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Pengiraan Aras Tekanan Manusia Menggunakan Pelbagai Isyarat Fisiologi -

Berdasarkan Teknik Fusion melalui Rangkaian Dynamic Bayesian 

 

ABSTRAK  

Tesis ini mengkaji untuk meningkatkan pengiraan aras tekanan dan kebolehpercayaan 

dengan menggunakan pelbagai isyarat fisiologi. Dalam tesis ini, penginduksian 

tekanan, pengambilalihan isyarat fisiologi, prapemproses, pengekstrakan ciri, 

klasifikasi, pengoptimuman ciri-ciri dari pelbagai isyarat fisiologi, anggaran ciri 

penting, pengoptimuman keputusan sempadan dan gabungan adalah langkah-langkah 

penting yang terlibat. Tugas mental aritmetik rangsangan telah digunakan untuk 

mendorong tekanan pada 60 subjek yang sihat dengan umur purata 22.5 ± 2.5 tahun.  

Lima jenis isyarat fisiologi diambilkira dalam penyiasatan ini (elektrokardiogram 

(ECG), eelectromyogram (EMG), response kulit galvani (GSR), suhu kulit (ST) , 

kepelbagaian kadar jantung (HRV) ) untuk mengukur kesan dorongan  tekanan pada 

subjek. Isyarat ECG dan EMG yang diperoleh telah dipraproses dengan menggunakan 

kaedah „wavelet denosing‟ untuk menyingkirkan bunyi dalam keseluruhan julat 

frekuensi isyarat dan penapis perintah keempat eliptik digital digunakan untuk 

menyingkirkan bunyi dalam isyarat GSR dan ST. Algoritma penyikiran ektopik 

digunakan untuk menghapuskan kehadiran puncak bunyi dan artifak dalam isyarat 

HRV. Dalam pengekstrakan ciri,  ciri-ciri isyarat ECG dan EMG dikira menggunakan 

diskret wavelet packet transform (DWPT) dan Lomb-Scargle (LS) periodogram telah 

digunakan untuk mengeluarkan spectrum kuasa rendah dan jalur frekuensi yang tinggi 

dalam isyarat istilah pendek HRV. Algoritma pengesanan ketakutan telah dilaksanakan 

untuk mengeluarkan dan menganalisis ciri-ciri yang berkaitan dengan GSR tonik tindak 

balas, dan akhirnya ciri-ciri suhu kulit diekstrak secara langsung dalam rantau masa.  

Ciri-ciri yang diperolehi telah dikelaskan kedalam empat tahap tekanan termasuk tahap 

normal dengan  menggunakan tiga pengelas linear (K paling hampir neighbor (KNN), 

rangkaian neural berkebarangkalian (PNN), dan mesin vektor sokongan (SVM)).  

Kadar klasifikasian purata dan skor F1 melebihi 50% dan 0.5 dianggap sebagai ciri 

dominan dalam kerja ini. Keputusan menunjukkan 20 ciri sebagai dominan dikalangan 

244 ciri-ciri yang disiasat dalam pelbagai jalur frekuensi lima isyarat fisiologi. Purata 

maksimum ketepatan klasifikasi empat peringkat telah diperoleh 74.20% dalam ciri min 

ECG, 74.75% dalam ciri cumulant ketiga HRV, 74.67% dalam min EMG, 66.84% 

dalam cirri kekerapan ketakutan daripada GSR, dan 63.63% dalam ciri min ST dalam 

kajian hal bebas. Bagi meningkatkan kadar klasifikasi tahap tekanan dan 

kebolehpercayaanya, pengoptimuman sempadan keputusan dan ciri fisiologi penting 

vector anggaran diperlukan. Pemboleh ubah-perintah tersembunyi Markova model 

(HMM) berdasarkan rangkaian Bayesian dinamik (DBN) telah dibina untuk 

mendapatkan perubahan dinamik setiap ciri isyarat fisiologi dan berupaya untuk 

mengenalpasti vektor ciri penting dan sempadan keputusan sepadan dengan pelbagai 

tahap tekanan. Rangkaian DBN yang mengamkan  tiga sempadan keputusan yang 

terdiri daripada 20 ciri-ciri berbeza yang  diproses, dan hasilnya menunjukkan bahawa 

purata kebarangkalian Bayesian maksimum untuk setiap sempadan adalah 0,544, 0.61 

dan 0.75 dalam semua keadaan berkenaan kepada keadaan normal.  Akhirnya, vektor 

ciri-ciri yang dioptimumkan ini menjadi milik sempadan yang berbeza dan telah 

digabungkan  untuk membuat keputusan global dengan ketepatan pengesanan yang 

lebih baik dan boleh dipercayai. 
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Human Stress Level Computation Using Multiple Physiological Signals-Based on 

Fusion Technique through Dynamic Bayesian Network  

 

 

ABSTRACT 

This study investigates to improve the stress levels computation and its reliability using 

multiple physiological signals. In which, stress inducement, physiological signal 

acquisition, preprocessing, feature extraction, classification, optimization of features 

from multiple physiological signals, significant feature estimation, decision boundary 

optimization, and fusion are the major process. Mental arithmetic task stimulus is used 

to induce stress on the subjects and sixty healthy subjects with a mean age of 22.5 ± 2.5 

years were used. This investigation considered the five physiological signals 

(electrocardiogram (ECG), heart rate variability (HRV) signal, electromyogram 

(EMG), galvanic skin response (GSR), and skin temperature (ST)) to measure the effect 

of stress induced on the subject. The acquired ECG and EMG signals were 

preprocessed using wavelet denoising method to remove the noises in the frequency 

range of signals and 4
th 

order IIR elliptic filter to remove the noises in GSR and ST 

signals. The ectopic beat removal algorithm was used to eliminate the presence of noise 

peaks and artifacts in HRV signal. In the feature extraction, ECG and EMG signals 

features were computed using discrete wavelet packet transform (DWPT), Lomp-

Scargle (LS) periodogram is used to extract the low and high frequency band's power 

spectrum in the short- term HRV signal. The startle detection algorithm was 

implemented to extract and analyze the feature related to GSR tonic response, and 

finally the skin temperature features were extracted directly in the time domain. The 

obtained features classified in to four levels of stress including normal using three 

nonlinear classifiers (K nearest neighbor (KNN), probabilistic neural network (PNN), 

and support vector machine (SVM)). Average classification rate and F1 score above 

50% and 0.5 are considered as the dominant features respectively in this work. Result 

indicates that, 20 features as dominant features among the 244 features investigated 

over various frequency bands of five physiological signals. The maximum average 

classification accuracy of four levels was obtained as 74.20% in mean feature of ECG, 

76.69% in third cummulant feature of HRV, 74.67% in mean of EMG, 66.84% in startle 

frequency feature of GSR, and 63.63% in mean feature of ST in subject-independent 

study.  The results also indicate a significant improvement of classification results in the 

four class of subject-independent study over the earlier highly subject-dependent 

studies.  In order to improve the classification rate on stress levels and its reliability, 

the optimization of decision boundary based on physiologically significant feature 

vectors estimation is required. The variable-order hidden Markov model (HMM) based-

dynamic Bayesian network (DBN) was constructed to extract the dynamic changes of 

each physiological signal feature and capable to identify the significant feature vectors 

and decision boundaries corresponding to the different levels of stress. The DBN 

networks generalized the three decision boundaries of the 20 different dominant 

features processed, and the result shows that the maximum average Bayesian 

probability of each boundary is 0.544, 0.61, and 0.75 in all the states with respect to 

normal state.  Finally, these optimized feature vectors belongs to different boundaries 

fused to make the global decision to ensure the reliability. The result shows that, an 

excellent agreement of reliability measure with improved classification accuracy while 

the significant components only presents in the fusion.  
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