

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

School of Computer and Communication Engineering UNIVERSITI MALAYSIA PERLIS

2014

CAPACITY AND COVERAGE ENHANCEMENT FOR MULTI-HOP RELAY IN LONG TERM **EVOLUTION-ADVANCED NETWORK** NC oriel protected by oriel

inisitem is f JAAFAR ADHAB ANGOOD (1140810635)

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

School of Computer and Communication Engineering **UNIVERSITI MALAYSIA PERLIS**

Acknowledgements

Praise and thanks to Allah (SWT) who gave me the strength and courage to complete this project. I would like to express my sincere thanks to all those who have contributed to the success of my study. First of all, I would particularly like to thank my supervisor, Prof. Dr. R. Badlishah Ahmad, who is not a supervisor of words. He is quiet and understanding, his continuous guidance and support in many aspects including, but not limited to, strengthening the scientific research capabilities, encouraging technical discussions with him at any time. He set an example for me to think and follow. He gave me professional guidance with critical comments. He was also kind to provide me with an invaluable source of materials and spiritual encouragement. It was the way he helped me finish my work. In other words, the more I worked with him, the more I admired him.

I am also indebted to last my supervisor Dr. Abid Yahya, who is young but talented. He is also smart and thoughtful to give an excellent explanation to me. He supported me throughout the long academic PhD, pursuing journey. His guidance, ideas, encouragement, affable nature, valuable advice, kindness and support were greatly helpful.

My deep appreciation and special thanks go to the Universiti Malaysia Perlis (UniMAP) and to the staff of the UniMAP; especially the staff members' of the School of Computer and Communication Engineering for their support and eagerness to provide the ideal research environment.

More specifically, my deepest gratitude goes to my mother, who devoted her life to me and to my wife, my brothers and my sisters for their daily prayers, giving me the motivation and strength, and for encouraging me to achieve my goals. I am really indebted to them all and words are not sufficed to express the gratitude I owe to them. Special thanks go to all my friends for their motivation, help and support during my academic period. I am indebted to all those namely mentioned above for their friendship and spiritual support that kept me going ahead. Last, but not least, I offer to my family the sincerest words of gratitude for their patience and unshakable faith in me.

othis term is protected by original copyright

TABLE OF CONTENTS

Page

DECLARATION OF THESIS	i
ACKNOWLEDGEMENTS	ii
TABLE OF CONTENTS	iv
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF ABBREVIATIONS	xiii
LIST OF SYMBOLS	xvi
ABSTRAK	xxii
ABSTRACT	xxiii
CHAPTER 1 INTRODUCTION	1
1.1 Background	1
1.2 Concept of Relay Node	4
1.2.1 Advantages	7
9.2.2 Disadvantages	7
1.3 Problem Statement	8
1.4 Research Objective	10
1.5 Scope of Works	11
1.6 Research Contributions	11
1.6 Thesis Outline	12
CHAPTER 2 LITERATURE REVIEW	14

2.1	Introduct	tion	14
2.2	Cooperat	tive relaying	18
	2.2.1	Ad Hoc communication	19
	2.2.2	Multi-Hop Relay	20
	2.2.3	Advantage of Multi-Hop Relay	22
	2.2.4	Drawback of Multi-Hop Relay	24
2.3	Relays C	Classification	25
	2.3.1	Amplify and Foreword (AF) Relay	25
	2.3.2	Decoding and Foreword (DF) relay	28
2.4	Relay No	ode (RN)	30
2.5	RN Enha	ance Cellular Network	35
2.6	RN Oper	rational Mode in LTE-A	35
	2.6.1	Transparent Mode	36
	2.6.2	Non-Transparent Mode	37
2.7	Relay Pla	anning in Cellular Networks	38
	2.7.1	Location of relay	41
	2.7.2	Relay Link enhancement	47
2.8	Moving	Relay (MR)	50
2.9	Summar	у	55
CHA MUL	PTER 3 (.TI-HOP	CAPACITY AND COVERAGE ANALYSIS FOR RELAY IN LTE-A CELLULAR NETWORK	56
3.1	Introduct	tion	56
3.2	Channel	Interference	58
3.3	Network	Capacity Without RN	60
3.4	Handove	er Process Analysis	65

3.5	Network Capacity with RN 67		
3.6	Optimum RN Location (D_{RN}) 7		
3.7	Optimal Number of Relay (N_{relays}) 7		
3.8	Pseudo	Codes of RN Deployment	80
3.9	Frequer	ncy Reuse for Multi Hop Relay	71
3.10	Enhanc	e Relay Link Capacity (ERLC)	82
	3.10.1	Handover Measurement for DA	83
	3.10.3	Proposed Antenna Design	84
3.11	System	modelling	87
3.12	Balance	Transmitted Power of MR in LTE-A Cellular Networks	90
	3.12.1	Performance Analysis of Multi-Users Network	90
		3.12.1.1 Fixed System	91
		3.12.1.2 Mobility System	96
	3.12.2	Balance Power Algorithm of MR In LTE-A Cellular Networks	98
3.13	Summa	ry	104
CHAPTER 4 RESULTS AND DISCUSSION 105			105
4.1	Introdu	ction	105
4.2	Optimu	m RN Deployment (ORND) Analysis	107
	4.2.1	Downlink Capacity without RN	107
	4.2.2	Performance Enhancement of Downlink Capacity through Proposed RN Locations	110
	4.2.3	Power Allocations for RNs	112
	4.2.4	Mitigating Interference between RNs	116

4.3	Relay L	ink Enhancement	124
	4.3.2	Performance Analysis of Handover Process	124
	4.2.3	Performance Enhancement forRelay Link	125
4.4	Perform	ance Analysis of Balance Transmitted Power for MR	131
	4.4.1	UL and DL Performance Analysis	131
	4.4.2	Performance analysis of BPA at MR	133
4.5	Summa	ry	137
		VILE	
CHA FUT	PTER 5 URE WO	CONCLUSION AND RECOMMENDATION FOR DRKS	139
5.1	Conclus	sion	139
5.2	Future V	Works	141
		ed V	
REFI	ERENCI	ES	143
APPI	ENDICE	s or	157
LIST	OF PUI	BLICATIONS	168
	. 6	N°	
(OTHIS	,	

LIST OF TABLES

NO.		PAGE
1.1	3GPP-LTE, LTE-Advanced and IMT-Advanced Performance Targets for Downlink (DL) and Uplink (UL) (Akyildiz, et al., 2010).	3
2.1	Comparison of Transparent and Non-Transparent Mode (Akyildiz, et al., 2010).	38
4.1	Simulation Parameters for ORLD (3GPP, 2007).	108
4.2	Optimum System Configuration for ORND.	116
4.3	Simulation Results of Total Radiation Power for Each Proposed Location.	120
4.4	Proposed Parameters for ERLC.	127
A.1	CQI Table for Modulation and Coding Schemes in LTE Networks (3GPP, 2009; Sesia, et al., 2009).	159

LIST OF FIGURES

NO.		PAGE
1.1	Cellular Networks Generations for Standards Mobiles Communication (Dahlman, et al., 2011a).	3
1.2	Typical Scenario of Multi Hop Relay.	6
2.1	Functionalities Introduced by LTE-A to Enhance 3GPP-LTE Network.	15
2.2	Scope of Literature Survey.	17
2.3	Three Terminals Cooperative Relaying(T. Q. Duong & Zepernick, 2009).	19
2.4	Amplify and Foreword Relay.	26
2.5	Decoded and Foreword Relay.	28
2.6	Scenario of Relay Nodes.	31
2.7	Operational Relay Mode (a) Transparent (b) Non Transparent.	38
2.8	Layout of RN Enhanced Cellular System Illustrating the Coverage of UE-BS, RN-BS and UE-RN Regions (Meko, 2012).	46
2.9	In-Band and Out-Band Relay Mode of Multi Hop Network.	47
2.10	Scenarios of Moving Relay (MR) Installed on Public Transportations.	52
2.11	System Model of (Sui, Papadogiannis, Yang, et al., 2012).	53
3.1	Scope of Summarized this Chapter.	57
3.2	Inter Cell -Interference Scheme at UE from Neighbouring Cell.	58
3.3	Proposed Model of Network Capacity Calculation for ORND.	61
3.4	Handover Process of UE Movement between BS and RN	65
3.5	Transmission Range of the Modulation and Coding Schemes in LTE Cellular Network (Huang, et al., 2010).	68
3.6	Constraints of Determination the Optimum Number of RNs per Cell (a) RN Deployment for One Cell (b) RN Deployment for	74

First Tier.

3.7	Proposed Frequency Reuse for multi-Hop Relay (a) for Conventional Cellular Network (b) LTE-A Cellular Network.	81
3.8	Proposed Model of Using Two Types of Antennas; OA and DA are Operated as Half Duplex Mode within Six RNs Deployed in Cell.	83
3.9	Antenna Aperture Directional Antenna.	85
3.10	Broadband Directional Antenna Type (a) Real Photo (b) Pattern Simulation.	86
3.11	Link Budget Scheme for Simulation Test.	88
3.12	Multi-Hop Against Multi-User System at Half duplex Mode.	92
3.13	System Model of Multi-Hop against Multi-User System.	95
3.14	Links of Group Mobility (MR Fixed on the Train) within Travelling Across a Cell.	99
3.15	Flowchart of BPA.	103
4.1	Diagram showing Three Novel Modals Results and Analysis Flow.	106
4.2	Comparison in Downlink Spectral Efficiency of Classical and Modified Shannon Formula.	109
4.3	Downlink of RSS versus Cell Radius without ORND.	110
4.4	Spectral Efficiency Enhancement for Four RN Deployed with 10 watts Transmission Power Allocated for each RN and Located at 1250m from BS as Optimum Proposed Location.	111
4.5	Spectral Efficiency Enhancement for Six RN Deployed with 5 watts Transmission Power Allocated for each RN and Located at 1600m from BS as Optimum Proposed Location.	112
4.6	Spectral Efficiency Enhancement for Nine RN Deployed with 2 watts Transmission Power Allocated for each RN and Located at 1950m from BS as Optimum Proposed Location.	112
4.7	Spectral efficiency Enhancements of three proposed schemes 4RN10W, 6RN5W and 9RN2W based on Table 4.2	114
4.8	Transmission Power Allocation against Optimum Location for RN.	115

4.9	Number of RNs per Cell versus Transmitted Power Allocated.	115
4.10	Optimum Location for Relay versus Number of RNs per Cell	116
4.11	Simulation Analysis of DL RSS with Interference from Neighboring Cells.	117
4.12	Enhancements in RSS at UE for Proposed Optimum RN Locations Summarized in Table 4.2.	118
4.13	Clarification of Gradient Color Bar of Coverage Area Distribution.	119
4.14	Gradient Color of Coverage Area Distribution for Four RN Deployed Located at 1250m from BS with 10watts Transmission Power as Case1 in Table 4.2.	121
4.15	Gradient Color of Coverage Area Distribution for Six RN Deployed and Located at 1600m from BS with 5 watts Transmission Power as Case2 in Table 4.2.	121
4.16	Gradient Color of Coverage Area Distribution for Nine RN Deployed Located at 1950m from BS with 2 watts Transmission Power as Case3 in Table 4.2.	122
4.17	Three-Dimension Gradient Color of Coverage Area Distribution for six RN Deployed at Proposed Location with 6 watts Transmission Power Allocated Case2 in Table.	122
4.18	The Interference Mitigation for ORND using six RN deployed with 5 watts Transmission Power Case 2 Table 4.2 (a) without ORND, RNs are De-active (b) for ORND the RNs are Active.	123
4.19	The Changes of Handover Distance with the Different Level Directional Antenna Gain.	125
4.20	Relay Link Enhancement by Using DA at RN for ERLC Proposed and Conventional Links.	126
4.21	Thoughput Enhancement at Relay Link.	127
4.22	Gradient Color of RSS Distribution for Six RN deployed around BS each RN Uses OA 7dBi Gain and 5watts Feeder Power (Convenational Link).	129
4.23	Gradient Color of RSS Distribution for Six RN Deployed around BS each RN Uses Two Antenna Designs According to Table 4.4 Model 3.	130

4.24	RSS at UE versus the Cell Radius within UL and DL Mode for Conventional Cellular.	132
4.25	Bit Rate and SNR Enhancements Using Different Number of Relays.	133
4.26	RSS at UE versus the Cell Size for Conventional and LTE-A Contained of Six RN Deployed at 1600m from BS Each RN with 5 watts Transmission Power.	135
4.27	Reducing in Transmission Power Consumption for MR by Employing BPA.	135
4.28	Enhancement in Throughput for Users Linked with MR	136
A.1	Throughput of a set of Coding and Modulation Combinations, AWGN channels assumed (S. Wang, et al., 2011; Y. Wang, 2010; Y. Wang, et al., 2009).	160
A.2	Approximating AMC with an Attenuated and Truncated form of the Shannon Bound (S. Wang, et al., 2011; Y. Wang, 2010; Y. Wang, et al., 2009).	160
A.3	Performances of Classical and Modified Shannon Capacity bund at Three-Dimensions.	136
\bigcirc		

LIST OF ABBREVIATIONS

1 G	1 st Generation
2G	2 nd generation
3G	3 rd Generation
3GPP	3 rd Generation Partnership Project
3GPP- LTE	3 rd Generation Partnership Project- Long Term Evaluation
4G	4 th Generation
16-QAM	16- Quadrature Amplitude Modulation
AF	Amplify and Foreword.
AMC	Adaptive Modulation and Coding
AMPS	Advanced Mobile Phone Systems
AWGN	Additive white Gaussian Noise
BPA	Balance Power Algorithm.
BPSK	Binary Phase-Shift Keying
BS	Base Station
CA	Carrier Aggregation
CDMA	Code Division Multiple Access
CoMP	Coordinated Multi-Point transmission and reception
CQI	Channel Quality Indicator
DA	Directional Antenna
DAS	Distributed Antenna System
DF	Decode and Foreword
DL	Downlink
ERLC	Enhance Relay Link Capacity

EPs	Extension Points
EVM	Error Vector Magnitude
FD	Full-Duplex
GSM	Global System for Mobile Communications
HD	Half-Duplex
ICI	Inter-Cell Interference
IMT-A	International Mobile Telecommunications -Advanced
IMT-2000	International Mobile Telecommunications
IP	Internet Protocol
ITU	International Telecommunication Union's
LOS	Line-Of-Sight
LTE	Long Term Evaluation
LTE-A	Long Term Evaluation –Advanced
MANETs	Mobile Ad Hoc Networks
MCS	Modulation and Coding Scheme
MIMO	Multiple-Input Multiple-Output
MR	Moving Relay
NLOS	Non-Line-Of-Sight
OA	Omni-Directional Antenna
OFDM	Orthogonal Frequency Division Multiplexing
OFDMA-TDD	Orthogonal Frequency Division Multiple Access-Time Division Duplexing
ORND	Optimum Relay Node Deployment
QoS	Quality of Service
QPSK	Quadrature – Phase Shift Keying

RN	Relay Node
RSS	Received Signal Strength
SER	Sample Error Rate
SNR	Signal to Noise Ratio
SINR	Signal to Interference Plus Noise Ratio
TDMA	Time Division Multiple Access
UEs	User Equipment
UMTS	Universal Mobile Telecommunications System
UL	Uplink
VPL	Vehicle Penetration Loss
WiMAX	Worldwide Interoperability for Microwave Access
WLAN	Wireless Local Area Network

Chistenispotected

LIST OF SYMBOLS

BW _{eff}	Adjustment for Bandwidth Efficiency
$BW_{\phi az}$	Beam Width Pattern at Azimuth Angle
$BW_{\theta el}$	Beam Width Pattern at Elevation Angle
C _{max}	Upper Limit Spectral Efficiency for BS
C_{Rmax}	Upper Limit Spectral Efficiency for RN
$C_{RN,2}$	Upper Limit Spectral Efficiency for RN at location 2
$C_{RN,3}$	Upper Limit Spectral Efficiency for RN at location 3
C _{sim}	Spectral Efficiency for BS through Simulator
C _i	Estimated Spectral Efficiency for BS
d	Distance Between BS And UE
d _{nr}	Distance between Neighboring RNs
d _{nr,j}	Distance between RNs in Neighboring Cell
d_A	Distance between BS and MR above Vehicle
d _{c,q}	Distance between BS and UE Inside Vehicle
d _{i,k}	Distances between UE and BS_j
D_{RN}	Location of RN from BS
$D_{i,k}$	Distances between UE to BS_i
E[.]	Expectation Function
G _t	Antenna Gains for Transmitter
G _{re}	Antenna Gain of Receiver
G _{tr}	Antenna Gain of Transmitter
G_d	Gain of DA for RN

G _{ue}	Antenna Gain for UE
G_{BS}	Antenna Gain for BS
G _r	Antenna Gains for Receiver
H _{i,k}	Fading Channel Gain form Donor to User
$H_{j,k}$	Fading Channel Gain from Neighboring Cell to User
H _{i,xs}	Fading Channel Gain form Donor BS to User at X_s Location
<i>H</i> _{<i>i</i>,2}	Fading Channel Gain form Donor BS to User at Location 2
<i>H</i> _{<i>i</i>,3}	Fading Channel Gain form Donor BS to User at Location 3
H _{i,xo}	Fading Channel Gain form Donor BS to User at X_o Location
H _{RN,xo}	Fading Channel Gain form RN to User at X_o Location
$H_{j,xs}$	Fading Channel Gain from Neighboring Cell to User at X_s Location
H _A	Fading Channel at Relay Link
H_B	Fading Channel at Access Link
H _C	Fading Channel at Direct Link
$H_{k,q}$	Matrix Fading Channel between k^{th} -RN and q^{th} -User
L _r	RN Characteristics
L _{re}	Feeder Losses at Receiver
L_t	Feeder Losses at Transmitter
L_{prop}	Propagation Loss
L _{fsd}	Free Space Distance Loss
L _d	Diffraction Loss
L _{sp}	Sub-Path Loss
L _{gas}	Attenuation Caused by Atmospheric Gas
L _{rain}	Attenuation Caused by Hydrometeor Scatter

L _{clut}	Clutter Attenuation
N _k	Background Noise at User
N _{Xo}	Background Noise for User at X_o
N _{xs}	Background Noise for User at X_s
<i>N</i> ₂	Background Noise at User in Location 2
<i>N</i> ₃	Background Noise at User in Location 3
N _{relays}	Optimum Number of Relay
N _{cell}	Number of Neighboring Cell
P_i	Transmitted Power from BS
P_{UE}	Transmitted Power from UE
P _{RN}	Transmitted Power from RN
P _{rj}	Received power to UE from Neighboring BS
P_j	Transmitted Power from Neighboring BS
P _{o,RL}	Outage Probability of Relay Link
P _{o,MH}	Outage Probability of Multi-Hop Link
P _{o,access}	Outage Probability of Access Link
$\rho_{RN,Xo}$	SINR for User at Xo via RN
$\rho_{i,k}$	SINR at k- User via BS_i
$ ho_i$	SINR for Each User in The Cell
$ ho_{ideal}$	Ideal SINR for User at X_s Location
$ \rho_{max} $	Maximum Limitation on Received SINR by Using EVM
$ \rho_{i,xs} $	SINR from BS to User at X_s Location
$ ho_{RN,2}$	SINR from RN to user at Location 2
$ ho_{RN,3}$	SINR from RN to user at Location 3

$ ho_{UE,q}$	Downlink SNR at user via direct and Relay Links
$ ho_{BS}$	Uplink SNR at BS via Direct and Relay Links
$ ho_{UE,q}^{gm}$	SNR at UE inside Vehicle (Group Mobility) via MR
$ ho_{UE,q}^{Direct}$	SNR at UE inside vehicle (group mobility) via Direct Link
ρ^{max}	Maximum Required of SNR at UE inside Vehicle
$ ho_{th}$	Threshold of SNR at UE inside Vehicle
$ ho_{ m eff}$	Adjustment for SINR Spectral Efficiency
p_t	Transmitted Power From Source
p_r	Received Power From Destination
$p_{multi-hop}^{r}$	Received Power Via Multi-Hop Link
$p^r_{ m traditional}$	Received Power Via Traditional Link
$R^{gm}_{UE,q}$	Bit Rate at UE Inside Vehicle (Group Mobility) via MR
$R_{UE,q}$	Downlink Bit Rate at User via Direct and Relay Links
R	Cell Radius
SINR _{sim}	SINR through Simulator
T _{MR}	Time of Approaching of Vehicle
V _{MR}	Velocity of vehicle
$X_{i,k}$	Received Signal from BS for User
$X_{j,k}$	Received Signal from Neighboring BS for User
X _{i,xs}	Received Signal from BS for User at X_s Location
<i>X</i> _{<i>i</i>,2}	Received Signal from BS for User at Location 2
<i>X</i> _{<i>i</i>,3}	Received Signal from BS for User at Location 3
$X_{RN,2}$	Received Signal from RN for User at Location 2
X _{RN,3}	Received Signal from RN for User at Location 3

$X_{j,xs}$	Received Signal from Neighboring BS at User at Location X_s
$X_{RN}[t_2]$	Transmitted Signal form RN at Second Time slot $[t_2]$
X _s	Distance of Estimated Saturation Capacity
<i>X</i> _{<i>s</i>2}	Distance of Estimated Saturation Capacity for RN at Location 2
<i>X</i> _{<i>s</i>3}	Distance of Estimated Saturation Capacity for RN at Location3
$Y_{i,k}$	Received Signal for k- User from BS_i
Y _{RN,Xo}	Received Signal for User from RN at Xo location
$Y_{RN,2}$	Received Signal for User from RN at Location 2
Y _{RN,3}	Received Signal for User from RN at Location 3
Y _{RL}	Received Signal for User via Relay Link
Y _{AL}	Received Signal for User via Access Link
$y_{UE,q}[t_1]$	Received Signal for User at first Time Slot $[t_1]$
$y_{UE,q}[t_2]$	Uplink Received Signal by UE_q at Second Time slot $[t_2]$
$y_{RN}[t_1]$	Received Signal for RN at First Time Slot $[t_1]$
$y_{BS}[t_2]$	Downlink Received Signal by BS at Second Time Slot $[t_2]$
$\hat{y}_{BS}[t_2]$	Downlink Received Signal by BS at Second Time Slot $[t_2]$ after Cancelation the Self-Interface
ŷ _{UEq}	Uplink Received Signal by UE_q at Second Time Slot $[t_2]$ after Cancelation the Self-Interface
Υ _{th}	Certain threshold of SINR
Υ _{RL}	SINR at the Relay Link
Yaccess	SINR at the Access Link
α	Path Loss Exponent
λ	Wavelength Of The Carrier Frequency
θ_{el}	Elevation Angle of Antenna

- θ_{az} Azimuth Angle of Antenna
- *X_o* Handover Distance from BS
- σ_o Variance
- Ψ Amplification Factor for AF relay

o this term is protected by original copyright

Pendekatan Baru Penambah Baikan Kapasity dan Liputan Bagi Rangkaian LTE-A Pelbagai

ABSTRAK

Rangkaian selular yang sedia ada mempunyai kesukaran untuk menyediakan tahap SINR yang memuaskan kepada pengguna terutamanya di sempadan sel rangkaian. Oleh itu, kaedah multi-hop dianggap sebagai salah satu kunci utama untuk memperbaiki teknologi rangkaian sel melalui teknologi Long Term Evaluation-Advanced (LTE -A) bagi memenuhi permintaan yang semakin meningkat dan memperluaskan liputan dan peningkatan kapasiti sistem. Walau bagaimanapun sistem multi-hop ini bergantung kepada lokasi Nod Relay (RN) bagi mengurangkan gangguan isyarat di antara sel. Penyelidikan ini mencadangkan tiga pendekatan asli bagi tujuan meningkatkan keupayaan dan memperluaskan kawasan liputan bagi LTE-A rangkaian selular. Pertama, yang dipanggil Kedudukan Optimum RN (ORND) yang berdasarkan kepada permodelan matematik menggunakan formula teori agihan kapasiti Shannon. Di dalam pendekatan ORND ini penentuan lokasi yang paling optimum untuk RN (D_{RN}) diperolehi melalui rumusan matematik yang memaksimumkan kapasiti untuk penggunapengguna di dalam kawasan tepian sel. Bilangan RN yang optimum (N_{relays}) diperolehi ditentukan bagi memastikan liputan keluasan yang optimum dan juga dapat mengurangkan kos. Berdasarkan kepada dapatan pengiraan D_{RN} dan N_{relays} , kuasa penghantaran untuk setiap RN ditentukan bagi mengelakkan pertindihan dan gangguan antara RNs yang berdekatan. Penggunaan semula frekuensi digunakan untuk memastikan tiada ganggunan antara RN dan Stesen Pangkalan (BS) dan untuk memelihara spektrum di dalam sel yang sama. Melalui permodelan persamaan matematik dan pengesahan melalui simulasi yang dibuat, keputuan menunjukkan bagi peringkat pertama sel (iaitu 6 sel-sel mengelilingi sel tertentu) menunjukkan 40% peningkatan kapasiti berbanding dengan rangkaian selular konvensional. Pendekatan kedua, dipanggil Peningkatan Kapasiti Pautan Relay (ERLC), memberi tumpuan kepada peningkatan kapasiti pautan untuk mengatasi gangguan dalam perkhidmatan mudah alih kerana saluran yang tidak tetap. ERLC berdasarkan kepada implementasi penggunaan dua (jenis antena, Antena Banyak Arah (OA) dan Antara Satu Arah (DA) yang beroperasi secara Half Duplex (HD). Penghantaran kuasa setiap antena ditetapkan disamping memelihara penggunaan kuasa yang sama bagi perantara untuk RN. Kaedah ERLC berjaya meningkat kapasiti pautan relay kepada 46% berbanding dengan relay Akhir sekali, Relay Bergerak (MR) dicadangkan bagi pautan konvensional. menyediakan sambungan yang boleh diharap bagi rangkaian selular untuk menyediakan sambungan di sepanjang laluan kenderaan. Penggunaan MR menunjukkan prestasi yang baik bagi pengguna sel. Satu algoritma baru dipanggil Algoritma Samarataan Kuasa(BPA) dihasilkan dan dianalisa. Keputusan yang diperolehi menunjukkan bahawa BPA dapat mengurangkan 75% kuasa penghantaran dan meningkatkan keseluruhan bilangan pengguna aktif dan apabila digabungkan dengan menggunakan MR sekitar 88% celusan berbanding dengan pautan langsung tanpa menggunakan MR.

Capacity and Coverage Enhancement for Multi-Hop Relay in LTE-A Network

ABSTRACT

Cellular networks known have difficulty to provide satisfactory SINR level to users at the cell boundaries. Therefore, multi-hop relay is considered as one of the main keys for Long Term Evaluation - Advanced (LTE-A) to meet the growing demand for coverage extension and capacity enhancement. However these benefits of multi-hop depend on location of Relay Node (RN) which mitigates interference among the cells. In this work three novel models to enhance the capacity and expand the coverage area for LTE-A cellular networks are proposed. The first model called Optimum RN Deployment (ORND) and based on mathematical modelling of modified Shannon formula of capacity distribution. In ORND the determination of optimal location for RN (D_{RN}) is formulated to maximize capacity for users at cell edge region. Optimum number of relays (N_{relays}) is derived to ensure the best coverage with low cost implementation. Based on both D_{RN} and N_{relays} , transmission power for each RN is allocated to avoid overlapping among neighbouring RNs and optimize the power consumption. Frequency reuse of multi-hop relay is applied to avoid interference between the RN and Base Station (BS) while preserving the same available spectrum for the cell. Mathematical results are validated by multi-cell simulation through using first tier of cells (i.e. six cells surround a particular cell) and showed 40% of capacity enhancement for cell size with interference- limited compared to conventional cellular network. The second model is called Enhance Relay Link Capacity (ERLC) and aims to enhance capacity for the relay link to overcome outages in mobile services due to channel fluctuations. ERLC is based on the usage of two antennas types, Omni directional Antenna (OA) and Directional Antenna (DA). The transmission power of each antenna is allocated while preserving the same consumption of the feeder power to the RN. ERLC increased capacity of the relay link to 46% in comparison with conventional relay link. Finally, Moving Relay (MR) is proposed to improve throughput for passengers on public transportation and provide reliable connection with cellular networks along the route, especially at the cell boundaries. A new algorithm called Balance Power Algorithm (BPA) is proposed to minimize the transmission power consumption for MR. The results shows that BPA substantially reduced 75% the transmission power consumption for MR and increased throughput for active users linked with the MR around 88% compared to direct link.