

Moving Vehicle Identification using Artificial Neural Networks

by

copyright SATHISHKUMAR SUNDARARAJ (0830610327), rected b

A thesis submitted in fulfillment of the requirements for the degree of Master of Science (Mechatronic Engineering) O THIS iter

> **School of Mechatronic Engineering UNIVERSITI MALAYSIA PERLIS**

> > 2014

UNIVERSITI MALAYSIA PERLIS

DECLARATION OF THESIS			
Author's full name :	SATHISHKUMAR SUNDARARAJ		
Date of birth :	30.11.1985		
Title :	MOVING VEHICLE IDENTIFICATION USING ARTIFICIAL NEURAL NETWORKS		
Academic Session :	2012 - 2013		
I hereby declare that the thesis b	ecomes the property of Universiti Malaysia Perlis (UniMAP) and to be placed at the		
library of UniMAP. This thesis is classified as :			
CONFIDENTIAL	(Contains confidential information under the Official Secret Act 1972)*		
RESTRICTED	(Contains restricted information as specified by the organization where		
OPEN ACCESS	research was done)* I agree that my thesis is to be made immediately available as hardcopy or on-line open access (full text)		
	open access (run text)		
I, the author, give permission to	he UniMAP to reproduce this thesis in whole or in part for the purpose of research or		
academic exchange only (except	during a period of years, if so requested above).		
This			
\bigcirc	Certified by:		
SIGNATURE	SIGNATURE OF SUPERVISOR		
H0661193	Prof. Dr. Paulraj Murugesa Pandiyan		
(NEW IC NO. / PASSI	PORT NO.) NAME OF SUPERVISOR		
Date :	Date :		

NOTES : *If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentiality or restriction. Replace thesis with dissertation (MSc by Mixed Mode) or with report (coursework).

ACKNOWLEDGEMENT

I would like to extend my sincere gratitude to the Vice Chancellor of UniMAP, Brigedier General Datuk' Prof. Dr. Khamarudin b. Hussin for his constant encouragement throughout my study.

I would like to express my profound gratefulness to **Prof. Dr. Abdul Hamid Adom**, Deputy Vice Chancellor, UniMAP for providing support and encouragement throughout my research work and who has also co-supervised my research work.

I extend my sincere gratitude to **Mr. Abu Hassan Abdullah**, Dean, School of Mechatronic Engineering, UniMAP, for his moral support and timely help during my research work.

I am very fortunate to have a kindhearted person to guide me throughout my research and would like to show my heartfelt sincere gratitude to my beloved mentor, and first Supervisor **Prof. Dr. Paulraj Murugesa Pandiyan**, Mechatronic Engineering Programme, School of Mechatronic Engineering, UniMAP for his invaluable guidance, support, and enthusiasm. I am greatly indebted for his inspiration and thirst for knowledge and research which helped me to groom and nurture myself throughout my research work. His continuous motivation helped me to complete my research successfully.

I wish to extend my deep gratitude to **Mr. Norasmadi Bin Abdul Rahim**, Lecturer, Mechatronic Engineering Programme, School of Mechatronic Engineering, UniMAP for his valuable guidance and funding support during my research work and also co-supervised my research work.

I extend my sincere gratitude to **Ms. Marhainis Othman**, Lecturer, Mechatronic Engineering Programme, School of Mechatronic Engineering, UniMAP, for her funding support and timely help during my research work. I wish to express my appreciation to **Dr. Cheng Ee Meng**, Senior Lecturer, Biomedical Electronic Engineering Programme, School of Mechatronic Engineering, UniMAP, for his kind help during my research work.

I would like to thank, the members of staff, School of Mechatronic Engineering, Research and Development, Library, ICT, Bendahari and Postgraduate studies for their kind and needful assistance, encouragement and support during my research work.

I would like to express my deep appreciation to all my fellow friends and members of the Intelligent Signal Processing Research Cluster and the members of the Research Laboratory and other research clusters for their endless support and motivation.

I wish to extend my earnest and sincere appreciation to **Prof. Dr. K. Ramar**, Principal, Einstein College of Engineering, Tiruneveli, India, for his constant support and motivation during my research work. I would like to extend my earnest gratitude to my beloved parents, brothers, relatives and friends for their constant encouragement during the course of my research work.

Finally I would like to express my deep gratitude to the Ministry of Higher Education (MOHE) and the Government of Malaysia for providing me an opportunity to accomplish my research and studies.

TABLE OF CONTENTS

PAGE

DEC	CLARATION	i
ACK	NOWLEDGEMENT	ii
TAB	ELE OF CONTENTS	iv
LIST	Γ OF TABLES	xxii
LIST	T OF TABLES T OF FIGURES T OF ABBREVIATIONS T OF SYMBOLS TRAK (BM) TRACT (ENGLISH)	xxvi
LIST	Γ OF ABBREVIATIONS	xxxiv
LIST	r of symbols	xxxvii
ABS	TRAK (BM)	xxxviii
ABS	TRACT (ENGLISH)	xxxix
СНА	APTER 1 INTRODUCTION	
1.1	Preamble	1
1.2	Motivation towards the research	1
1.3	Problem statement	2
1.4	Research approach	3
1.5	Research objective and significance	3
1.6	Thesis organization	4

CHAPTER 2 LITERATURE REVIEW ON MOVING VEHICLE IDENTIFICATION

2.1 Introduction	6
------------------	---

2.2	Vehicle detection	6
2.3	Tactile sensory aids for DHAA	8
2.4	Vision based vehicle detection	9
2.5	Acoustic sound signal detection of moving vehicle	11
2.6	Vehicle detection methodology	22
2.7	Summary PTER 3 EXPERIMENTAL DESIGNS AND DATA COLLECTION M	23
CHA	PTER 3 EXPERIMENTAL DESIGNS AND DATA COLLECTION M	ODULE
3.1	Introduction	24
3.2	Vehicle signal spectral contents	24
3.3	Vehicle detection using acoustic sound signal	25
3.4	Experimental design	25
	3.4.1 Data acquisition system	26
	3.4.2 Selection of venue for data collection	27
3.5	Data collection protocol design	27
	3.5.1 Recording arrangement	27
3.6	Data collection procedure	29
3.7	Signal selection	30
3.8	Sound signal database	31
3.9	Summary	33

CHAPTER 4 FEATURE EXTRACTIONS AND DATA PROCESSING

4.1	Introduction		34
4.2	Sound	signal analysis	34
	4.2.1	Pre-processing	35
4.3	Feature	extraction	38
4.4	Freque	ncy domain approach	39
	4.4.1	Signal Filtering	40
	4.4.2	Signal Filtering Spectral band analysis	41
	4.4.3	Algorithm for extraction of DFT coefficients	42
4.5	Time d	omain approach	42
	4.5.1	Statistical features	43
	4.5.2	Autoregressive model	52
4.6	Data pr	ocessing	55
	4.6.1	Data normalization and randomization	55
4.7	Summ	ary	56

CHAPTER 5 CLASSIFICATION OF MOVING VEHICLE USING ARTIFICIAL NEURAL NETWORK

5.1	Introduction	57
5.2	Synopsis of neural network	57
5.3	Motivation towards ANN	58
5.4	MLP neural network architecture design	58

5.5	Training multi	layer feedforward neural network	59
	5.5.1 Levent	berg Marquardt training algorithm	59
5.6	Implementatio	on of Multilayer Perceptron (MLP)	60
	5.6.1 MLP fo	or Vehicle type classification using Spectral Band Features	60
	5.6.2 MLP fo	or Vehicle position classification using	
	Spectral Band	Features	61
	5.6.3 MLP fe	or Vehicle Type Classification using	
	Single Frame S	Statistical Features	61
	5.6.4 MLP fe	or Vehicle Type Classification using	
	Two Frame St	atistical Features	62
	5.6.5 MLP f	or Vehicle Type Classification using	
		Statistical Features	62
	5.6.6 MLP fe	or Vehicle Type Classification using	
		atistical Features	62
		, Qr	
	5.6.7 MLP f	or Vehicle Type Classification using	
	Five Frame Sta	atistical Features	63
	5.6.8 MLP f	or Vehicle Position Classification using	
0		Statistical Features	63
	5.6.9 MLP f	or Vehicle Position Classification using	
		atistical Features	64
	5.6.10 MLP f	or Vehicle Position Classification using	
		Statistical Features	64
	5.6.11 MLP f	or Vehicle Position Classification using	
		atistical Features	64
	5.6.12 MLP fo	or Vehicle Position Classification using	
		atistical Features	65

	5.6.13 MLP for Vehicle Type Classification using	
	Single Frame AR Features	65
	5.6.14 MLP for Vehicle Type Classification using	
	Two Frame AR Features	66
	5.6.15 MLP for Vehicle Type Classification using	
	Three Frame AR Features	66
	5.6.16 MLP for Vehicle Type Classification using	
	Four Frame AR Features	67
	5.6.17 MLP for Vehicle Type Classification using	
	Five Frame AR Features	67
	5.6.18 MLP for Vehicle Position Classification using	
	Single Frame AR Features	67
	5.6.19 MLP for Vehicle Position Classification using	
	Two Frame AR Features	68
	5.6.20 MLP for Vehicle Position Classification using	
	Three Frame AR Features	68
	5.6.21 MLP for Vehicle Position Classification using	
	Four Frame AR Features	69
	5.6.22 MLP for Vehicle Position Classification using	
	Five Frame AR Features	69
5.7	Elman neural network architecture design	69
5.8	Training multilayer feedback neural network	70
	5.8.1 Levenberg Marquardt training algorithm	71
	5.8.2 ENN network parameters	72
5.9	Implementation of Elman Neural Network (ENN)	73

5.9.1 ENN Network Model for Vehicle Type Classification using	
Spectral Band Features	73
5.9.2 ENN Network Model for Vehicle Position Classification using	
Spectral Band Features	74
5.9.3 ENN Network Model for Vehicle Type Classification using	
Single Frame Statistical Features	74
5.9.4 ENN Network Model for Vehicle Type Classification using	
Two Frame Statistical Features	75
5.9.5 ENN Network Model for Vehicle Type Classification using	
Three Frame Statistical Features	75
5.9.6 ENN Network Model for Vehicle Type Classification using	
Four Frame Statistical Features	76
5.9.7 ENN Network Model for Vehicle Type Classification using	
Five Frame Statistical Features	76
5.9.8 ENN Network Model for Vehicle Position Classification using	
Single Frame Statistical Features	77
5.9.9 ENN Network Model for Vehicle Position Classification using	
Two Frame Statistical Features	77
5.9.10 ENN Network Model for Vehicle Position Classification using	
Three Frame Statistical Features	78
5.9.11 ENN Network Model for Vehicle Position Classification using	
Four Frame Statistical Features	78
5.9.12 ENN Network Model for Vehicle Position Classification using	
Five Frame Statistical Features	79
5.9.13 ENN Network Model for Vehicle Type Classification using	
Single Frame AR Features	79

	5.9.14 ENN Network Model for Vehicle Type Classification using	
	Two Frame AR Features	80
	5.9.15 ENN Network Model for Vehicle Type Classification using Three Frame AR Features	80
	5.9.16 ENN Network Model for Vehicle Type Classification using	
	Four Frame AR Features	81
	5.9.17 ENN Network Model for Vehicle Type Classification using	
	Five Frame AR Features	81
	5.9.18 ENN Network Model for Vehicle Position Classification using	
	Single Frame AR Features	82
	5.9.19 ENN Network Model for Vehicle Position Classification using	
	Two Frame AR Features	82
	5.9.20 ENN Network Model for Vehicle Position Classification using	
	Three Frame AR Features	83
	5.9.21 ENN Network Model for Vehicle Position Classification using	
	Four Frame AR Features	83
	5.9.22 ENN Network Model for Vehicle Position Classification using	
G	Five Frame AR Features	84
5.10	Radial Basis Function Neural Network (RBF)	84
	5.10.1 Choice of basis function and spread factor	85
5.11	RBF neural network training	86
5.12	Implementation of RBF Neural Network	87
	5.12.1 RBF Network Model for Vehicle Type Classification using Spectral Band Features	87
	5.12.2 RBF Network Model for Vehicle Position Classification using	

	5.12.3 RBF Network Model for Vehicle Type Classification using Single Frame Statistical Features	88
	5.12.4 RBF Network Model for Vehicle Type Classification using Two Frame Statistical Features	88
	5.12.5 RBF Network Model for Vehicle Type Classification using Three Frame Statistical Features	89
	5.12.6 RBF Network Model for Vehicle Type Classification using Four Frame Statistical Features	89
	5.12.7 RBF Network Model for Vehicle Type Classification using Five Frame Statistical Features	90
	5.12.8 RBF Network Model for Vehicle Position Classification using Single Frame Statistical Features	90
	5.12.9 RBF Network Model for Vehicle Position Classification using Two Frame Statistical Features	91
	5.12.10 RBF Network Model for Vehicle Position Classification using Three Frame Statistical Features	91
0	5.12.11RBF Network Model for Vehicle Position Classification using Four Frame Statistical Features	92
	5.12.12 RBF Network Model for Vehicle Position Classification using Five Frame Statistical Features	92
	5.12.13RBF Network Model for Vehicle Type Classification using Single Frame AR Features	93
	5.12.14RBF Network Model for Vehicle Type Classification using Two Frame AR Features	93
	5.12.15RBF Network Model for Vehicle Type Classification using	

88

	5.12.16RBF Network Model for Vehicle Type Classification using Four Frame AR Features	94
	5.12.17RBF Network Model for Vehicle Type Classification using Five Frame AR Features	95
	5.12.18RBF Network Model for Vehicle Position Classification using Single Frame AR Features	95
	5.12.19RBF Network Model for Vehicle Position Classification using Two Frame AR Features	96
	5.12.20RBF Network Model for Vehicle Position Classification using Three Frame AR Features	96
	5.12.21RBF Network Model for Vehicle Position Classification using Four Frame AR Features	97
	5.12.22 RBF Network Model for Vehicle Position Classification using Five Frame AR Features	97
5.13	Probabilistic Neural Network architecture design	98
	5.13.1 Choice of basis functions and spread factor	98
5.14	Implementation of PNN	99
	5.14.1 PNN Network Model for Vehicle Type Classification using Spectral Band Features	99
	5.14.2 PNN Network Model for Vehicle Position Classification using Spectral Band Features	100
	5.14.3 PNN Network Model for Vehicle Type Classification using Single Frame Statistical Features	100

94

5.14.4 PNN Network Model for Vehicle Type Classification using

Two Frame Statistical Features	101
5.14.5 PNN Network Model for Vehicle Type Classification using	
Three Frame Statistical Features	101
5.14.6 PNN Network Model for Vehicle Type Classification using	
Four Frame Statistical Features	102
5.14.7 PNN Network Model for Vehicle Type Classification using	
Five Frame Statistical Features	102
5.14.8 PNN Network Model for Vehicle Position Classification usin	g
Single Frame Statistical Features	103
5.14.9 PNN Network Model for Vehicle Position Classification usin	g
Two Frame Statistical Features	103
5.14.10PNN Network Model for Vehicle Position Classification usin	g
Three Frame Statistical Features	104
5.14.11DNN Network Wedel for Vehicle Desition Classification usin	~
5.14.11PNN Network Model for Vehicle Position Classification usin Four Frame Statistical Features	1g 104
5.14.12 PNN Network Model for Vehicle Position Classification usin	
Five Frame Statistical Features	105
5.14.13PNN Network Model for Vehicle Type Classification using	
Single Frame AR Features	105
5.14.14PNN Network Model for Vehicle Type Classification using	
Two Frame AR Features	106
5.14.15PNN Network Model for Vehicle Type Classification using	
Three Frame AR Features	106
5.14.16PNN Network Model for Vehicle Type Classification using	
Four Frame AR Features	107
5.14.17PNN Network Model for Vehicle Type Classification using	

Five Frame A	AR Features
--------------	-------------

	5.14.18PNN Network Model for Vehicle Position Classification using Single Frame AR Features	108
	5.14.19PNN Network Model for Vehicle Position Classification using	
	Two Frame AR Features	108
	5.14.20PNN Network Model for Vehicle Position Classification using	
	Three Frame AR Features	109
	5.14.21PNN Network Model for Vehicle Position Classification using	
	Four Frame AR Features	109
	5.14.22 PNN Network Model for Vehicle Position Classification using	
	Five Frame AR Features	110
5.15	Summary	111
	ecce	
CHA	PTER 6 RESULTS AND DISCUSSION	
6.1	Introduction	112
6.2	Results discussion	112
6.3	Classification Results Using MLP Neural Network	114

107

6.3.1 MLP training results in Frequency domain features (vehicle type) 114

- 6.3.2 MLP training results for Time domain features (vehicle type) 115
 - 6.3.2.1 MLP training results for 60% training samples of Time domain features (vehicle type) 115

6.3.2.2 MLP training results for 70% training samples of	
Time domain features (vehicle type)	116

6.3.2.3 MLP training results for 80% training samples of

		Time domain features (vehicle type)	117
6	5.3.3	Comparison of MLP models (vehicle type)	118
		6.3.3.1 Comparison of architecture for	
		11 MLP models (vehicle type)	118
		6.3.3.2 Comparison of mean classification accuracy for	
		11 MLP models (Vehicle type)	118
6	5.3.4	MLP training results for	
Ι	Frequ	MLP training results for ency domain features (vehicle position)	119
6	5.3.5	MLP training results for Time domain features (vehicle position)	120
		6.3.5.1 MLP training results for 60% training samples of	
		Time domain features (vehicle position)	120
		6.3.5.2 MLP training results for 70% training samples of	
		Time domain features (vehicle position)	121
		6.3.5.3 MLP training results for 80% training samples of	
		Time domain features (vehicle position)	122
6	5.3.6	Comparison of MLP models (vehicle position)	123
	(h)	6.3.6.1 Comparison of architecture for	
\bigcirc		11 MLP models (vehicle position)	123
		6.3.6.2 Comparison of mean classification accuracy for	
		11 MLP models (Vehicle position)	123
6.4 (Classi	fication Results Using RBF Neural Network	124
6	5.4.1	RBF training results in Frequency domain features (vehicle type)	124
6	5.4.2	RBF training results for Time domain features (vehicle type)	125
		6.4.2.1 RBF training results for 60% training samples of	
		Time domain features (vehicle type)	125

		6.4.2.2 RBF training results for 70% training samples of	
		Time domain features (vehicle type)	126
		6.4.2.2 DDE twoining regults for 900/ training complete of	
		6.4.2.3 RBF training results for 80% training samples of Time domain features (vehicle type)	127
		Time domain reatures (venicle type)	127
	6.4.3	Comparison of RBF models (vehicle type)	128
		6.4.3.1 Comparison of architecture of	
		11 RBF models (vehicle type)	128
		6.4.3.2 Comparison of mean classification accuracy for11 RBF models (Vehicle type)	128
		TT KBF models (venicle type)	120
	6.4.4	RBF training results for Time domain features (vehicle position)	129
	6.4.5	RBF training results for Time domain features (vehicle position)	130
		6.4.5.1 RBF training results for 60% training samples of	
		Time domain features (vehicle position)	130
		6.4.5.2 RBF training results for 70% training samples of	
		Time domain features (vehicle position)	131
			101
		6.4.5.3 RBF training results for 80% training samples of	
		Time domain features (vehicle position)	132
	6.4.6	Comparison of RBF models (vehicle position)	133
		6.4.6.1 Comparison of architecture of	
		11 RBF models (vehicle position)	133
		6.4.6.2 Comparison of mean classification accuracy for	100
		11 RBF models (vehicle position)	133
6.5	Classi	fication Results Using ENN Neural Network	134
	6.5.1	ENN training results in Frequency domain features (vehicle type)	134
	6.5.2	ENN training results for Time domain features (vehicle type)	135

	6.5.2.1 ENN training results for 60% training samples of Time domain features (vehicle type)	135
	6.5.2.2 ENN training results for 70% training samples of	
	Time domain features (vehicle type)	136
	6.5.2.3 ENN training results for 80% training samples of	
	Time domain features (vehicle type)	137
6.5.3	Comparison of ENN models (vehicle type) 6.5.3.1 Comparison of architecture of	138
	19 N	
	11 ENN models (vehicle type)	138
	6.5.3.2 Comparison of mean classification accuracy for	
	11 ENN models (vehicle type)	139
6.5.4	ENN training results in Frequency domain features	
(vehic	le position)	139
6.5.5	ENN training results for Time domain features (vehicle position)	140
	6.5.5.1 ENN training results for 60% training samples of	
	Time domain features (vehicle position)	140
\bigcirc	6.5.5.2 ENN training results for 70% training samples of	
0	Time domain features (vehicle position)	141
	6.5.5.3 ENN training results for 80% training samples of	
	Time domain features (vehicle position)	142
6.5.6	Comparison of ENN models (vehicle position)	143
	6.5.6.1 Comparison of architecture of	
	11 ENN models (vehicle position)	143
	6.5.6.2 Comparison of mean classification accuracy for	

		11 ENN models (vehicle position)	144
6.6	Classi	fication Results Using PNN Neural Network	144
	6.6.1	PNN training results in Frequency domain features (vehicle type)	144
	6.6.2	ENN training results for Time domain features (vehicle type)	145
		6.6.2.1 PNN training results for 60% training samples of	
		Time domain features (vehicle type)	145
		6.6.2.2 PNN training results for 70% training samples of	
		Time domain features (vehicle type)	146
		6.6.2.3 PNN training results for 80% training samples of	
		Time domain features (vehicle type)	147
	6.6.3	Comparison of PNN models (vehicle type)	147
		6.5.3.1 Comparison of architecture of	
		11 PNN models (vehicle type)	147
		6.5.3.2 Comparison of mean classification accuracy for	
		11 PNN models (vehicle type)	148
	6.6.4	PNN training results in Frequency domain features	
(((vehicle position)	149
	6.6.5	PNN training results for Time domain features (vehicle position)	149
		6.6.5.1 PNN training results for 60% training samples of	
		Time domain features (vehicle position)	149
		6.6.5.2 PNN training results for 70% training samples of	
		Time domain features (vehicle position)	150
		6.6.5.3 PNN training results for 80% training samples of	
		Time domain features (vehicle position)	151
	6.6.6	Comparison of PNN models (vehicle position)	152

6.6.6.1 Comparison of architecture of 11 PNN models (vehicle position)	152
6.6.6.2 Comparison of mean classification accuracy for11 PNN models (vehicle position)	152
6.7 Comparison of Neural Network models (vehicle type)	153
6.8 6.7 Comparison of Neural Network models (vehicle typ	be) 154
CHAPTER 7 CONCLUSION AND FUTURE WORK 7.1 Conclusion 7.2 Future work REFERENCES APPENDIX A Representation of sound signals	
7.1 Conclusion	155
7.2 Future work	155
REFERENCES	156
APPENDIX A Representation of sound signals	161
APPENDIX B 1/3 octave band frequencies	162
APPENDIX C Classification results	164
LIST OF PUBLICATIONS	

LIST OF TABLES

NO.		PAGE
2.1	List of Previous Works on Moving Vehicle Detection using Time domain approach	12
2.2	List of Previous Works on Moving Vehicle Detection using Frequency domain approach	15
2.3	List of Previous Works on Moving Vehicle Detection using	
	Wavelet approach Summary of reference featured signals Database for vehicle type classification	20
3.1	Summary of reference featured signals	30
4.1	Database for vehicle type classification	53
4.2	Database for vehicle position classification	54
B.1	1/3 octave band frequencies	162
C.1	MLP training results in Frequency domain features (vehicle type)	163
C.2	MLP training results for 60% training samples of	
	Time domain Features (vehicle type)	164
C.3	MLP training results for 70% training samples of	
	Time domain features (Vehicle type)	165
C.4 🤇	MLP training results for 80% training samples of	
	Time domain features (vehicle type)	165
C.5	Comparison of architecture for MLP models (vehicle type)	166
C.6	Comparison of mean classification accuracy of MLP models (Vehicle type)	167
C.7	MLP training results in Frequency domain features (vehicle position)	167
C.8	MLP training results for 60% training samples of	
	Time domain features (vehicle position)	168
C.9	MLP training results for 70% training samples of	

	Time domain features (vehicle position)	168
C.10	MLP training results for 80% training samples of	
	Time domain features (vehicle position)	169
C.11	Comparison of architecture for MLP models (vehicle position)	170
C.12	Comparison of mean classification accuracy of MLP models	
	(Vehicle position)	171
C.13	RBF training results in Frequency domain features (vehicle type)	171
C.14	RBF training results for 60% training samples of Time domain features (vehicle type)	
	Time domain features (vehicle type)	172
C.15	RBF training results for 70% training samples of	
	Time domain features (vehicle type)	173
C.16	RBF training results for 80% training samples of	
	Time domain features (vehicle type)	174
C.17	Comparison of architecture for RBF models (vehicle type)	174
C.18	Comparison of mean classification accuracy of RBF models	
	(Vehicle type)	175
C.19	RBF training results in Frequency domain features (vehicle position)	175
C.20	RBF training results for 60% training samples of	
	Time domain features (vehicle position)	176
C.21	RBF training results for 70% training samples of	
	Time domain features (vehicle position)	177
C.22	RBF training results for 80% training samples of	
	Time domain features (vehicle position)	178
C.23	Comparison of architecture for RBF models (vehicle position)	178
C.24	Comparison of mean classification accuracy of RBF models	

	(Vehicle position)	179
C.25	ENN training results in Frequency domain features (vehicle type)	179
C.26	ENN training results for 60% training samples of	
	Time domain features (vehicle type)	180
C.27	ENN training results for 70% training samples of	
	Time domain features (vehicle type)	181
C.28	ENN training results for 80% training samples of	
	Time domain features (vehicle type)	182
C.29	Comparison of architecture for ENN models (vehicle type)	183
C.30	Comparison of mean classification accuracy of ENN models	
	(Vehicle type)	184
C.31	ENN training results in Frequency domain features (vehicle position)	184
C.32	ENN training results for 60% training samples of	
	Time domain features (vehicle position)	185
C.33	ENN training results for 70% training samples of	
	Time domain features (vehicle position)	186
C.34	ENN training results for 80% training samples of	
	Time domain features (vehicle position)	187
C.35	Comparison of architecture for ENN models (vehicle position)	188
C.36	Comparison of mean classification accuracy of ENN models	
	(Vehicle position)	189
C.37	PNN training results in Frequency domain features (vehicle type)	190
C.38	PNN training results for 60% training samples of	
	Time domain features (vehicle type)	190
C.39	PNN training results for 70% training samples of	

	Time domain features (vehicle type)	191	
C.40	PNN training results for 80% training samples of		
	Time domain features (vehicle type)	191	
C.41	Comparison of architecture for PNN models (vehicle type)	192	
C.42	Comparison of mean classification accuracy of PNN models		
	(Vehicle type)	192	
C.43	PNN training results in Frequency domain features (vehicle position)	193	
C.44	PNN training results for 60% training samples of		
	PNN training results for 60% training samples of Time domain features (vehicle position)	193	
C.45	PNN training results for 70% training samples of		
	Time domain features (vehicle position)	194	
C.46	PNN training results for 80% training samples of		
	Time domain features (vehicle position)	194	
C.47	Comparison of architecture for PNN models (vehicle position)	195	
C.48	Comparison of mean classification accuracy of PNN models		
	(Vehicle position)	195	
This it			