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Pembangunan Pengawal Ubah Suai Kabur untuk Sistem Kawalan Sikap Satelit 

 

ABSTRAK 

 

Pembangunan dalam memajukan ruang angkasa merupakan suatu penanda aras baru 

dalam menentukan kecanggihan teknologi moden bagi sesebuah negara pada masa kini. 

Oleh sebab itu, sebagai sebuah negara yang membangun, Malaysia juga tidak mahu 

ketinggalan untuk menjadi salah satu negara yang terlibat dalam meneroka bidang 

teknologi satelit ini. Secara amnya, satelit akan menerima gangguan daripada pelbagai 

fenomena yang berlaku di angkasa. Fenomena ini boleh mengganggu kedudukan satelit 

pada bila-bila masa dan keadaan. Oleh itu, pengawalan orientasi dan penstabilan 

kedudukan satelit adalah perlu dengan menggunakan sistem kawalan sikap (ACS). 

Projek ini mencadangkan kawalan ubah suai samar sebagai ACS satelit Inovatif 

(InnoSAT). Objektif projek ini adalah untuk membandingkan masa tindak balas dan 

prestasi pengesanan antara struktur pengawal. Parameter wacana sejagat akan ditalakan 

secara dalam talian oleh mekanisme pelarasan yang merupakan satu kaedah yang serupa 

dengan ralat PID yang boleh mengurangkan ralat antara keluaran sebenar dan keluaran 

rujukan model. Tesis ini juga membentangkan Model Rujukan Kawalan Suai (MRAC) 

sebagai skim kawalan untuk mengawal sistem berubah dengan masa di mana spesifikasi 

prestasi diberi dari segi model rujukan. Semua pengawal telah diuji menggunakan 

sistem InnoSAT dengan memasukkan pelbagai keadaan operasi yang melibatkan 

gangguan, gandaan berubah, pengukuran hingar dan tunda masa. Secara 

keseluruhannya, kajian ini mencadangkan lima struktur pengawal untuk satelit ACS. 

Tiga struktur terdiri daripada Tindakan Langsung dan dua struktur daripada jenis 

Hibrid. Pada mulanya, pengawal jenis Tindakan Langsung seperti Pengawal Ubah Suai 

Kabur PD, Ubah Suai Kabur PI dan Ubah Suai Kabur PID digunakan. Walau 

bagaimanapun, prestasi pengawal ini sedikit merosot apabila pengawal diuji dengan 

data sebenar iaitu data Y-Thomson. Maka, struktur hibrid seperti Ubah Suai Kabur P + 

Kabur I + Kabur D dan Ubah Suai Kabur Selari PI + Kabur PD pengawal dicadangkan 

untuk mengatasi masalah tersebut. Sebagai perbandingan, pengawal yang mempunyai 

prestasi terbaik akan dibandingkan dengan pengawal lain seperti Pengawal Kabur dan 

Pengawal Ubah Suai dengan algoritma Pemberat Rekursi Kuasa Dua Terkecil. 

Keputusan simulasi menunjukkan bahawa semua pengawal yang dicadangkan telah 

mendapat prestasi yang baik dalam mengesan masukan rujukan. Kawalan Ubah Suai 

Samar menunjukkan persembahan yang terbaik dengan kebolehupayaan dalam 

mengawal satelit berbanding dengan kawalan samar. Oleh itu, ini membuktikan bahawa 

Ubah Suai Kabur PI + Kabur PD merupakan pengawal yang terbaik untuk aplikasi ini. 

Sumbangan projek ini adalah untuk membawa Malaysia terus ke peringkat antarabangsa 

yang lebih maju bukan sahaja dalam penyelidikan, malahan dapat membangunkan dan 

mereka bentuk sistem satelit sendiri. 
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xxi 

 

Development of Adaptive Fuzzy Controller for Satellite Attitude Control System 

 

ABSTRACT 

 

Development of space is one of the main symbols of technological progress in the 

modern society. Therefore, as a developing country, Malaysia not left in becoming one 

of the countries involved in exploring the field of satellite technology. Generally, the 

satellite receives interference from various phenomena that occurred in space. These 

phenomena can disturb the satellite position at any time and condition. Thus, it is 

necessary to control the orientation and maintain the stability of satellite by the attitude 

control system (ACS). This project proposed an Adaptive Fuzzy controller for ACS of 

Innovative Satellite (InnoSAT) based on Direct Action and Hybrid type controller 

structure. The objective of this project is to compare the time response and tracking 

performance among the structures of controller. The parameters of universe of discourse 

are tuned on-line by adjustment mechanism which is an approach similar to a PID error 

that could minimize errors between actual and model reference output. This thesis also 

presents a Model References Adaptive Control (MRAC) as a control scheme in order to 

control time varying systems where the performance specifications are given in terms of 

reference model. All the controllers have been tested using InnoSAT system with some 

operating conditions such as disturbance, varying gain, measurement noise and time 

delay. In order to study new methods used in satellite attitude control, this thesis 

presents five structure of controllers. Three structures are from Direct Action type and 

two structures are from hybrid type. At first, Direct Action type controller such as 

Adaptive Fuzzy PD controller, Adaptive Fuzzy PI and Adaptive Fuzzy PID have been 

applied. However, the performances of these controllers are slightly degraded while the 

controllers are tested in real data which known as Y-Thomson data.  Thus, hybrid 

structure such as Adaptive Fuzzy P + Fuzzy I + Fuzzy D and Adaptive Parallel Fuzzy PI 

+ Fuzzy PD controllers are proposed to overcome the problem. To compare the 

performance with other controller, Fuzzy and Adaptive Fuzzy controllers with 

Weighted Recursive Least Square Algorithm is proposed. Simulation results show that 

all controllers that have been proposed have a good performance. Adaptive Fuzzy 

controller shows the best capability and stronger robustness from Fuzzy controller. 

Thus, the application of the Adaptive Fuzzy PI + Fuzzy PD controller is expected to be 

valuable. The contribution of this project is to bring this country for more advanced in 

satellite systems in future as well as for the international market. 
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CHAPTER 1  

 

INTRODUCTION 

 

1.1 Introduction  

 

Based on National Aeronautics and Space Administration (NASA), satellite is 

referred to as the moon, planet or machine that orbits a planet or a star. Therefore, satellite 

can be categorized into two types which are natural satellite and artificial satellite. 

Examples of natural satellite are earth and moon. This is because the Earth orbits the sun 

while the moon orbits the Earth. Artificial satellite is commonly defined as a machine that 

is launched into space and orbits the Earth atmosphere. Thousands of man-made satellites 

move in orbit with specific function which are mainly for television and radio broadcasting, 

communication such as internet and phone calls, weather forecasting, agricultural 

monitoring system, Global Positioning System (GPS) and many more.  

Orbit is a gravitational curve path that functions as a track for satellite movement in 

space. Basically, every planet and satellite has their own orbit in order to prevent them from 

collision. The Earth atmosphere, artificial satellite will orbit at three different levels: Low 

Earth Orbit (LEO), Medium Earth Orbit (MEO) and High Earth Orbit (HEO); see Figure 

1.1. Hence, different satellite orbits Earth at different heights as well as speeds and paths 

which depend on the characteristics and functions of the artificial satellite (Riebeek & 

Simmon, 2009). Satellites positioned at LEO consist of communication, military and 

observation satellites where the distance from the earth’s surface is between 180 km to 

2000 km. As for MEO, the height of the satellite positioned here is at approximately 2000 
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km to 35780 km above earth. This orbit is also known as polar orbit. Satellites positioned at 

this orbit are weather, observation and spy satellite. Last but not least, HEO is the further 

orbit which is 35780 km and above from earth’s surface. Satellite positions here are space 

observation and weather observation satellite.  

 

Figure 1.1: Earth satellite orbit (Riebeek & Simmon, 2009) 

 

Generally, the Earth circles the sun in its orbit. Hence, the satellite design needs to 

move along with the Earth in order to fulfill its mission. This is achieved by hardware and 

software embedded in the satellite system. The system is required to continuously calibrate 

its instrumentation and optimize its control performance in the space for all time (Sidi, 

2001). Advancement in technology has led to higher requirements on the performance of 

satellite control. Future satellite is expected to achieve highly accurate pointing position 

towards earth in the presence of large environmental disturbance.  

 

1.2 Problem Statement  

  

A satellite will orbit the Earth when its speed is balanced by the pull from the 

Earth's gravity. Without this balance, the satellite would fly in a straight line off into space 
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