity, then (Equation 3.36) 

                   (3.36) 
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z 

 

 

  

  

 The surface forces acting on the control volume are those due to the normal, , 

and the shear stress, , stresses. These stresses can be assumed to vary continuously 

from their nominal values at the center of the Control Volume in each of the coordinate 

directions as illustrated in Figure 3.10. 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 Normal and shear stresses along the x coordinate in the Control Volume 

 

Figure 3.7 depicts the normal and shear stresses acting on the Control Volume in the x 

direction alone. Similar figures can be constructed for the normal and shear stresses 

acting in the y and z directions. This, the net surfaces force acting in the x direction is 

given in Equation 3.37. 
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              (3.37) 

The total force acting on the control volume in the x direction then becomes (Equation 

3.38) 

                   (3.38) 

which, in the limit, can be expressed in Equation 3.48a. 

               (3.38a) 

Similarly, the differential force components in the y and z directions are: 

               (3.38b) 

               (3.38c) 

 By substituting the results of the above expression in Equation 3.38a to 3.38c 

back into the expression for the Newton’s Second Law (Equation 3.39) yield in 

Equation 3.40a to 3.40c. 

                  (3.39) 

            (3.40a) 

            (3.40b) 

            (3.40c) 
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In this form, we can see that the right-hand side of the above equations actually 

represents density (mass/volume) X acceleration, or force/volume, where the 

acceleration terms can be separated in local acceleration ( , etc.) component. The 

total acceleration can be expressed in terms of the substantive derivative in Equation 

3.41. 

                  (3.41) 

 Equation 3.40a to 3.40c represents the complete form of the different 

Conservation of Momentum balances. These equations cannot be solved, however, 

because there are more unknowns (i.e., dependent variables) than equations. Thus, it is 

necessary to derive additional information in order to provide those equations. Those 

equations are applicable for incompressible Newtonian fluids. Here, the normal and 

shear stresses can be expressed in Equation 3.42a-c. 

              (3.42a) 

              (3.42b) 

              (3.42c)  

 By substituting these relationships into Equation 3.42a to 3.42c, we obtain the 

Equation of Motion in scalar form along the three coordinate axes as 

           (3.43a) 

           (3.43b) 
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           (3.43c) 

The equivalent vector form as in the Equation 3.44. 

                  (3.44) 

which can simply be written as in Equation 3.45.  

                (3.45) 

by expanding the material derivative for acceleration and dividing by density, . 

The above equation (in either scalar or vector form) are commonly called the Navier-

Stokes equations for the incompressible Newtonian fluids.   

 

3.2 Computational Fluid Dynamics (CFD) 

 

 As mention earlier, in order to solve a set of equations, we must have at least as 

many constraints as we have dependent variables. Examination of Equation 3.43a to 

Equation 3.43c shows that there are four dependent variables-pressures (p) and three 

velocity components (u, v and w) defined in terms of four independent variables-time 

(t) and three position coordinate (x, y and z) – but only three equations. However, by 

including the Continuity equation, we obtain the fourth constraint, which will allow us 

to uniquely define each dependent variable. Mathematically, Equation 3.22 (Continuity 

Equation) and Equation 3.44 (Navier-Stokes Equation) are first-order and second-order 

partial differential equations, respectively. Furthermore, Equation 3.43a to Equation 
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3.43c is nonlinear because of the presence of product terms such as 

 etc. Unfortunately, no exact analytical solution has 

been taken. One is to first simplify the equations until they have a mathematical form in 

which there is a solution. For example, we could assume a steady, two-dimensional 

flow (say, in the x-y plane) along one axis (say, the x axis), which would eliminate all 

terms involving and two of the velocity components. If the flow were in the x 

direction only, the Equation 3.22 could reduce to  

                     (3.46) 

Or 

                    (3.47) 

Where C is the integration constant, Equation 3.54 will be reduced to  

                    (3.48) 

Here, it is now possible to solve  as an explicit function of p.  

The other approach taken is to solve these equations numerically. This approach 

is more complex, but it provides the ability to solve problems without making 

unrealistic simplifying assumptions. The basic technique is to first sub-divide the flow 

into many small regions, or cells (Figure 3.11b), over which the governing equations 

are applied. Rather than using the differential form of the equations, however, they are 

rewritten in algebraic form in terms of changes that occur in variables due to the 

incremental changes in position and time. Solutions are then obtained locally at the 

specific locations or nodes (Figure 3.8b), on the finite elements across a mesh (Figure 

3.8a) of element Figure 3.8 and Figure 3.9. 
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Face Associated Nodes 

Face 1 1-2-3-4 

Face 2 3-4-5-6 

Face 3 5-6-7-8 

Face 4 1-2-7-8 

Face 5 2-4-5-7 

Face 6 1-3-6-8 

 

Figure 3.8(a) The CFD Mesh for the saphenous vein graft model with a kink failure. (b) 

Hexahedron cells that applied on the saphenous vein graft model (c) Table of Face and 

Node numbering for the Hexahedron cells 

 

 

Figure 3.9: The fine meshes are employed in the area of the saphenous vein graft in 

order to obtain more accurate result in this region of interest. For this research interest 

region is at the wall of the vein graft model ;(a) Proximal or Inlet region and (b) Distal 

or Outlet region. 

 

This set of solutions is updated at subsequent time intervals over the entire mesh until 

some acceptable levels of accuracy, or tolerance, are achieved based upon the 

convergence between the successive values of certain output variables. Obviously, this 

can be a very detailed and time- consuming process depending upon the complexity of 

the geometry being analyzed and the initial and boundary conditions imposed. 

Furthermore, additional features are sometimes included in the equations to allow for 

(a) (b) 

(c) 
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the simulation of Non-Newtonian fluids and the turbulent flow conditions, for example. 

While it is always important to validate such results, these computational fluid 

dynamic (CFD) software programs are increasingly being used to solve challenging 

biomedical flow problems unapproachable by any other means. 

 

3.3 Computational Simulation Details and Modeling 

 

3.3.1 Computational Simulation Details 

 

Computational simulation of blood flow in ideal and irregular of the vein graft 

models are executed via ANSYS FLUENT V13 and the discretization scheme is based 

on the finite volume method. A structured hexahedron mesh has been utilized for nodes 

generation due to a better meshing yield and it is also more suitable for ideal and 

irregular vein formation models by applying the GAMBIT V2.4.6. Meshing is a 

process of engagement of sub-domains or to generate small cells into ideal and 

irregular of the vein graft models to become as an interlock by using a hexahedron cell 

or element. This is amenable to solve the governing equations through created grids. 

The meshing step begins by setting and generating the coarse grids to ensure that there 

are no problems in the first place of generating the grids, and then followed by 

generation of successive smaller grids at the interest region like in this research, the 

wall region is confirmed as an interest region for the wall shear stress study. This is 

because the first time meshing can reflect a significant effect on the results due to low 

mesh density (Ferziger&Peric, 2002; Shaw, 1992). However, the skewness value 
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should also be considered as to achieve successive in meshing. Skewness is defined as 

the difference between the shape of the cell and the shape of an equilateral cell of the 

equivalent volume. The highly skewed cells can decrease accuracy and destabilize the 

solution. Each element has a value of skewness between 0 and 1, where 0 represents an 

ideal element. In the GAMBIT V2.5.6, the skewness that value below than 0.5 is an 

acceptable value in meshing. The predicting equation of the blood flow through the 

vein graft models have to be converged and the meshing required to achieve the Grid 

Independent state. The Grid Independent state can be achieved by observing the results 

that do not change for further refinements of the grid (Tu et al., 2008). 

Furthermore, a simulation by the vein graft failures has been introduced in this 

work. This is to achieve high accuracy and Grid Independence, where the ideal and 

irregular vein graft models have been remodeled to small size and more cells. Hence, 

the computations for all models are executed case-by-case as illustrated in Figure 3.10. 
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Figure 3.10 Table of the vein graft models 

 

Convergence can be easily achieved too due to density of the meshing increased in the 

vein graft model. A reasonable convergence solution for the iterations has been set for 

both mass and momentum, with residual level being below . 

 Based on clinical diagnostic and surgical results, the real vein graft is in 

cylindrical geometry. As our objective to investigate our model close to in-vivo vein 

graft, the ideal and irregular formation of the vein graft model has been designed and 

created them in three dimensions cylindrical geometry. Furthermore, we can investigate 

any part of interest in x, y axes and even in z axis of the vein graft models compared to 

Failure 

Case 
Model 

Failure Detail 

Case 

Internal 

Diameter 

Mismatch 

Ratio, 

 

Amplitude of 

two cycled 

sinusoidal 

wavy vein, cm 

Ideal 

Straight 
 

Ideal 1:1 0 

Internal 

diameter 

mismatch 

 

Case 1 1:1.1 0 

Case 2 1:1.2 0 

Case 3 1:1.3 0 

Over 

length 

kink 

 
Case A 1:1 0.05 

Case B 1:1 0.10 

Case C 1:1 0.15 
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the two dimensional analysis that limited into two axes only, x and y axis. In this 

circumstance, the computational effort or the central processing unit (CPU) time 

occurred due to direct involvement of the three axes. Therefore, several assumptions 

are applied in this work to reduce the computation time, such as: 

 

1. No heat transfer function applied at the blood flow through the vein graft model 

2. No backward flow function activation at distal or outlet region of the vein graft 

model  

3. Flow is fully developed at the inlet region which means no user define function 

applied for parabolic profile flow 

 

However, we still extrude our vein model length in order to allow the blood 

flow to become fully developed since no user define function applied as illustrated in 

Figure 3.11. As a solution, the inlet region in monitoring the flow is set right after the 

blood flow become a fully developed flow. A fully developed flow is calculated based 

on the entrance length  of a pipe channel as cited by Krishnan B. Chandaran et al. 

(2007) (Figure 3.11). Typical entrance lengths are given by 

 for laminar flow                                                                                  (3.49) 

where D and Re are the pipe diameter and Reynolds number respectively. 
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Figure 3.11 Entrance region, developing region and fully developed in the vein graft 

model 

 

Once the fluid reaches the end of the entrance region at Section (2), the flow is simpler 

to describe because the velocity is a function of only the distance from the pipe 

centerline, r and independent of x. Hydraulically, the entrance length is very important 

because the transport properties such as centerline velocity or maximum velocity, 

pressure gradient between the proximal and distal of the vein graft model and the wall 

shear stress impact on the vein graft model depend strongly after the blood flow over 

than this entrance length region.  

 

3.3.2 Fluid Mechanics in a Vein Graft Model 

 

 Most of the blood flow in the human circulation occurs within tubular structures 

such as arteries, capillaries and vein as well. For that reason, the study of fluid 

mechanics in a straight tube is of particular interest in biofluid mechanics. Even 

Inviscid core 

D 

(1) (2) 

Fully developed flow 

 

r 

x 

Entrance region flow 
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(2 r dx) 

dr 

dx p(2 rdr) 

 

 

thoughmthe human vasculature is not geometrically a series of straight tubes of 

constant diameter, results from this analysis do provide good estimates or starting 

points for further evaluation. In this chapter, there are several definitions of terms, 

which are relevant to common blood flow conditions. 

 Based on clinical results, the circulatory system is pulsatile in most regions like 

the systemic arteries and the microcirculation. The unsteady term for flow type is very 

general and refers to any flow type that is simply and not constant. The pulsatile flow 

can be defined as the flow that has a periodic flow behavior and a net directional blood 

flow motion over cycle (i.e., the average flow is > 0). On the other hand, the oscillatory 

flow means the flow has periodic flow behavior but oscillates back and forth without a 

net forward or reverse output (i.e., the average flow 0). The fact of the unsteadiness 

type of blood flow is well known. Describing the principles of blood flow under more 

simplified condition is very helpful before furthering to complex physiologic 

environments. The simplest case to consider, therefore, is that of steady state blood 

flow type of Newtonian fluid through a straight, rigid, circular tube aligned in a 

horizontal position (Figure 3.12) 

 

 

 

 

 

Figure 3.12 Force balance for steady blood flow through an ideal straight, horizontal, 

vein graft model 
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3.3.2.1 Blood Flow Stability and Related Characteristics 

 

 The nature of flow of a Newtonian fluid in a straight, rigid, circular tube is 

controlled by the inertial (accelerating) and the viscous (decelerating) forces applied to 

the fluid elements. When the viscous forces dominate, the flow is called laminar and is 

characterized by smooth motion of the fluid. The laminar flow can be thought of as if 

the fluid is divided into a number of layers flowing parallel to each other without any 

disturbances or mixing between the layers. On the other hand, when the inertial forces 

strongly dominate, the flow is called turbulent. Here, the fluid exhibits a disturbed, 

random motion in all directions, which is superimposed on its repeatable, main motion. 

 

3.3.2.1.1 Steady State Laminar Blood Flow in a Vein Graft Model 

 

 The key characteristic of the laminar flow is that it is well organized and very 

efficient, whereas the turbulent flow is chaotic and accompanied by high energy losses. 

Therefore, the turbulent flow is undesirable in the blood circulation because of the 

excessive workload it would put on the heart and also because of potential damage to 

the blood cells. A helpful index used to determine whether the flow in a tube or 

turbulent is the ratio of the inertial forces to the viscous forces. This ratio is classically 

known as the Reynolds number (Re), which is dimensionless since both terms have 

units of [F]. It is defined as  

                  (3.50) 
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Where  is the density of fluid, V  is the average velocity of the fluid 

over the cross section of the tube,  is the tube diameter, and  is the 

dynamic viscosity of the fluid. Although the inertial forces obviously begin to dominate 

for , it has been determined experimentally that in a smooth-surfaced tube, the 

flow is laminar for all conditions where . In this research, the blood flow 

has been calculated and recognized as laminar blood flow type. This means that the 

turbulence flow characteristic should be ignored. Furthermore, if the tube is long 

enough to have stabilized any entrance effects (Figure 3.12), the velocity profile then 

takes on a parabolic shape and the flow is called a fully developed laminar flow. 

 In section 3.1.5, we discussed the principle of Conservation of Momentum and 

derive the Navier-Stokes Equation. For the incompressible Newtonian flow, the 

equation of motion in vector nation given by Equation 3.55 

                (3.51) 

Where  [m/s] is the velocity vector, p [Pa] is the pressure,  is the 

gravitational acceleration,  is density and v   is the kinematic 

viscosity of the fluid, respectively. 

 If we apply these equations in cylindrical coordinates (Equation 3.52) to the 

case of steady flow in an ideal straight, circular, horizontal vein graft model (Figure 

3.13),  

       (3.52) 
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Laminar profile 

Ideal 

(Inviscid Profile)  

 

r 

 

 
  

 

R 

r 

dr 

 

 

 

 

 

 

 

 

 

Figure 3.13 The shear stress distribution within the fluid in an ideal straight vein graft 

model (laminar flow) and typical profiles 

 

Then the momentum balance in the z (axial) direction reduces to 

                  (3.53) 

since the time rate of change (i.e.,  ), secondary velocity (i.e., , and 

circumferential velocity gradient (i.e., ) terms are zero. As a consequence, the 

conservation of mass balance results in  also being zero. 
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 Rearranging terms yields  

                   (3.54) 

 Since pressure is only a function of length and axial velocity is only a function 

of radius, however, this equation can be written equivalently in terms of ordinary 

derivatives, or 

                   (3.55) 

 We can further observe that, for the two terms of the equation (i.e., Left Hand 

Side and Right Hand Side) to be equal for all values of independent variables r and z 

(each of which is only present in one of the terms), each term must be constant. 

Equation 3.55 then can be integrated twice to yield (Equation 3.56 and Equation 3.57) 

                   (3.56) 

                 (3.57) 

 The constant terms, and , can be evaluated by applying known values of 

axial velocity at the specific boundary locations. For example,  at  is due to 

the “non-slip” condition at the vein graft wall. The values of , however, is not known 

at the vein graft model center, , although we can assume that it is a maximum at 

the point due to overall symmetry of the vein graft model. Thus, the appropriate 

boundary condition here is , which requires that  and which also 

constrains all velocities to be finite. 

Evaluating  and substituting it into Equation 3.57 results in 
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                  (3.58) 

If we replace the differential pressure gradient term by the pressure gradient 

along the entire ideal straight vein graft model, , then the velocity variation, or 

“profile” in an ideal straight vein graft model is given by 

                  (3.59) 

or 

                  (3.60) 

Where V [m/s] is the velocity of the fluid at distance r[m] from the center of the tube, 

[m/s] is the maximum (centerline) velocity, R[m] is the radius of the tube, d[m] is 

the diameter of the tube, and [Pa] is the pressure drop along a length L[m] of the 

tube. By integrating this velocity profile over the tube’s cross section and diving by two, 

we can obtain the average velocity 

                    (3.61) 

 Since the flow rate in tube, Q , is equal to the average velocity, , 

times the cross-sectional area, we can write 

                 (3.62) 

Or 

                  (3.63) 

 

 

 

 

 

 

 

 

©
 T

his 
ite

m
 is

 p
ro

te
ct

ed b
y o

rig
in

al 
co

pyr
igh

t 



47 
 

In terms of the tube diameter, this becomes 

                    (3.64) 

Solving for the pressure difference, we obtain 

                    (3.65) 

which is commonly known as the Hagen-Poiseulle Equation. 

The Hagen-Poiseulle Equation is very important equation to validate the 

results obtained from this simulation works. If the simulation results show exactly or 

nearly to the theoretical results, it means that our simulation works are correct. 

 

3.3.2.1.2 Blood Viscosity and the Wall Shear Stress impact on the Vein Graft 

Model 

 

In the study of the vein graft vascular disease, one of the most important 

variables is the shear stress,  of the blood flow, at the vessel wall  of the 

vein graft model (Figure 3.6).The wall shear stress has considerable clinical relevance 

because it provides information about both the magnitude of both the blood exerted on 

the vessel wall as well as the force exerted by the fluid layer on another (Krishnan B. 

Chandran, et al, 2007). In healthy blood vessels, the shear stress is generally 

low  and is not harmful to either the blood cells or to the cells, 

which lines up the inner surface of the vessel, called endothelial cells. The shear stress 

varies with the flow conditions (cardiac output, heart rate etc.) as well as with the local 
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geometry of the vessel (curves, branches, etc.).Excessively high levels of the shear 

stress caused, for example, by atherosclerosis lesion or artificial heart valves, may 

damage the red blood cells (a condition called “hemolysis” ) or the endothelium of the 

vessel wall. Other abnormal shear stresses, such as the very low or strongly oscillatory 

shear stresses, may also change the biological behavior of some cells, such as platelets 

in the blood stream in which they become activated, leading to thrombus formation. 

These stresses may also act on endothelial cells lining the vessel wall, which then act as 

active compounds, leading to vessel constriction or wall hypertrophy. 

 Based on our earlier discussions, we can determine the shear stress for the 

laminar flow of Newtonian fluid as being linearly related to the shear rate  

according to Equation 3.3 as expressed in terms of cylindrical coordinates 

          (3.3) 

Where V is the velocity  at the radial position r [m] and  is the dynamic viscosity 

 of the fluid. For laminar case, the wall shear stress can be determined from 

the force balance within a control volume if the pressure drop, , is known along a 

length L of the ideal straight vein graft model (Figure 3.13) 

                    (3.66) 

 As mentioned earlier, both viscous and shear stresses, if large enough, can 

potentially activate or lyse (i.e. rupture) the blood cells. However, the origin and, 

consequently, the scale of both viscous and shear stresses are different. The viscous 

shear stresses act on a molecule scale, i.e., they arise from the tendency of one 

molecule to remain in close proximity to its neighbor. This is quantified in fluids 
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through the measure of their “viscosity”. As the viscous stresses act on a scale much 

smaller than the diameter of a blood cell (in the order of few ), the blood cells will 

always experience the viscous shear stress if one is present. 

 

3.3.3 Boundary Conditions 

 

 Boundary conditions are the sets of properties or conditions that are defined at 

every surface of ideal straight and irregular formation of the vein graft model. This 

defining process is one of the most important stages in computation in order to simulate 

the blood flow model numerically. The simulation will lead to a wrong solution if it is 

wrongly specified as erroneousness sets of the boundary condition (Versteeg et al., 

1995; Tu et al., 2008). The setting of the following boundary conditions is a common 

practice in the vein graft modeling or the vein graft wall bounded flow. A Newtonian 

fluid, nonslip at the wall of the vein graft model, the laminar blood flow, the steady and 

pulsatile flow, the vein graft model as cylindrical shape, the vein graft model as a rigid 

body and blood flow are types of boundary conditions that need to be specified at each 

case of the vein graft models in order to solve the blood flow problems.  
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CHAPTER 4 

 

RESEARCH METHODOLOGY 

 

4.1 Introduction 

 

 The simulation work in engineering field has become well established for 

further engineering analysis. However, the outcomes of simulation works have always 

being argued. Due to this, the simulation work must be validated first before any results 

can be established. Hence, in this chapter, the study of simulation algorithms and the 

integrity of its results are carefully validated against peer reviewed experimental works. 

The experiment had been performed by Tzu-Ching et al. (2011) in measuring the red 

blood cells velocity in the capillaries of finger nail-folds. More details on this 

experiment will be discussed in the following subchapter. Further information on this 

experiment is discussed in the following subtopic. The thesis models, as laid in the 

proceeding chapter have been utilized in this validation work to investigate the blood 

flow phenomena in irregular formation of the vein graft models. Those models are 

carefully validated with an error of 1.5% which is within acceptable limits. Therefore, 

this validation will save and set as a benchmark in meshing to use the models and carry 

out further investigation for blood flow in the irregular vein graft models. Besides, case 

by case simulation methods has been introduced to achieve higher accuracy in results 

as the results do not show any significant changes in velocity with further refinements 
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in the grids. Finally, the boundary conditions in this validation simulation works are 

also included from the experimental work. 

 

4.2 Simulation Procedures  

 

 First of all, an ideal straight vein graft model must be drawn in the GAMBIT 

Geometry Design which is the meshing software and followed by mesh generation. The 

GAMBIT Geometry Design has also been applied in designing every case of irregular 

formation of the vein graft model. Each vein graft model was examined for mesh 

quality especially the skewness range of the cells. In GAMBIT Geometry Design 

software, the skewness range of the cells must be below than 0.6. Otherwise, the error 

will occur when executing the geometry in the ANSYS Fluent Software. After the 

mesh generation, the vein graft models are ready for computation process. (Please refer 

Appendix A) 

 The procedure begins with the definability and initialization of physical 

boundary conditions by the ANSYS Fluent Software pre-processing tool. In this 

initialization process, the design problems have to be carefully initialized with specific 

boundary conditions according to the design problems. Next, the designed problems are 

ready to be solved iteratively by the ANSYS Fluent-Solver tool with appropriate 

equations. In this study, both the steady and pulsatile flow function have been utilized 

at ideal straight and irregular formation of the vein graft models while preserving the 

same  boundary conditions for the designed vein graft models. This is to obtain the 

different results between this ideal straight and the irregular formation of the vein graft 
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models. Finally, the results are analyzed at the post-processing (Please refer Appendix 

B). The entire flow of the process for this simulation sequence is illustrated in Figure 

4.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 The entire flow of the process for simulation work 

GAMBIT Geometry Design: Ideal Straight and Irregular 

geometry formation model of the vein grafts design 

GAMBIT Geometry Design: Ideal Straight and Irregular geometry 

formation model of the vein grafts meshing 

FLUENT Pre-Processing for Ideal Straight Case 

Step 1: Launching ANSYS FLUENT 

Step 2: Mesh Checking for Ideal Straight Case 

Step 3: General Settings 

Step 4: Models 

Step 5: Materials (Fluid: Blood Properties) 

Step 6: Cell Zone Conditions (Fluid Conditions) 

Step 7: Boundary Conditions (Proximal, Distal and Vessel Wall) 

Step 8: Solution (Steady Flow, Transient Flow and Results Monitoring) 

Step 9: Displaying the Preliminary Solution (Displaying Results in Contours or Line) 

Step 10: Enabling Second-Order Discretization (Optimizing Calculation)  

 

 
Repetition of Initialization 

and Simulation for 

Irregular geometry 

formation model of the 

vein grafts 

FLUENT Post-Processing (SimulationResults) 

GAMBIT-Mesh Quality Checking Examination: Ideal Straight and 

Irregular geometry formation model of the vein grafts mesh quality 

checking 

FLUENT-Solver (Calculation Process) 

Examine Result for Ideal Straight Case 

Finish 
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4.3 Validation Basis 

 

 The work of Tzu-Ching Shih et al. (2011) concerns the measurement of the red 

blood cells velocity in the capillaries of finger nail-fold by applying the computational 

fluid dynamic method. The two-dimensional captured capillary images were 

reconstructed to three dimensional models by assuming circular cross sections. The 

vessel walls were also assumed as the non-slip walls. The red blood cells velocity that 

calculated by the OFE (Optical Flow Estimation) was used in their experiment as a 

reference fluid or yardstick in order to measure and compare the red blood cell velocity 

that calculated by the CFD. The calculated red blood cell velocities of various grid 

sizes in meshing were almost identical to each other at each distance, indicating that the 

CFD numerical results are grid independent. Based on their experiment, it is noted that 

the CFD method can provide a reasonable accuracy to the red blood cells velocity in 

the finger nail-fold capillaries. 

 The blood vessel model that they had used was assumed as circular cross 

sections with the capillary diameter ranging from 8.98 to 21.72 μm, and about 1 cm in 

length. Other blood flow properties that they had set in their experiment were an inlet 

flow and Reynolds number of 191.70μm/s and 0.003, respectively. From the 

calculation, the Reynolds number showed below than 1 most certainly describes the 

flow of fluids as laminar blood flow. The non-slip boundary conditions were applied on 

the vessel walls and a uniform velocity profile was used at the inlet. The blood was 

approximated as a Newtonian fluid with a density of 1050 kg/m
3
 and a dynamic 

viscosity of 0.035 kg/m/s. Figure 4.2 shows the outlet velocities with different element 

numbers obtained from their experiment. Their experiment results shows a good 

 

 

 

 

 

 

 

 

©
 T

his 
ite

m
 is

 p
ro

te
ct

ed b
y o

rig
in

al 
co

pyr
igh

t 



54 
 

agreement with their estimated analytical results, suggesting that the CFD method and 

the incompressible Navier–Stokes equations can be used to predict the blood flow 

behavior of homogenous fluid within a blood vessel in the finger nail-fold .Therefore, 

their method has been used in this work to validate the simulation algorithms, the 

model equation as well as the boundary conditions. 

 

 

 

 

 

 

 

Figure 4.2 The velocity profile at the vessel outlet with different element numbers. The 

profile was observed at (Tzu-Ching Shih et al., 2011). 

 

4.4 Simulation Validation Details 

 

4.4.1 Case by Case Simulation 

 

In order to achieve the grid independence state, simulation by cases has been 

introduced in this meshing work. This method has led to achieve the highest number of 

nodes in the designed irregular formation of the vein graft model. The error occurred if 
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more nodes are created such as in length kink of the vein graft model, only 443 681 

nodes were accepted. As shown previously in Figure 3.12, the finer meshes are 

employed in the area of the saphenous vein graft in order to obtain more accurate result 

in this region of interest. Furthermore, the spacing between two nodes can also be 

reduced orderly, at the same times the numbers of nodes in the total vein graft models 

increase. To add further, this research interest region is at the wall of the vein graft 

model. In addition, this particular method is very suitable for the vein graft models with 

longer length as more accurate results can be obtained (Rory F.Rickard, 2009). Hence, 

the simulation work case by case is considered suitable for this validation work since 

the microchannel used in Rory F. Rickard, (2009) and of Tzu-Ching Shih et al.’ (2011) 

experiments. The amount of larger number of nodes in the vein graft model should lead 

to better approximations or more accurate results. Simultaneously, the convergence 

criterion can be easily achieved in calculating due to the higher density of meshing in 

the vein graft model. 

Table 4.1 shows the details of the simulation case by case that have been 

performed to simulate the experimental work in order to achieve the grid independence. 

These are ideal straight vein graft model, three cases of mismatch vein graft model and 

three cases of kink vein graft model simulation which have been performed. Further 

details on the accuracy of the analysis are discussed in the following subtopic of 

meshing. 
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Table 4.1:Details of simulation based on cases. 

Case Model 

Geometry Detail 

Case 

Internal 

Diameter,cm 
Vein 

Length, 

cm 

Amplitude 

of two 

cycled 

sinusoidal 

wavy vein, 

cm 
Artery Vein 

Ideal 

Straight  
Ideal 0.10 0.10 

10 

 
0 

Internal 

diameter 

mismatch 

 

Case 1 0.11 0.10 
10 

 
0 

Case 2 0.12 0.10 
10 

 
0 

Case 3 0.13 0.10 
10 

 
0 

Over 

length 

kink 

 
Case A 0.10 0.10 10.01 0.05 

Case B 0.10 0.10 10.04 0.10 

Case C 0.10 0.10 10.10 0.15 

 

4.4.2 Meshing 

 

The first step of the pre-processing step in the ANSYS Fluent is the creation of 

geometry of the vein graft model. After that, the created geometry of the vein graft 

models will proceed to the meshing stage. Those works were done in GAMBIT. 

Meshing is a process of engagement of the sub-domains or to generate small cells into 

ideal and irregular of the vein graft models to become an interlock by using a 

hexahedron cell or element. This is a requirement to solve the governing equations 
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through created grids into the vein graft model. At the beginning, the meshing process 

starts by generating vertices as a guidance to generate the grids, and then followed by 

the refinement of successively smaller grids. The fine meshes are employed in the area 

of saphenous vein graft in order to obtain more accurate results in this region of interest. 

For this research, the interest region is at the wall of vein graft model. This is because 

the first time meshing can reflect a significant effect on the results due to low mesh 

density (FerzigerJ.H, 1992). 

 As stated previously, the vein graft models with a length range between 10 cm 

and 10.10 cm have to be refined with the objective of increasing the number of nodes in 

the vein graft models where hexahedron cells are utilized since this produces better 

meshing yields in the vein graft models especially at the wall of the vein graft models 

even for more complex geometries. 

 Table 4.2 shows the summary of the total number of nodes and hexahedron 

elements that have been generated through the different subtopic meshing process. 
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Table 4.2 Total number of nodes and hexahedron elements 

Case Model 

   

Case 

Total 

number of 

nodes 

Total 

number of 

hexahedron 

elements 

Ideal 

Straight 
 

Ideal 248 751 242 000 

Internal 

diameter 

mismatch 

 
Case 1 248 751 242 000 

Case 2 248 751 242 000 

Case 3 248 751 242 000 

Over length 

kink 

 
Case A 222 761 216 000 

Case B 443 681 432 000 

Case C 443 681 432 000 

 

 

4.4.3 Boundary Conditions 

 

 The boundary conditions for validation in this simulation works are carefully 

extracted from previous experimental works conducted by GJTangelder et al. (1986), 

Mette S. Olufsen, (2000), Christopher L. (2001), Sang-Wook Lee et al. (2003),Meena S. 

et al. (2006), Jung J. et al. (2008), Qin, Liu et al. (2008), Rory F. et al. (2009) and Tzu-

Chinget al. (2011) to ensure their conditions is applied exactly the same into the this 
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simulation work. This is to accurately simulate and to attain reliable results required . 

Hence, the boundary conditions are as follows (Wilmer W. Nichols et al, 1998, 

Krishnan B. Chandran, 2007) : 

1. The property of blood has been assumed as homogenous liquid and its viscosity 

is the same at all rates of shear. The particle of blood is well known as a 

suspension of particles, but it has been proven that, in the vessels in which the 

internal diameter is larger compared to the size of red blood cell, it behaves as 

Newtonian liquid. However, this assumption is applicable in tubes over than 0.5 

mm radian. It is available for this research since the only tubes over than 0.5 

mm internal diameter are applied. 

2. The blood flow does not slip at the vessel walls. It is assumed that velocity is 

zero when  , which means that zero velocity at the vessel walls. 

3. The blood flow is laminar which means the blood flow is parallel to the wall of 

the vessel. This assumption is not applicable in turbulent blood flow. However, 

it has been proven that we limit this study by dealing with the laminar blood 

flow only. 

4. The rate of blood flow is at ‘steady’ state. It is only valid in steady state 

simulation cases but not for pulsatile (acceleration or deceleration) flow 

simulation cases. 

5. The vessel is cylindrical in shape. There are two opinions on this assumption; 

first, the cross section of the vessel is circular and second, the vessel walls are 

parallel. Even though this vein graft models may be good approximation for 

most of the existing digital arteries and saphenous vein in the upper extremity 

circulation, the digital arteries and the vein grafts are more elliptical in shape. 

The digital arteries do not taper with their cross sections (Mette S. Olufsen, 
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2000). Thus, the general assumption of circular cross for the saphenous vein 

graft section without taper is a close to reality. 

6. The rigid vessel wall and the diameter do not vary with the internal pressure. 

The arterial walls are more visco-elastic and dilated with the pulse pressure 

compared to the wall of veins. The interaction between the flowing blood and 

the dilatable arterial wall is an important factor in the description of the flow 

dynamics. Thus, the assumption of rigid walls in the model is also not valid. 

However, based on previous simulation work, the distensibility of the vessels 

will not affect the solution. 

7. The length of the vessel model needs to be extended and compared to the region 

being studied. Theoretically, close to the proximal (or the inlet) of the vein graft 

model, blood has not yet become the flowed with the parabolic velocity profile 

characteristic of the laminar flow. The distance required to establish the steady 

form of flow is known as the ‘entrance length’, and here the Poiseuille’s 

equation does not apply. We can conclude that, any result needs to be collected 

right after the entrance length of the vessel model.  

 

 The blood velocity in digital artery is calculated by Ying He et al. (2004) in the 

experiment is 6.25 cm/s for minimum velocity, 12.5 cm/s for mean velocity and 18.75 

cm/s for maximum velocity. The internal diameter of digital artery is approximately 

about 1 mm (Ying He et al., 2004). Based on paper reviews, the velocity of blood flow 

through the vein graft must be exactly the same as the exercised artery to ensure the 

prolonging survival of the vein grafting. Therefore, the inlet velocity of 12.5 cm/s as 

the mean velocity is applied at the proximal of the vein graft model in all cases, ideal 

straight model and irregular formation of the vein graft models for steady state analysis. 
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For unsteady or pulsatile flow analysis, the User Define Function (UDF) containing 

6.25 cm/s and 18.75 cm/s for minimum and maximum velocity is applied at the 

proximal in all cases (Please refer Appendix C). An interval time is set to be 4 seconds 

for one cycle of pulsatile (Ying He et al., 2004). 

 An absolute pressure of 1 atm is applied at the inlet region of the vein graft 

models as the patients are at the atmospheric pressure while ignoring the gravitational 

force and the energy equation.  

 

4.4.4 Grid Independence  

 

As stated previously, the Navier-Stokes Equations was used as the governing 

equations. Those equations have to be fully converged in order to get better results. 

However, based on literature studies, achieving the grid independence state is the only 

method in obtaining high accuracies. The grid independence state can be defined as an 

achievement when the results do not change for further refinements of the grid in the 

vein graft models. At the same time, the convergence in calculation also strongly 

depends on the mesh refinement of the vein graft models or in other words, how much 

smaller the girds are packed into the vein graft models. High density of grids are 

packed into the vein graft models, it helps to achieve the convergence quickly or 

required a minimum number of iteration in calculation. We can conclude that the 

convergence and grid independence states are quickly achieved based on the quality 

and quantity of the grid generated in the vein graft models (Rainald Lohner, 2008). 
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 Figure 4.3 shows the grid independence test and accuracy that has been 

achieved for the simulated vein graft models. The resulting velocity profile for the 

Internal Diameter Mismatch Cases shows a huge discrepancy compared to other cases. 

This is because of the initial or normal speed that carried by blood flows from the wide 

artery vessels to the narrow vessels. The Ideal Straight and Over Length Kink Cases of 

the simulations do not show any significant changes in the velocity profiles. Further 

increment in the number of nodes in the vein graft models via simulation by cases, 

which also reduces the spacing size between nodes, leading to better approximation 

with higher accuracy. Hence, the results achieved the grid independence state. However, 

the errors happen in the simulated results for those cases where the error percentage is 

less than 1.48% as compared to the measured result (Ying He et. al, 2004) which is 

well within the 5% error limit.The computational fluid dynamics numerical software 

ANSYS FLUENT was applied. In the numerical solution algorithm as given by Fluent, 

the governing Navier-Stokes equations (linear momentum and conservation of mass) 

were solved rapidly. The equations are linear, steady and simple with several iterations 

of the solution loops were needed before a solution result was fully converged. By 

applying this approach, the resulting algebraic equations for the dependent variables 

(the flow velocities) in each control volume were solved by the Least Squares Cell 

based on the linear equation solver and discretization method. The calculation was 

carried out by setting the convergence criteria as . The governing equations were 

calculated rapidly until calculations of all flow variables were converged on the HP 

workstation Z600 desktop (Intel Xeon, 4 GB RAM). 
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4.5 Validation 

 

4.5.1 SteadyState Blood Flow Model 

 

 

Figure 4.3 Grid independence tests 

 

Figure 4.4 shows the comparison of the velocity profiles of blood flow through 

the vein graft models between the measurement and the simulation result of the steady 

stateblood flow. The model has been simplified according to the previous simulation 

work to obey several experimental conditions such as laminar blood flow, Newtonian 

fluid, incompressible fluid, blood as homogenous liquid and it does not slip at the 

vessel walls. The simulation results of the velocity profile form have been monitored at 

the proximal, middle and distal of the vein graft models. Those profiles have also been 

compared to previous measured results (Ying He et al., 2004).  
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The measured velocity of blood flow in the finger digital artery from Ying He et 

al.’s (2004) experiment is about 0.125 m/s being 1.48% higher than the simulation 

result at 0.12315 m/s, which is well within the 5% error limit except for the mismatch 

cases. Thus, the observed velocity profile of blood flow in the vein graft models by the 

steady state flow model shows a very good agreement with the simulation data. It also 

shows the ability to produce better prediction on the blood flow in the vein graft models 

for low Reynolds number. Besides, the error percentages of each monitor region 

between the experimental and simulation works are shown in table 4.3. Based on this 

table, the error values obviously explain that the experiment value is much higher than 

the simulation values even for Internal Diameter Mismatch Cases. As stated previously, 

this is due to the initial or normal speed that carried by blood, flows from the wide 

artery vessels to the narrow vessels. However, a similar setting of meshes were set on 

that model of cases and validated. The steady state blood flow models have been 

methodologically validated by theoretical and simulation works. Thus, the vein graft 

models can be used for further investigations in the blood flow even in a steady state or 

pulsatile blood flow. 
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Figure 4.4 Comparison of velocity profiles between an experiment by Ying He et al. 

(2006) and the validation simulation of steady state blood flow model. 
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Table 4.3 Error percentage between experiment and simulation by the steady state 

blood flow model 

Case Model 

  

Case 

Error (%) 

Proximal Middle Distal 

Ideal 

Straight 

 
Ideal 1.48 1.48 1.48 

Internal 

diameter 

mismatch 

 

Case 1 1.48 1.48 1.48 

Case 2 1.48 1.48 1.48 

Case 3 1.48 1.48 1.48 

Over 

length 

kink 

 

Case A 1.48 1.48 1.48 

Case B 1.48 1.48 1.48 

Case C 1.48 1.48 1.48 

 

 

4.5.2 The Pulsatile Blood Flow Model 

 

The investigation of blood flow in an ideal straight and irregular formation of 

the geometry vein graft models were extended in the pulsatile blood flow function by 

using the same vein graft models that were previously applied in steady state cases. 

Figure 4.5 shows the comparison of the pulsatile velocity of blood flow between the 

Ying He et al.’s (2004) experimental and simulation by using laminar pulsatile of the 

FLUENT User Define Function. This validation is observed at the proximal of the vein 
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graft model crossing the center line of the sections, exactly as the location of previous 

simulation works (A. Jafari et al., 2009, Christopher L., et al., 2001, QinLiu et al., 2008, 

Rory F. Rickard et al., 2009, Sang-Wook Lee et al., 2003, Tzu-Ching et al., 2011, W. 

W. Jeong et al., 2009). The values of velocity, pressure gradient and WSS were 

observed right after 4 seconds because the stability was achieved on that time. The 

difference velocity of pulsatile blood flow through the vein graft models between 

measured and ideal straight results are 1.60% error. Thus, the observed blood flow 

velocity profiles of the pulsatile model also show a very good agreement with the 

experimental data. The error percentages for each monitor region (proximal, middle 

and distal) between the velocity profiles for the simulation works are illustrated in 

Table 4.4.  

 

 

Figure 4.5 Comparison of pulsatile velocity profiles between measured result by Ying 

He et al. (2004) and validation simulation of the pulsatile blood flow models. 
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Table 4.4 Error percentage between the experiment and simulation by the pulsatile 

models. 

 

 

4.6 Summary 

 

 The validation between the simulation works and the previous experimental 

works have been performed by utilizing both steady state and pulsatile models. Both 

models show a very good agreement to the approximate velocity profiles of blood flow 

in the vein grafts. The velocity profile error percentage between the experiment and the 

simulation at the vein graft models are 1.48% and 1.60% by the steady state and 

pulsatile models, respectively. Besides, the simulation by cases which has been 

Case Model 

  

Case 

Error (%) 

Proximal Middle Distal 

Ideal 

Straight 

 
Ideal 1.60 1.60 1.60 

Internal 

diameter 

mismatch 

 

Case 1 1.60 1.60 1.60 

Case 2 1.60 1.60 1.60 

Case 3 1.60 1.60 1.60 

Over 

length 

kink 

 

Case A 1.60 1.60 1.60 

Case B 1.60 1.60 1.60 

Case C 1.60 1.60 1.60 
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introduced in this work to achieve grid independence as well as higher result accuracies, 

shows promising achievement. Therefore, it can be concluded that, the simulation 

algorithms, the model equation as well as the boundary conditions used in this 

validation simulation works give promising results when compared to the measured 

results. Hence, these validated simulation algorithms, model equation, boundary 

conditions and the simulation by cases method form the benchmark upon which the 

basis to perform further simulations for the blood flow in the vein graft models. 
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CHAPTER 5 

 

RESULT AND DISCUSSION 

 

5.1 Introduction 

 

In order to address the hypothesis in the introduction, computations are 

performed for irregular formation of the vein graft models. The dimensions of irregular 

formation of the vein graft models are classified into two major cases, the internal 

diameter mismatched and over length kink of the vein graft models.  

For the dimension of internal diameter mismatched vein graft models, 1 mm 

internal diameter of the vein graft models are attached to various internal diameter of 

the artery models and the vein graft length of 10 cm for the vein graft models are kept 

constant. In the over length kink vein graft models, the vein graft diameter of 1 mm is 

kept constant. However, the vein graft lengths are based on the amplitude of two cycled 

sinusoidal wavy vein graft. 

All irregular vein graft models are created to investigate any significant 

differences in term of velocity of the blood flow, the pressure gradient between 

proximal and distal, the impact of the wall shear stress and the strain rate in the vein 

graft models. In the current simulations, there are three different inlet velocities from 

6.25 cm/s up to 18.75 cm/s, which have been used as the parameters to simulate blood 

flow in the vein graft models by using both steady and pulsatile laminar models. 

 

 

 

 

 

 

 

 

©
 T

his 
ite

m
 is

 p
ro

te
ct

ed b
y o

rig
in

al 
co

pyr
igh

t 



71 
 

After examining and ensuring that the grid independence is achieved and the 

equations have been converged, the final results are examined in the post-processing 

tool Ansys FLUENT Inc. and Microsoft Excel. An observation of the simulation results 

is shown and discussed in this chapter. 

The fact that the blood flow is unsteady is well known. However, it is helpful to 

first describe the principles of fluid flow under more simplified conditions before 

moving to complex physiologic situations. Because of this reason, we decided to 

simulate irregular formation of the vein graft models on the laminar steady state first 

and then proceed with the laminar pulsatile state. 

 

5.2 Irregular Formation Geometry of Vein Graft Model 

 

The computational domain of the irregular formation geometry of the vein graft 

models with designing in the GAMBIT. The internal diameter mismatched vein graft 

models are designed with 10 cm in length, 0.10 cm in internal diameter of the vein graft 

models and 0.11 cm (Case 1), 0.12 cm (Case 2) and 0.13 cm (Case 3) in internal 

diameter of the artery models. Those designs of internal diameter mismatched vein 

graft models can be seen in Figure 5.1 for Case 1, Figure 5.2 for Case 2 and Figure 5.3 

for Case 3, respectively. The figures show the vein graft models’ inlet, outlet and wall 

boundaries. The internal diameter mismatched design of the vein graft models consist 

of the same diameter of the vein graft which are attached to three different internal 

diameters of the artery models. The internal diameter mismatched of the vein graft 

models were extruded from the inlet after considering the entrance length for all 
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calculated Reynolds numbers. For Case 1, 0.10 cm internal diameter of the vein graft 

models is attached with 0.11 cm internal diameter of the artery models. The subsequent 

cases, 0.10 cm internal diameter of the vein graft models are attached to 0.12 cm 

internal diameter of the artery model for Case 2 and 0.13 cm internal diameter of the 

artery model for Case 3. 

In order to carry out the simulation works, the internal diameter mismatched 

models have to be meshed whereby the domain will be divided into small grids to 

create nodes where the governing equations are solved. Therefore, the repetition in 

meshing is done on the internal mismatched diameter vein graft models to create large 

number of nodes and achieve the grid independence without affecting the vein graft 

models. The numbers of nodes and hexahedron elements employed to achieve the grid 

independence for internal diameter mismatched vein graft models are shown in Table 

5.1. The maximum total numbers of nodes is 248 751 for all cases, respectively, which 

attained at meshing works. 

 

Table 5.1: Summary of Meshing for Internal Diameter Mismatched Vein Graft Models 

Simulation by Cases 

Internal Diameter Mismatched Vein Graft Models 

Total number of nodes 
Total number of 

hexahedron elements 

Ideal Straight Case 248 751 242 000 

Case 1 248 751 242 000 

Case 2 248 751 242 000 

Case 3 248 751 242 000 
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Figure 5.1: Internal Diameter Mismatched Vein Graft Model for Case 1 

 

 

 

 

 

 

 

Figure 5.2: Internal Diameter Mismatched Vein Graft Model for Case 2 
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Figure 5.3: Internal Diameter Mismatched Vein Graft Model for Case 3 

 

Three designed Over Length Kinked Vein Graft Models with the kink and 

curves, ,  and , are illustrated in Figure 5.4, Figure 5.5 and Figure 5.6 with the 

centerline of the vein graft model lengths are 10.01 cm, 10.04 cm, and 10.10 cm, 

respectively. Those vein graft models are also designed at the same distances in wall to 

wall diameter. The figures also represent the vein graft models inlet as proximal, outlet 

as distal and kinked regions. As proposed previously, the vein graft models of 1 

milimeter was kept constant for these vein graft models too, as to maintain the 

consistency of the study within this particular channel, the vein graft models diameter 

and the vein graft models were also extruded from the inlet after considering the 

entrance lengths for all calculated Reynolds numbers. Even though the simulation 

works have been done for the same vein graft models diameter, but the amplitude in the 
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vein graft models play as an important function for the investigations since the shape of 

the geometry does affect the fluid flow in the vein graft models. In order to achieve the 

grid independence, simulation by cases has been performed. The number of nodes and 

hexahedral elements that are employed to achieve the grid independence state is shown 

in Table 5.1. The total number of nodes and hexahedral elements generated by cases 

simulation are 222 761 nodes and 216 000 hexahedral elements for Case A and 443 681 

nodes and 432 000 hexahedral elements for Case B and 443 681 nodes and 432 000 

hexahedral elements for Case C, respectively. Table 5.2 also shows the number of 

nodes and hexahedral elements that are employed to achieve the grid independence 

state in the Over Length Kink Vein Graft Models. 

 

 

 

Figure 5.4: Over Length Kinked Vein Graft Models for Case A 
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Figure 5.5: Over Length Kinked Vein Graft Models for Case B 

 

 

 

Figure 5.6: Over Length Kinked Vein Graft Models for Case C 
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Table 5.2: Summary of meshing for Over Length Kinked Vein Graft Models 

Simulation by Cases 

Over Length Kinked Vein Graft Models 

Total number of nodes 
Total number of 

hexahedron elements 

Ideal Straight Case 248 751 242 000 

Case A 222 761 216 000 

Case B 443 681 432 000 

Case C 443 681 432 000 

 

5.3 Grid Independence Test 

 

The grid independence test is carried out for these Internal Diameter 

Mismatched Vein Graft Models by observing the velocity profiles blood flow. The 

velocity profile is observed at the proximal (inlet), middle and distal (outlet) of the vein 

graft models. These are Case 1, Case 2 and Case 3 simulations which have been carried 

out for the test of grid independence and accuracy. Figure 5.7, Figure 5.8 and Figure 

5.9 show the independence checking for Case 1, Case 2 and Case 3, respectively. 

The error percentage of the velocity profile of the Internal Diameter 

Mismatched Vein Graft Model for Case 1 at the middle and distal is 1.605 % and 0.831 

% higher compared to the proximal, respectively. In terms of the Internal Diameter 

Mismatched Vein Graft Model for Case 2, the error percentage of the velocity profile at 

the middle and distal is 2.646 % and 0.8127 % compared to the proximal, respectively. 

The error percentage of the velocity profile for Case 3 at the proximal and middle is 

1.984% and 1.975 % higher compared to the distal, respectively. Additionally, the 

velocity profiles also do not show any significant variations hence the simulation has 

achieved the grid independence. Besides, the convergence history has been monitored 

for both mass and momentum until the residual target reaches below . 
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Figure 5.7: The grid independence test of the Internal Diameter Mismatched Vein 

Graft Model for Case 1 with comparison of velocity profiles for three different 

positions in the vein graft model. 

 

 

Figure 5.8: The grid independence test of the Internal Diameter Mismatched Vein 

Graft Model for Case 2 with comparison of velocity profiles for three different 

positions in the vein graft model. 
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Figure 5.9: The grid independence test of the Internal Diameter Mismatched Vein 

Graft Model for Case 3 with comparison of velocity profiles for three different 

positions in the vein graft model. 

 

As stated in the previous chapter, the same settings of grid that were used for 

ideal straight and internal diameter mismatched vein graft models is also applied for the 

Over Length Kinked Vein Graft Model. An observation on the velocity profile of the 

blood flow test is also conducted for the grid independence test in these cases. The 

velocity profile is observed at the proximal (inlet) and distal (outlet) of the vein graft 

models, where the fully developed flow is considered. Figure 5.10, 5.11 and 5.12 show 

the grid independence test for the Over Length Kinked Vein Graft Models, 

respectively. Based on the observation, the error percentage of the velocity profile of 

the Over Length Kinked Vein Graft Model for Case A, Case B and Case C at the 

proximal is 0.29%, 0.11 % and 0.07 % lower compared to the distal, respectively. 

However, the velocity profiles do not show any significant changes since the micro 

channels are in the grid independence state. 
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Figure 5.10: The grid independence test of the Over Length Kinked Vein Graft 

Models for Case A with comparison of velocity profiles for two different positions 

in the vein graft model. 

 

 

Figure 5.11: The grid independence test of the Over Length Kinked Vein Graft 

Models for Case B with comparison of velocity profiles for two different positions 

in the vein graft model. 
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Figure 5.12: The grid independence test of the Over Length Kinked Vein Graft 

Models for Case C with comparison of velocity profiles for two different positions 

in the vein graft model. 

 

Therefore, analysis and results that have been discussed in the following subsections 

are based on simulation of the internal diameter mismatched and the Over Length 

Kinked Vein Graft Models. 

 

5.4 Simulation Results of the Irregular Vein Graft Models 

 

In this section, several important preliminary field variables in the blood flow 

phenomenon of the vein graft models are the central focus. As mentioned earlier, 

several investigations are carried out for a series of cases of the irregular vein graft 

models by using the laminar steady state and the laminar pulsatile blood flow models. 

The laminar steady state blood flow model is considered for validation. Meanwhile, the 

laminar pulsatile blood flow model is considered for the pulsatile model to study the 
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pulsatile blood flow on an actual vein graft model as to closely simulate the in-vivo 

condition of the vein graft. Besides, the utilization of this laminar pulsatile blood flow 

model is to check its capability to predict blood flow in the vein graft models as well as 

any correlation differences with the laminar steady state model. The modeling for blood 

flow is based on continuity and momentum equations. Hence, the field variables 

considered here are velocity in terms of the profile, pressure gradient and wall shear 

stress which have been observed for the irregular vein graft models. Other findings 

related to the flow mechanism such as fully developing region or entrance length are 

also described. The utilization of the laminar steady state and laminar pulsatile blood 

flow models allow the observation of any trend of the blood flow. 

 

5.4.1 Results of Velocity Observation in Laminar Steady State Flow 

 

Table 5.3 shows the summary of dimension for Internal Diameter Mismatched 

Vein Graft Models. For a model of the Ideal Straight Case, 0.10 cm internal diameter of 

the vein graft is attached to 0.10 cm internal diameter of the artery.  For Case 1, 0.10 

cm internal diameter of the vein graft is attached to 0.11 cm internal diameter of the 

artery. For Case 2 and Case 3, 0.10 cm internal diameter of vein graft is attached to 

0.12 cm and 0.13 cm internal diameter of the arteries, respectively. Ratios of 

attachment with internal diameter differences are also shown in Table 5.3. The inlet 

velocity of 12.5 cm/s is applied at the proximal of the vein graft model in all cases for 

this experiment. 
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Table 5.3: Summary of Dimension for Internal Diameter Mismatched Vein Graft 

Models 

  (cm)  (cm) Ratio 

Ideal Straight 0.10 0.10 1.0:1.0 

Case 1 0.10 0.11 1.0:1.1 

Case 2 0.10 0.12 1.0:1.2 

Case 3 0.10 0.13 1.0:1.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13: Schematic figure of Internal Diameter Mismatched Vein Graft Model 

and Surface Monitor. The applied types of Surface Monitors at the Proximal and 

Distal are Lines. 
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Figure 5.13 shows the schematic figure of Internal Diameter Mismatched Vein 

Graft Model that represents the model of Ideal Straight, Case 1, Case 2 and Case 3. 

Where  is the artery internal radius,  is the centre of the artery,  is the artery 

internal radius,  is the vein internal radius,  is the centre of the vein,  is the 

vein internal radius,  is the vein length constant. As stated in Chapter 4, the Surface 

Monitors need to be set in the Fluent Pre-Processing to allow the flow variables such as 

velocity, pressure, wall shear stress and strain rate can be collected and analyzed. The 

applied Surface Monitors for velocity observation in these models are Lines. These 

lines are placed at the Proximal and Distal of the vein graft models. 

 

 

Figure 5.14: The velocity profile of blood flow at the Proximal Region in Ideal 

Straight, Case 1, Case 2 and Case 3. 
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Figure 5.15: The velocity profile of blood flow at the Distal Region in Ideal 

Straight, Case 1, Case 2 and Case 3. 

 

Table 5.4 : A summary of the centre velocity of blood at the Proximal and Distal 

Region for Ideal Straight, Case 1, Case 2 and Case 3. 

 Centre Velocity,  (m/s) 

Proximal Distal 

Ideal Straight 0.1232 0.1231 

Case 1 0.1331 0.1342 

Case 2 0.1570 0.1583 

Case 3 0.1888 0.1852 

 

Figure 5.14 and Figure 5.15 show the velocity profile of blood flow at the 

Proximal and   Distal Region in the vein graft model of Ideal Straight, Case 1, Case 2 

and Case 3. Based on Table 5.4, the highest velocity of blood flow occurs in Case 3 

vein graft model and gradually decreases in Case 2, Case 1 and Ideal Straight Case. The 

increase of the centre velocity is due to the increase of mismatched percentage.  
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Table 5.5 shows the summary of dimension for the Over Length Kinked Vein 

Graft Models. For the model of the Ideal Straight Case, Case A, Case B and Case C are 

constructed with the same diameter, 0.1cm but are different in lengths. For the Ideal 

Straight Case model, 10 cm length of the vein graft is attached to the artery. For Case 

A, 10.01 cm length of the vein graft is attached to the artery. For Case B and Case C, 

10.02 cm and 10.03 cm length of the vein graft is attached to the artery, respectively. 

The amplitude of two cycled sinusoidal wavy veins with length differences are also 

shown in Table 5.5. The inlet velocity is 12.5 cm/s as the velocity is applied at the 

proximal of the vein graft model in all cases for this experiment. 

 

Table 5.5: Summary of Dimension for the Over Length Kinked Vein Graft Models 

 , cm Vein Length, cm Amplitude of two 

cycled sinusoidal 

wavy veins, cm 

Ideal Straight 0.10 10 0 

Case A 0.10 10.01 0.05 

Case B 0.10 10.04 0.10 

Case C 0.10 10.10 0.15 
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Figure 5.16: Schematic figure of the Over Length Kinked Vein Graft Models and 

the Surface Monitor. The applied types of Surface Monitors at the Proximal and 

Distal are Lines. 

 

Figure 5.16 shows the schematic figure of the Over Length Kinked Vein Graft 

Model that represents the models of Ideal Straight, Case A, Case B and Case C. Where  

 is the vein internal radius, is the centre of the vein,  is the vein internal 

radius and a is the amplitude. As also stated in Chapter 4, the Surface Monitors need to 

be set in the Fluent Pre-Processing to allow the flow variables such as velocity, 

pressure, wall shear stress and strain rate can be collected and analyzed. The applied 

Surface Monitors for velocity observation in these models are Lines. These lines are 

placed at the Proximal and Distal of the vein graft models. 
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Figure 5.17 and Figure 5.18 show the velocity profile of blood flow at the 

Proximal and Distal Region in the vein graft model of Ideal Straight, Case A, Case B 

and Case C. Based on Table 5.6, the Ideal Straight Case demonstrates the highest 

velocity in blood flow. On the contrary, Case A, Case B and Case C demonstrate low 

velocity. It happens due to curvature geometry. 

 

 

Figure 5.17: The velocity profile of blood flow at the Proximal Region in Ideal 

Straight, Case A, Case B and Case C. 
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Figure 5.18: The velocity profile of blood flow at the Distal Region in Ideal Straight, 

Case A, Case B and Case C. 

 

Table 5.6: The summary of the centre velocity of blood flow at the Proximal and Distal 

Region for Ideal Straight, Case A, Case B and Case C 

 

 Centre Velocity,  (m/s) 

Proximal Distal 

Ideal Straight 0.1232 0.1231 

Case A 0.1073 0.1074 

Case B 0.1074 0.1074 

Case C 0.1073 0.1073 

 

 

5.4.2 Results of Velocity Observation in the Laminar Pulsatile Flow 

 

The experiment on the Irregular Vein Graft Models has been continued on the 

Laminar Pulsatile Flow. For this experiment, the same models in the steady flow 

experiment are used but with UDF flow and other types of surface monitor are applied 
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(Figure 5.19and 5.26). In order to carry out this experiment, the UDF containing 6.25 

cm/s for minimum velocity and 18.75 cm/s for maximum velocity is applied at the 

proximal in all cases as mentioned in previous sub-chapter 4.3.3.  

All dimensions can be referred to Table 5.3. Figure 5.19 shows the schematic 

figure of the Internal Diameter Mismatched Vein Graft Model that represents the model 

of Ideal Straight, Case 1, Case 2 and Case 3. Where  is the artery internal radius, 

is the centre of the artery,  is the artery internal radius,  is the vein internal 

radius, is the centre of the vein,  is the vein internal radius,  is the vein length 

is constant. The Point is chosen as the Surface Monitors for the pulsatile velocity 

observation in these models because it is more suitable in monitoring the pulsatile 

velocity observation compare to Line. These points are placed at the Proximal and 

Distal of the vein graft models. 

 

 

 

 

 

 

 

Figure 5.19: The schematic figure of the Internal Diameter Mismatched Vein Graft 

Model and the Surface Monitor. The applied types of the Surface Monitors at the 

Proximal and Distal are Point. 
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Figure 5.20: The pulsatile velocity at the Proximal Region in Ideal Straight, Case 1, 

Case 2 and Case 3. 

 

 

Figure 5.21: The pulsatile velocity at the Distal Region in Ideal Straight, Case 1, 

Case 2 and Case 3. 

 

 

 

 

 

 

 

 

 

 

 

 

©
 T

his 
ite

m
 is

 p
ro

te
ct

ed b
y o

rig
in

al 
co

pyr
igh

t 



92 
 

Table 5.7 : The Summary of the center of pulsatile velocity of blood flow at the 

Proximal and Distal Region for Ideal Straight, Case 1, Case 2 and Case 3. 

 Centre Velocity,  (m/s) 

Proximal Distal 

Systolic Phase Diastolic Phase Systolic Phase Diastolic Phase 

Ideal Straight 0.1756 0.0633 0.1754 0.0636 

Case 1 0.2097 0.1412 0.2113 0.1425 

Case 2 0.2454 0.1657 0.2519 0.1683 

Case 3 0.2961 0.1111 0.2919 0.1092 

 

Figure 5.20 and 5.21 shows the center of the pulsatile velocity of blood flow at 

the Proximal and Distal Region in the vein graft model of Ideal Straight, Case 1, Case 2 

and Case 3. The highest velocity of blood flow occurs in Case 3 of the vein graft model 

and the values of blood flow gradually decrease in Case 2, Case 1 and Ideal Straight 

Case at systolic phase as shown in Table 5.7. At diastolic phase, the vein graft model in 

Case 3 also demonstrates the highest velocity of blood flow and the values of blood 

flow gradually decrease in Case 2, Case 1 and Ideal Straight Case. The increase in 

velocity especially in Case 3 happens due to a decrease of the flow area in the vein. The 

tolerance velocity from clinical data is +/- 0.006 m/s for systolic phase and +/- 0.00375 

m/s for diastolic phase. Based on table 5.7, a mismatched over than 10% should be 

avoided because of acceptable tolerance velocity.  

This experiment work has been conducted further in details by capturing the 

velocity profile in blood flow at the proximal and distal region in all cases. In order to 

capture the velocity profile, the line has been chosen again as the type of monitoring 

surface as shown in Figure 5.13. The results of this experiment are shown in Figure 

5.22, 5.23, 5.24 and 5.25. The summary of these results are shown in Table 5.8. 

Figure 5.22, 5.23, 5.24 and 5.25 show the velocity profile of blood flow at the 

Proximal and Distal Region of the vein graft model in Ideal Straight Case, Case 1, Case 
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2 and Case 3. Based on Table 5.8, the highest velocity of blood flow occurs in Case 3 

of the vein graft model and gradually decreases in Case 2, Case 1 and Ideal Straight 

Case. 

 

Figure 5.22: The velocity profile of blood flow at the proximal region in Ideal 

Straight, Case 1, Case 2 and Case 3 during systolic phase. 

 

 

Figure 5.23: The velocity profile of blood flow at the proximal region in Ideal 

Straight, Case 1, Case 2 and Case 3 during diastolic phase. 
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Figure 5.24: The profile of blood flow at the distal region in Ideal Straight, Case 1, 

Case 2 and Case 3 during systolic phase. 

 

 

Figure 5.25: The velocity profile of blood flow at the distal region in Ideal Straight, 

Case 1, Case 2 and Case 3 during diastolic phase. 
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Table 5.8: Summary of the center of pulsatile velocity of blood at the Proximal and 

Distal Region in Ideal Straight, Case 1, Case 2 and Case 3 (Captured by velocity 

profiles). 

 

 Centre Velocity,  (m/s) 

Proximal Distal 

Systolic Phase Diastolic Phase Systolic Phase Diastolic Phase 

Ideal Straight 0.1732 0.0693 0.1730 0.0694 

Case 1 0.2095 0.0836 0.2118 0.0847 

Case 2 0.2445 0.0976 0.2504 0.1003 

Case 3 0.2930 0.1187 0.2887 0.1172 

 

Figure 5.26 shows the schematic figure of the Over Length Kinked Vein Graft 

Model that represents the models of Ideal Straight, Case A, Case B and Case C. Where 

 is the vein internal radius,  is the centre of the vein,  is the vein internal 

radius and a is the amplitude. All dimensions can be referred in Table 5.5. The Point is 

also chosen as the Surface Monitors for pulsatile velocity observation in these models 

because it is more suitable in monitoring the pulsatile velocity observation compared to 

Line. These points are also placed at the Proximal and Distal of the vein graft models. 

 

 

 

 

 

 

Figure 5.26: The schematic figure of the Over Length Kinked Vein Graft Models and 

the Surface Monitor. The applied types of Surface Monitors at the Proximal and Distal 

are Points. 
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Figure 5.27: Pulsatile velocity at the Proximal Region in Ideal Straight, Case A, 

Case B and Case C. 

 

 

Figure 5.28: Pulsatile velocity at the Distal Region in Ideal Straight, Case A, Case B 

and Case C. 
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Table 5.9:Summary of the centre of pulsatile velocity of blood flow at the Proximal and 

Distal Region in Ideal Straight, Case A, Case B and Case C. 

 

 

Centre Velocity,  (m/s) 

Proximal Distal 

Systolic Phase Diastolic Phase Systolic Phase Diastolic Phase 

Ideal Straight 0.1756 0.0605 0.1756 0.0605 

Case A 0.1721 0.0562 0.1721 0.0561 

Case B 0.1721 0.0562 0.1721 0.0562 

Case C 0.1720 0.0562 0.1720 0.0562 

 

Figure 5.27 and Figure 5.28 show the centre of pulsatile velocity of blood flow 

at the Proximal and Distal Region of the vein graft model in Ideal Straight, Case A, 

Case B and Case C. From the observation, all cases demonstrate no obviously different 

in velocity values at all positions in Table 5.9 and even in all phases. However, based 

on clinical data, all kinking cases cannot be applied for surgery because the blood that 

flow through those models are too slow and also out of acceptable ranges. In other 

words, kinked wavy sinusoidal veins must be below than 0.0005 m height. 

This experimental work also has been carried further in details by capturing the 

velocity profile in blood flow at the proximal and distal region in Ideal Straight, Case 

A, Case B and Case C as performed in previous internal mismatch cases. In order to 

capture the velocity profile, the line has also been chosen as the types of monitoring 

surface as shown in Figure 5.13. The results of this experiment are shown in Figure 

5.29, 5.30, 5.31 and 5.32. The summary of these results are shown in Table 5.10. 
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Figure 5.29: The velocity profile of blood flow at the proximal region in Ideal 

Straight, Case A, Case B and Case C during systolic phase. 
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Figure 5.30: The velocity profile of blood flow at the proximal region in Ideal 

Straight, Case A, Case B and Case C during diastolic phase. 
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Figure 5.31: The velocity profile of blood flow at the distal region in Ideal Straight, 

Case A, Case B and Case C during systolic phase. 
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Figure 5.32: The velocity profile of blood flow at the distal region in Ideal Straight, 

Case A, Case B and Case C during diastolic phase. 
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Table 5.10: Summary of the centre of pulsatile velocity of blood flow at the 

Proximal and Distal Region for Ideal Straight, Case A, Case B and Case C 

(Captured the velocity profile). 

 

 

Centre Velocity,  (m/s) 

Proximal Distal 

Systolic Phase Diastolic Phase Systolic Phase Diastolic Phase 

Ideal Straight 0.1732 0.0693 0.1730 0.0693 

Case A 0.1721 0.0561 0.1721 0.0561 

Case B 0.1721 0.0562 0.1721 0.0562 

Case C 0.1720 0.0562 0.1720 0.0558 

 

Figure 5.29, 5.30, 5.31 and 5.32 show the velocity profile of blood flow at the 

Proximal and Distal Region of the vein graft model in Ideal Straight Case, Case A, 

Case B, Case C. From table 5.10, all cases also demonstrate no obviously different in 

velocity values at all positions and even in all phases. 

 

5.4.3 Results of Pressure Gradient Observation in the Laminar Steady State Flow 

 

The experiment has been extended by monitoring on the pressure gradient in the 

laminar steady state flow. This variable has also received considerable in vascular 

surgery and predictive value for long-term survival of the vein graft model. The 

experiment has been performed on the same models that applied in the velocity 

observation. The schematic figure, the monitoring surface and the dimension for the 

vein graft models can be referred in Figure 5.13 and Table 5.3.The inlet velocity of 

12.5 cm/s as the velocity is also applied at the proximal of the vein graft model in all 

cases for this experiment. 
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Figure 5.33: The proximal pressure in Ideal Straight, Case 1, Case 2 and Case 3. 

 

 

Figure 5.34: The distal pressure in Ideal Straight, Case 1, Case 2 and Case 3. 
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Table 5.11: Summary of the centre pressure of blood flow at the Proximal and 

Distal region in Ideal Straight, Case 1, Case 2 and Case 3 

 Centre Pressure,  (Pa) 

Proximal Distal 

Ideal Straight 102136 101360 

Case 1 102281 101362 

Case 2 102449 101360 

Case 3 102644 101359 

 

 

Figure 5.33, Figure 5.34 and Table 5.11 show the proximal and distal pressure 

in Ideal Straight, Case 1, Case 2 and Case 3. All cases in Figure 5.33 and Figure 5.34 

show the highest value in the pressure contribution occur in Case 3.  

 

 

Figure 5.35: The pressure gradient in Ideal Straight, Case 1, Case 2 and Case 3. 
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Table 5.12 : Summary of the centre of pressure gradient in Ideal Straight, Case 1, 

Case 2 and Case 3. 

 Centre of Pressure Gradient,  (Pa/m) 

Ideal Straight 7760 

Case 1 9190 

Case 2 10890 

Case 3 12850 

 

Figure 5.35 shows the pressure gradient in all cases. Based on Table 5.12, the ideal 

straight demonstrates the lowest pressure gradient. The increase of pressure gradient 

value is due to the increase of mismatched ratio. 

Pressure gradient on the over length kink models have also been monitored. The 

applied models are also the same as applied for the velocity observation. The blood 

velocity of 12.5 cm/s is also applied at the proximal region in every vein graft models. 

For details of the dimension, the schematic figure and the monitoring surface are shown 

in Table 5.5 and Figure 5.16. 

 

 

Figure 5.36: The proximal pressure in Ideal Straight, Case A, Case B and Case C. 
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Figure 5.37: The distal pressure in Ideal Straight, Case A, Case B and Case C. 

 

Table 5.13: Summary of the centre pressure of blood flow at the Proximal and 

Distal region in Ideal Straight, Case A, Case B and Case C 

 
Centre Pressure,  (Pa) 

Proximal Distal 

Ideal Straight 102135.6 101360.3 

Case A 102292 101486 

Case B 102298 101486 

Case C 102311 101487 

 

 

Figure 5.36, Figure 5.37 and Table 5.13 show the proximal and distal pressure 

in Ideal Straight, Case A, Case B and Case C. All cases in Figure 5.33 and 5.34 show 

the pressure contribution is in vertical form. The lowest value in pressure contribution 

happens at ideal straight case. 
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Figure 5.38: The pressure Gradient in Ideal Straight, Case A, Case B and Case C. 

 

Table 5.14: Summary of the centre of pressure gradient for Ideal Straight, Case A, 

Case B and Case C 

 Centre of Pressure Gradient,  (Pa/m) 

Ideal Straight 7754 

Case A 8052 

Case B 8088 

Case C 8158 

 

 

Figure 5.38 shows the pressure gradient in all cases. Based on Table 5.14, the 

ideal straight still demonstrates the lowest pressure gradient. The increase of amplitude 

of sinusoidal two cycled wavy RSVG causes the increase of pressure gradient. 
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5.4.4 Results of Pressure Observation in the Laminar Pulsatile Flow 

 

The experiment has been continued by monitoring the pressure gradient in the 

laminar pulsatile flow as stated in previous subtopic on velocity observation. In this 

experiment, the same models in the steady flow experiment are also utilized but the 

UDF flow and Points surface monitor are applied. The UDF containing 6.25 cm/s for 

minimum velocity and 18.75 cm/s for maximum velocity is also applied in this 

experiment at the proximal in all cases.  

All dimensions can be referred in Table 5.3. The vein graft model with the point 

surface monitor is chosen. The schematic figure of the vein graft model that represents 

models of all cases can be referred in Figure 5.19. The Point is also chosen as the 

Surface Monitors for pulsatile pressure observation in these models because it is more 

suitable in monitoring the pulsatile pressure observation compared to Line. These 

points are placed at the Proximal and Distal of the vein graft models. 
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Figure 5.39: The proximal pressure in Ideal Straight, Case 1, Case 2 and Case 3. 

 

 

Figure 5.40: The distal pressure in Ideal Straight, Case 1, Case 2 and Case 3. 
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Table 5.15:Summary of the centre of the pulsatile blood pressure at the Proximal and 

Distal Region for Ideal Straight, Case 1, Case 2 and Case 3 

 

Centre Pressure,  (Pa) 

Proximal Distal 

Systolic Phase Diastolic Phase Systolic Phase Diastolic Phase 

Ideal Straight 102558 101635 101384 101340 

Case 1 102754 101695 101379 101339 

Case 2 102996 101763 101375 101339 

Case 3 103334 101836 101373 101338 

 

Figure 5.39 and Figure 5.40 show the centre of pulsatile blood pressure at the 

Proximal and Distal region in the vein graft model of all cases. The centre pulsatile 

blood pressure at the proximal region in Case 3 demonstrates the highest value in this 

experiment as shown in Table 5.15.  

 

 

Figure 5.41: The pressure gradient in Ideal Straight, Case 1, Case 2 and Case 3. 
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Table 5.16: Summary of the centre of pulsatile blood pressure gradient between the 

Proximal and Distal Region for Ideal Straight, Case 1, Case 2 and Case 3 

 Gradient of Centre Pressure,  (Pa/m) 

Systolic Phase Diastolic Phase 

Ideal Straight 11740 2950 

Case 1 13750 3560 

Case 2 16210 4240 

Case 3 19610 4980 

 

Figure 5.41 shows the pulsatile pressure gradient in all cases. Based on Table 

5.16, Case 3 shows the highest reduction at systolic phase in the amplitude of flow 

wave compared to other cases even in diastolic phase. The mismatched in attachment 

leads over high speed and high pressure gradient. The ratio of mismatched attachment 

over than 1:1.1 should be avoided due to out of acceptable tolerance in pressure 

gradient. 

Monitoring in pressure gradient on the Over Length Kink Models was carried 

out by generating the UDF flow and selecting points as the monitor surface to be used. 

These points were located at the proximal and distal of the vein graft models. Figure 

5.26 and Table 5.5 show the schematic figure and all dimensions of the vein graft 

model of all cases. 
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Figure 5.42: The proximal pressure in Ideal Straight, Case A, Case B and Case C 

 

 

Figure 5.43: The Distal pressure in Ideal Straight, Case A, Case B and Case C 
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Table 5.17: Summary of the centre of pulsatile blood pressure at the Proximal and 

Distal Region for Ideal Straight, Case A, Case B and Case C 

 

Centre Pressure,  (Pa) 

Proximal Distal 

Systolic Phase Diastolic Phase Systolic Phase Diastolic Phase 

Ideal Straight 102558 101635 101384 101340 

Case A 102808 101604 101571 101571 

Case B 102822 101604 101572 101572 

Case C 102848 101608 101575 101575 

 

 

Figure 5.42 and Figure 5.43 show the centre of pulsatile blood pressure at the 

Proximal and Distal region in the vein graft model of all cases. Based on Table 5.17, all 

irregular vein graft models demonstrate high pressure in systolic phase at the proximal 

and low pressure in diastolic phase compared to ideal straight case. However, all 

irregular cases demonstrate high pressure at distal region in systolic and diastolic phase. 

 

 

Figure 5.44: The Pressure Gradient in Ideal Straight, Case A, Case B and Case C. 
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Table 5.18: Summary of the centre of pulsatile blood pressure gradient between the 

Proximal and Distal Region for Ideal Straight, Case A, Case B and Case C 

 
Gradient of Centre Pressure, ΔPo (Pa/m) 

Systolic Phase Diastolic Phase 

Ideal Straight 11740 2950 

Case A 12358 2328 

Case B 12450 2321 

Case C 12604 2347 

 

Figure 5.44 shows the pulsatile pressure gradient in all cases. Based on Table 

5.18, all irregular geometry cases demonstrate high value in the pressure gradient at 

systolic phase and low value in the pressure gradient at diastolic phase compared to 

ideal straight geometry. High pressure gradient at systolic phase and low pressure 

gradient at diastolic phase in all irregular geometry happen due to curvature geometry 

and the existing of flow resistance. All kinking cases are not applicable in the 

procedure because all of them demonstrate high pressure gradient compared to ideal 

straight case.   

 

5.4.5 Results of the WSS Observation in the Laminar Steady State Flow 

 

The observation is furthered on the wall shear stress in the laminar steady state 

flow. The WSS also has considerable clinical relevance in vascular surgery and 

predictive value for long-term survival of the vein graft model (i.e. pressure gradient). 

This is due to the fact that it provides information about the magnitude of force that the 

blood exerts on the vessel wall as well as the force exerted by one fluid layer on 

another which has been debated for several years. 
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Figure 5.45 shows the schematic figure of the Internal Diameter Mismatched 

Vein Graft Model that represents the models of Ideal Straight, Case 1, Case 2 and Case 

C.    is the Artery internal radius,  is the Centre of the artery,   is the  Artery 

internal radius,    is the Vein internal radius,   is the Centre of the vein,   is 

the Vein internal radius and  is the Vein length and it is constant. For the WSS 

Observation in the Laminar Steady State Flow, a Wall is chosen. The wall is placed at 

the wall of the vein graft models. The summary of dimension and ratio of attachments 

for the internal diameter mismatched vein graft models can be referred in Table 5.3 and 

the inlet velocity of 12.5 cm/s as velocity is also applied at the proximal of the vein 

graft model in all cases for this experiment. 

 

 

 

 

 

 

 

Figure 5.45: The schematic figure of Internal Diameter Mismatched Vein Graft Models 

and Surface Monitor. The applied type of Surface Monitor at the vessel wall is Wall. 

 

Figure 5.46, 5.47, 5.48 and 5.49 show the WSS in Ideal Straight, Case 1, Case 2 

and Case 3. Based on Table 5.19, the highest value of the WSS occurs in Case 3 of the 

vein graft model and the values of the WSS gradually decrease in Case 2, Case 1 and 
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Ideal Straight Case. The increase of the mismatch percentage leads to the increase of 

pressure gradient. 

 

 

Figure 5.46: Contours of the Wall Shear Stress in the Ideal Straight Case 

 

Contours of the Wall Shear Stress in Ideal Straight Case 
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Figure 5.47: Contours of the Wall Shear Stress in Case 1 

 

Figure 5.48: Contours of the Wall Shear Stress in Case 2 

Contours of the Wall Shear Stress in Case 2 

Contours of the Wall Shear Stress in Case 1  
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Figure 5.49: Contours of the Wall Shear Stress in Case 3 

 

Table 5.19: Summary of the steady WSS at the Wall Region for Ideal Straight, Case 1, 

Case 2 and Case 3. 

 Wall Shear Stress,  (Pa) 

Ideal Straight 2.125 

Case 1 3.062 

Case 2 3.767 

Case 3 4.272 

 

The experiment was furthered on the over length kink models. The 12.5 cm/s is 

also applied at the proximal region in every vein graft model. For the details of 

dimensions, the schematic figure and the monitoring surface are shown in Table 5.5 

and Figure 5.50. Where    is the Vein internal radius,   is the Centre of the vein, 

  is the Vein internal radius and a is the amplitude height. 

Contours of the Wall Shear Stress in Case 3  
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Figure 5.50: The Schematic Figure of the Over Length Kinked Vein Graft Models and 

the Surface  Monitor. The applied type of Surface Monitors at the Proximal and Distal 

is Wall. 

 

Figure 5.51, 5.52, 5.53 and 5.54 show the WSS in Ideal Straight, Case A, Case 

B and Case C. Based on Table 5.20, the lowest value of the WSS occurs at ideal 

straight case  of the vein graft model and the values of the WSS gradually increase in 

Case A, Case B and Case C. The increase of the WSS value is due to the increase in the 

blood flow resistance or amplitude height of the curvature and pressure gradient.   
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Figure 5.51: Contours of the Wall Shear Stress in Ideal Straight Case 

 

Figure 5.52: Contours of the Wall Shear Stress in Case A 

Contours of the Wall Shear Stress in Ideal Straight Case 

Contours of the Wall Shear Stress in Case A 
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Figure 5.53: Contours of the Wall Shear Stress in Case B 

 

 

Figure 5.54: Contours of the Wall Shear Stress in Case C 

 

Contours of the Wall Shear Stress in Case B 

Contours of the Wall Shear Stress in Case C 
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Table 5.20: Summary of the steady WSS at the Wall Region for Ideal Straight, Case A, 

Case B and Case C. 

 

 Wall Shear Stress,  (Pa) 

Ideal Straight 2.125 

Case A 2.521 

Case B 2.514 

Case C 2.563 

 

 

5.4.6 Result of the WSS Observation in the Laminar Pulsatile Flow 

 

The experiment on Internal Diameter Mismatched Vein Graft Models has been 

continued on the WSS Observation in the Laminar Pulsatile Flow. In this experiment, 

the same models and surface monitor in the WSS Steady Flow experiment are used but 

the UDF flow is applied. The schematic figure, the surface monitor and the ratio of 

attachments for the vein graft model that represents the models of all cases can be 

referred in Figure 5.3 and Table 5.3. The UDF containing 6.25cm/s for minimum 

velocity and 18.75 cm/s for maximum velocity for maximum is also applied in this 

experiment at the proximal in all cases as previous laminar pulsatile flow experiment. 
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Figure 5.55: Contours of the Wall Shear Stress in Ideal Straight Case at Diastolic 

 

 

Figure 5.56: Contours of the Wall Shear Stress in Ideal Straight Case at Systolic Phase 

 

Contours of the Wall Shear Stress at Diastolic Phase in Ideal Straight Case 

Contours of the Wall Shear Stress at Systolic Phase in Ideal Straight Case 
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Figure 5.57: Contours of the Wall Shear Stress in Case 1 at Diastolic Phase 

 

 

Figure 5.58: Contours of the Wall Shear Stress in Case 1 at Systolic Phase 

 

Contours of the Wall Shear Stress at Diastolic Phase in Case 1 

Contours of the Wall Shear Stress at Systolic Phase in Case 1 
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Figure 5.59: Contours of Wall Shear Stress in the Case 2 at Diastolic Phase 

 

Figure 5.60: Contours of the Wall Shear Stress in Case 2 at Systolic Phase 

 

Contours of the Wall Shear Stress at Systolic Phase in Case 2 

Contours of Wall Shear Stress at Diastolic Phase in Case 2 
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Figure 5.61: Contours of the Wall Shear Stress in Case 3 at Diastolic Phase 

 

Figure 5.62: Contours of the Wall Shear Stress in Case 3 at Systolic Phase 

 

Contours of the Wall Shear Stress at Systolic Phase in Case 3 

Contours of the Wall Shear Stress at Diastolic Phase in Case 3  
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Table 5.21:Summary of the pulsatile WSS at the Wall Region for Ideal Straight, 

Case 1, Case 2 and Case 3. 

 
Wall Shear Stress,  (Pa) 

Systolic Phase Diastolic Phase 

Ideal Straight 3.636 1.005 

Case 1 3.640 0.906 

Case 2 4.362 0.957 

Case 3 5.283 1.073 

 

Figure 5.55, 5.56, 5.57, 5.58, 5.59, 5.60, 5.61 and 5.62 show the WSS in Ideal 

Straight, Case 1, Case 2 and Case 3. Based on Table 5.21, the highest value of the WSS 

occurs in Case 3 of the vein graft model at systolic phase. However, there were no 

significant difference in values of the WSS in Ideal Straight Case, Case A, Case B and 

Case C at diastolic phase. The over speed (out of acceptable range) in blood flow and 

high pressure gradient will affect the WSS values. 

Monitoring in the WSS was carried on the Over Length Kink Models. The 

generation of the UDF flow and selection of walls as monitor surface are also used. 

Figure 5.50 and Table 5.5 show the schematic figure and all dimensions of the vein 

graft model for all cases. 
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. 

Figure 5.63:Contours of the Wall Shear Stress in Ideal Straight Case at Systolic Phase. 

 

Figure 5.64: Contours of the Wall Shear Stress in Ideal Straight Case at Diastolic 

Phase. 

Contours of the Wall Shear Stress at Diastolic Phase in Ideal Straight Case  

Contours of the Wall Shear Stress at Systolic Phase in Ideal Straight Case  
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Figure 5.65: Contours of the Wall Shear Stress in Case A at Systolic Phase. 

 

Figure 5.66: Contours of the Wall Shear Stress in Case A at Diastolic Phase 

Contours of the Wall Shear Stress at Systolic Phase in Case A 

Contours of the Wall Shear Stress at Diastolic Phase in Case A 
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Figure 5.67: Contours of the Wall Shear Stress in Case B at Systolic Phase 

Figure 5.68: Contours of the Wall Shear Stress in Case B at Diastolic Phase 

Contours of the Wall Shear Stress at Systolic Phase in Case B 

Contours of the Wall Shear Stress at Diastolic Phase in Case B 
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Figure 5.69: Contours of the Wall Shear Stress in Case C at Systolic Phase. 

Fi

gure 5.70: Contours of the Wall Shear Stress in Case C at Diastolic Phase. 

Contours of the Wall Shear Stress at Diastolic Phase in Case C 

Contours of the Wall Shear Stress at Systolic Phase in Case C 
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Table 5.22 : Summary of the pulsatile WSS at the Wall Region for Ideal Straight, Case 

A, Case B and Case C. 

 
Wall Shear Stress,  (Pa) 

Systolic Phase Diastolic Phase 

Ideal Straight 3.636 1.0050 

Case A 4.023 0.7250 

Case B 4.030 0.7310 

Case C 4.120 0.7530 

 

Figure 5.63, 5.64, 5.65, 5.66, 5.67, 5.68, 5.69 and 5.70 show the pulsatile WSS 

in all cases. Based on Table 5.22, all irregular cases demonstrate higher WSS value 

compare to ideal straight case at systolic phase, but lower WSS value at diastolic phase 

compare to ideal straight case. From the observation, the curvature in geometry causes 

high pressure gradient which leads to high WSS value.   

 

5.5 Result and Discussion of the Irregular Vein Graft Models 

 

The discussion of results focuses on the blood velocity, blood pressure gradient 

and the WSS in irregular vein graft models and the long-term effects in thrombosis re-

formation. Ideal Straight Case, Case 1, Case 2 and Case 3 are presented in mismatched 

percentage. Ideal Straight Case is represented by mismatched percentage 0%. Case 1, 

Case 2 and Case 3 are represented by 10%, 20% and 30% respectively. 

Meanwhile, for the Ideal Straight Case, Case A, Case B and Case C are 

presented in amplitude height. The amplitude height of 0R, 1R, 2R and 3R represents 

the Ideal Straight Case, Case A, Case B and Case C, respectively, where R is 0.05cm. 
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5.5.1 Result and Discussion on the Velocity Observation in Irregular Vein Graft 

Models 

 

Figure 5.71: The Centre velocity in different percentage or cases of the internal 

diameter mismatched model 

 

 

Figure 5.72: The Centre velocity in different amplitude or cases of the over length 

kinked model 
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Figure 5.73 : The Centre pulsatile velocity in different percentage or cases of the 

internal diameter mismatched model. 

 

 

Figure 5.74 : The Centre pulsatile velocity in different amplitude or cases of the over 

length kinked model 

 

All mismatched cases demonstrate high value in velocity due to discrepancy in 

the cross section between the artery and vein as shown in Figure 5.71 and Figure 5.73. 

It happens because the blood being pushed (force through) at higher speed from the 
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wide arterial vessel to the narrow vein (Wilmer at al., 1998). Meanwhile, all kinking 

cases demonstrate low value in velocity due to similarity in the cross section between 

the artery-vein attachment and the curvature geometry as shown in Figure 5.72 and 

Figure 5.74. 

The mismatched and kinked wavy sinusoidal veins should reach below than 

10% and 1R amplitude height in order to ensure it is applicable for the vein grafting 

procedure. This is because the blood flows through those models are too fast in over 

than 10% mismatched models at systolic and diastolic phase and too slow in over than 

1R amplitude height of the kinking model at diastolic phase. 

 

5.5.2 Result and Discussion on the Pressure Gradient Observation in the Irregular 

Vein Graft Models 

 

 

Figure 5.75 : The centre of pressure gradient in different percentage or cases of the 

internal diameter mismatched model. 
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Figure 5.76: The centre of pressure gradient in different curvatures or cases of over the 

length kinked model. 

 

 

Figure 5.77 : The centre of pulsatile pressure gradient in different percentage or cases 

of the internal diameter mismatched model. 
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Figure 5.78 : The centre of pulsatile pressure gradient in different curvature or cases of 

the over length kinked model. 

 

High blood pressure gradient is shown in Figure 5.75 and Figure 5.77 due to the 

cross section discrepancy between the cross section of the arteries and veins leading to 

high velocity flow. All kinking cases also demonstrate high blood pressure gradient at 

systolic phase and low blood pressure at diastolic phase due to the curvature geometry 

which leads to high and low velocity flow as shown in Figure 5.76 and Figure 5.78. 

All irregular models should be below than 10% mismatched and 1R amplitude 

height to ensure prolonging survival. This is because the alteration of biological 

pulsatile pressure gradient is strongly related to the vein graft life span and this is 

supported by Christopher L. Skelly (2001). 
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5.5.3 Result and Discussion on the WSS Observation in Irregular Vein Graft 

Models 

 

 

Figure 5.79 : The steady WSS in different percentage or cases of the internal diameter 

mismatched  model. 

 

 

Figure 5.80 :  The steady WSS in different curvatures or cases of the over length kinked 

model. 

 

 

 

 

 

 

 

 

 

©
 T

his 
ite

m
 is

 p
ro

te
ct

ed b
y o

rig
in

al 
co

pyr
igh

t 



137 
 

 

Figure 5.81 : The pulsatile WSS in different percentage or cases of the internal 

diameter mismatched  model. 

 

 

Figure 5.82 : The Pulsatile WSS in different curvatures or cases of the over length 

kinked model. 

 

High pressure gradient at systolic and diastolic phases causes high WSS in all 

mismatched cases because of high pressure gradient. Meanwhile, high WSS was only 
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seen at systolic phase in all kinking cases because of the existing of high pressure 

gradient. 

The abnormal shear stresses impact, such as very high or low pulsatile shear 

stresses may also lead to the thrombus formation. It happens due to a change of the 

biological behavior of platelet in the blood flow. Wilmer W. Nichols et al. (1998) and 

Krishnan B. Chandran et al. (2007) also suggested that the thrombus formation 

involves regulation of the release by the Endothium-Derived Relaxing Factor (EDRF), 

which believed to be nitric oxide. The modulation of the EDRF released by the WSS 

also influences the development of atherosclerosis via another mechanism and reduces 

the vein graft life span.  
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CHAPTER 6 

 

CONCLUSION 

 

6.1 Summary 

 

It is noted that the unpredicted failure in the vein graft can occur after the 

procedure was performed. Most defected fingers were pale and become cool as 

reported from previous studies. It happens because the flow of blood is blocked due to 

the formation of thrombus. The irregular vein geometry is believed to be the initiation 

of the thrombus formation. Based on several studies conducted previously, the irregular 

vein graft geometry occurs due to mismatching in internal diameter between the vein 

graft and the recipient artery as well as kinking because of the over size in length of the 

vein graft. 

In biofluid studies, the abnormal behavior of the blood flow in velocity, 

pressure gradient and the WSS impact in the vessel wall will cause the growth of 

thrombus. In this study, we decided to mechanically analyze the behavior of blood flow 

and focus on velocity, pressure gradient and the WSS impact on the wall of vein graft. 

The 3D CFD Analysis was chosen as an experimental method since it provides high 

accuracy result. Furthermore, the 3D Analysis is one of reliable and acceptable methods 

that are still being applied by most researchers. The GAMBIT and the ANSYS Fluent 

commercial software were used in this simulation work as they receive good feedbacks 

based on reviews. The details of the vein graft geometry were decided after reading 
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clinical data in medical journals and having discussion with the surgeons. The 3D vein 

graft geometries were constructed in the GAMBIT software by assuming the vein graft 

geometries are cylindrical in shape. At this stage, we were dealing with the meshing 

drawing of the vein graft geometry. The quantity of cells possibly needs to be more but 

it still yield good results. The useless quantities of cell might affect the calculation of 

time at the simulation stage. For the analysis part, the created vein graft models were 

imported from the GAMBIT software into the ANSYS Fluent software. In the ANSYS 

Fluent software, the desired location and types of results monitoring and preferred 

parameter can be set. In this simulation work, the proximal, distal and wall of the vein 

grafts were selected as the location of the result monitoring. The point, plane and wall 

were applied as the types of monitoring views. The experiment results were presented 

in contours and graphs. The decision for all locations and types of monitoring views, 

and collected results are based on previous research works. In order to achieve our 

research goals, the pulsatile flow types were simulated on the vein graft models. 

However, the steady state flow is still needed and it plays an important role for result 

verification. Even though the latest and the best commercial software (i.e. GAMBIT 

and ANSYS Fluent) were implemented in this simulation work but it still requires some 

verification works. Thus, the experiment results were verified by using theoretical 

results. In this study, the error percentages were low and within the acceptable ranges. 

The pulsatile laminar blood flow demonstrates an abnormal blood flow pattern 

in the model of irregular formation geometries compared to an ideal straight model 

(well matched in internal diameter and length). The vein graft models with the 

mismatching in internal diameter problem demonstrate high value in velocity of the 

blood flow, pressure gradient of blood flow between the proximal and distal, and the 

WSS impact on the wall of the vein grafts. Meanwhile, low value in velocity of the 
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blood flow, pressure gradient of the blood flow between the proximal and distal, and 

the WSS impact on the wall geometries can be seen in the vein graft models with the 

over length kinking problem. 

The simulated models of irregular formation geometries have high possibility 

and potential in the re-formation of thrombus since a reduction in the vein graft area 

sizes (i.e. internal diameter mismatched problem) produced high value in velocity of 

the blood, pressure gradient and the WSS compare to simulated models of ideal 

straight. Even though the over length kink problem models demonstrate low value in 

velocity of blood and the WSS but, low pressure also initiates the re-formation of 

thrombus.  

In conclusion, all geometries have been validated by simulating in the steady 

state blood flow before furthering analysis in the pulsatile flow. The simulations in the 

pulsatile blood flow type have been done in order to imitate the real environment. 

Critical ranges of geometry dimension have been identified. The only acceptable range 

of the RSVGs sizes mismatching less than 10% and kinking (amplitude height) less 

than 0.0005 m for 6.25 cm/s diastolic velocity blood flow. The simulation results reveal 

that irregular geometry formation models could reduce the lifespan of the RSVG by 

performing abnormal results in the blood flow velocity, pressure gradient and the WSS. 

In the future, the well matched size in internal diameter and length of the RSVG 

is suggested for the recipient artery to avoid any failures in the revascularization 

procedure. Based on the experiment results of this research, it has been proven that the 

well matched size in internal diameter and length of the RSVG shows good and 

reasonable velocity of the blood flow, gradient pressure of the blood blow and the WSS 

impact on the wall of the vein graft. 
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6.2 Future Work 

 

 With regards to the future work, some recommendations on simulation are 

listed below as well as in experiment. 

 Simulation works should be carried out for more complex geometry such as 

a real extracted Magnetic Resonance Imaging (MRI) 3D geometry, not by 

assuming that vein graft model only in cylindrical in shape. 

 Simulation works can be extended by setting the vein graft wall as porous 

wall not only just rigid wall. 
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APPENDIX A 

Step of vein graft model geometry construction in GAMBIT 2.4.6. 

 

 

Figure A.1 : Geometry construction of vein graft model. 

 

Figure A.2 : Geometry meshing construction of vein graft model. 
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Figure A.3 : Geometry boundary condition setting of vein graft model. 

Velocity inlet as Proximal region (inlet), wall of vein graft model as Wall 

region (wall) and pressure outlet as Distal Region (outlet). 
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APPENDIX B 

Analysis of vein graft model in ANSYS Fluent V12.1. 

 

 

 

 

 

 

Figure B.1 : Problem Setup. Mesh ; Check icon for geometry volume status 

whether in error or good. Solver ; Pressure-Based is selected since this 

simulation deal with low speed flow and absolute is selected in Velocity 

Formulation. Steady time is chosen for steady state flow and Transient time 

is chosen for pulsatile state flow. 
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Figure B.2 : Problem Setup. Models ; Laminar is chosen as Viscous since all 

simulations deal with laminar blood flow. 

 

 

 

 

 

 

Figure B.3 : Problem Setup. Materials ; Fluid (Blood) properties are inserted. 

Fluid (air) and solid (aluminium) material are default setting by Fluent 

ANSYS and no need to be defined. 
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Figure B.4 : Problem Setup. Cell Zone Conditions ; Fluid (zone) is selected.  

 

 

 

 

 

 

 

Figure B.5 : Problem Setup. Boundary Conditions ; Velocity Inlet (zone) is selected 

and desired velocity of blood flow is set. For the steady state flow, velocity is constant.  
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Figure B.6 : Problem Setup. Boundary Conditions ; For the pulsatile state 

flow, velocity is interpreted from udf file (see Appendix C) based on desired 

axis direction. 

 

 

 

 

Figure B.7 : Problem Setup. Reference Values ; Computation from velocity 

inlet (Proximal region) and Fluid is selected as Reference Zone as well. 
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Figure B.8 : Solution. Solution Methods ; PISO is selected as Scheme. In 

order to optimize in calculating, Least Squeare Cell Based in Gradient, 

Second Order in Pressure and Second Order Upwind in Momentum are 

selected as well. 

 

 

 

 

 

 

Figure B.9 : Solution. Surface Monitors ; In order to collect analysis data, 

we can create type of surface monitor and position. 
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Figure B.10 : Solution. Solution Initialization. 

 

 

 

Figure B.11 : Solution. Calculation Activities ; We can save data file every 

time step or desired iterations. 
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Figure B.12 : Solution. Run calculation ; Time Step Size is set as 1 and the 

Number of Time Steps are 10 since only 10 seconds are required for this 

simulation (applicable only for pulsatile flow). 

 

 

 

 

 

 

 

Figure B.13 : Result. Graphics and Animations ; For example, for the wall 

of vein graft model, Contour of result is selected for graphics and there is 

legend of value also available for reference. 
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Figure B.14 : Results. Plots; XY Plots is selected and export it to Microsoft 

Office Excel in order to proceed the detail values. 
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APPENDIX C 

User Define Function 

File type: C File 

Details: 

#include "udf.h" 

#include "math.h" 

DEFINE_PROFILE(transient_velocity, thread, position) 

{ 

  float t, velocity; 

  face_t f; 

  t = RP_Get_Real("flow-time"); 

  velocity = 0.0625+0.03125*sin(M_PI/2*t); 

  begin_f_loop(f, thread) 

  { 

   F_PROFILE(f, thread, position) = velocity; 

  } 

  end_f_loop(f, thread) 

} 
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