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xviii

Kesan Pembebanan Pengisi Dan Modifikasi Kimia Ke-Atas Sifat-Sifat Biokomposit

Polietilena Ketumpatan Rendah/Batang Jagung

Abstrak

Di dalam kajian ini, penggunaan batang jagung (BT) sebagai pengisi di dalam poletilena
ketumpatan rendah (PEKR) telah dikaji. Kesan pembebanan pengisi BT dan modikasi
kimia ke atas sifat-sifat kekuatan tensil, morfologi, penyerapan air dan sifat-sifat terma
biokomposit PEKR/BT telah dikaji. Tiga jenis-jenis  modifikasi kimia telah digunakan,
seperti maleik anhidrida polietilena (MAPE), agen pengganding kelapa (APK) dan eko-
rosotan PD-04. Biokomposit disediakan menggunakan Brabender Plasticorder EC
PLUS pada suhu 1600C dan kelajuan rotor 50 rpm. Keputusan menunjukkan bahawa
dengan semakin meningkatnya pembebanan pengisi BT didapati kekuatan tensil dan
pemanjangan pada takat putus biokomposit PEKT/BT berkurang, di mana modulus
Young dan penyerapan air didapati meningkat. Morfologi patahan permukaan tensil
biokomposit menunjukkan pelekatan dan interaksi antara muka yang lemah diantara
pengisi hidropilik BT dan hidropobik matrik PKR. Biokomposit PEKR/BT pada
kandungan BT 20 bsp menunjukkan penghabluran yang paling tinggi diikuti PEKR
tulen dan biokomposit dengan pembebanan BT 40 bsp. Jumlah pengurangan berat
biokomposit berkurang dengan meningkatnya kandungan pengisi. Ini menunjukkan
pada suhu yang lebih tinggi biokomposit mempunyai ketahanan terma yang lebih baik.
Modifikasi-modifikasi kimia dengan MAPE, APK dan eko-rosotan telah meningkatkan
sifat-sifat tensil dan terma biokomposit. Kehadiran MAPE telah meningkatkan kekuatan
tensil dan modulus Young biokomposit dengan pengserasi, tetapi pemanjangan pada
takat putus didapati berkurang. Biokomposit terawat dengan APK atau eko-rosotan
mempunyai kekuatan tensil dan pemanjangan takat putus yang lebih tinggi, manakala
modulus Young yang lebih rendah dibandingkan biokomposit tanpa rawatan.
Biokomposit terawat dengan MAPE, APK dan eko-rosotan menunjukkan ketahanan
terhadap penyerapan air yang lebih baik daripada biokomposit tanpa rawatan. Didapati
penghabluran dan kestabilan terma biokomposit terawat adalah lebih tinggi berbanding
biokomposit tanpa rawatan. Kajian SEM biokomposit yang dirawat dengan MAPE,
APK dan eko-rosotan telah meningkatkan interaksi antara muka BT dan matrik PEKR.
Kehadiran MAPE, APK dan eko-rosotan di dalam biokomposit telah dibuktikan dengan
kumpulan berfungsi yang baru pada spektra FTIR.
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xix

Effect Of Filler Loading And Chemical Modification On Properties Of Low

Density Polyethylene/Corn Stalk Biocomposites

Abstract

In this study, the utilization of corn stalk (CS) as a filler in low density polyethylene
(LDPE) was investigated. The effect of CS loading and chemical modification on
tensile properties, morphology, water absorption and thermal properties of LDPE/CS
biocomposites were studied. The three types of chemical modification were used, such
as maleic anhydride polyethylene (MAPE), coconut coupling agent (COCA), and eco-
degradant PD-04. The biocomposites were prepared using Brabender Plasticorder EC
PLUS at temperature 160 0C and rotor speed 50 rpm. The results showed that the
increased of CS loading caused decreased in the tensile strength and elongation at break
of LDPE/CS biocomposites, whereas the Young’s modulus and water absorption
increased. The morphology of tensile fracture surface of biocomposites showed the poor
adhesion and interfacial interaction between hydrophilic CS and hydrophobic matrix.
The LDPE/CS biocomposites at 20 php CS loading indicated highest crystallinity
followed pure LDPE and biocomposites at 40 php CS loading. The total weight loss
biocomposites decreased with increases CS loading. This indicates at higher
temperature the biocomposites have better thermal stability. The chemical modifications
with MAPE, COCA or eco-degradant had enhanced the tensile and thermal properties
of biocomposites.  The presence of MAPE has increased the tensile strength and
Young’s modulus of compatibilized biocomposites, but elongation at break decreased.
The treated biocomposites with COCA or eco-degradant have higher tensile strength
and elongation, while Young’s modulus lower compared to untreated biocomposites.
The treated biocomposites with MAPE, COCA and eco-degradant exhibit better water
resistance than untreated biocomposites. It was found the crystallinity and thermal
stability of treated biocomposites higher than untreated biocomposites. The SEM study
of treated biocomposites with MAPE, COCA and eco-degradant showed an enhanced
interfacial interaction between CS and LDPE matrix. The presence of MAPE, COCA
and eco-degradant in biocomposites were evident by the new functional group from
FTIR spectra.
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1

CHAPTER 1

INTRODUCTION

1.1 Research background

Biocomposites from plant derived fiber (natural/biofiber) and crop derived

plastics (bioplastic) are novel materials of the twenty first century and would be a great

importance to the materials world, not only as a solution to growing environmental

threat but also as a solution to the uncertainty of petroleum supply (Mohanty et al.,

2002). The development of natural fibers such as kenaf, flax, jute, hemp ad sisal has

attracted a lot of researchers because of their advantage in that they can be used in a

variety of applications and their effectiveness is similar to traditional fillers such as

carbon, aramid and glass (Takasu et al., 2002; Thakur et al., 2011). The ease of

processing, cost reduction and productivity are the most significant advantages that the

polymers offers other materials (Wang et al., 2003; Murugan et al., 2004; Kuboki et al.,

2007). The advantages of natural fiber/filler are low cost, low density, low health

hazards, biodegradability, better wear resistance and high degree of flexibility,

renewability, and high specific strength (Panthapulakkal et al., 2006; Jia et al., 2007).

These biocomposites are being extensively used for the production of cost effectively

ecofriendly biocomposites.

It is observed that natural fibers/fillers have properties similar to traditional

synthetic fiber reinforced biocomposites (Nagaito & Yano, 2005; Bhatnagar & Sain,

2005). A number of significant industries such as the automotive, construction or
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2

packaging industries have shown massive interest in the progress of new biocomposites

materials. In automotive industry, Mercedes Benz has forge ahead against the rest in the

industry by using jute reinforced plastic for the interior door panels of its E-class

vehicles because of lower cost and lower density. All these properties have made natural

fibers/fillers very attractive for various industries currently engaged in searching for

new and alternate products to synthetic fiber reinforced biocomposites (Singha &

Thakur, 2008).

Biocomposites role in variety of applications is very domineering for a long

period of time now due to their specific strength and modulus (Cao et al., 2006).

Biocomposites will become commercial application of the future that would unravel the

potential of these underutilized renewable materials and offer a non food based market

for agricultural industry (Alemdar & Sain, 2008).

The polyolefins such as polypropylene (PP) and polyethylene (PE) have been

widely used as synthetic polymers in the commercial plastic industry but their non

biodegradability and consequently waste disposal problem in nature environment have

caused various forms of environmental pollution (Kim et al., 2006; Kim & Kim, 2008).

Plastic matrix which comes from a group of polyethylene thermoplastic has been used

broadly in daily life (Pollanen et al., 2013). Low density polyethylene resins are once

again known as valuable product family. Its combination of superior clarity with a

stiffness and density is much preferred by converters for down gauging. Low density

polyethylene (LDPE) is commonly used for manufacturing various containers,

dispensing bottles, wash bottles, tubing, plastic bags for computer components and

packaging applications (Yang et al., 2007).
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Corn stalk is one agriculture crops that is widely cultivated around the world and

greater weight of corn produced each year. After harvesting of corn, the residue like

leaves, cob, stalk and husks were left as part of corn stover in the field (Yeng et al.,

2013). The utilization of corn stalk has potential to be incorporated into value product

for plastic industry as natural filler.

Some of the researchers has been reported the utilization of lignocellulosic

material or natural filler and thermoplastics group as matrices such as LDPE with doum

(Arrakhiz et al., 2013), LDPE with palm kernel shell (Salmah et al., 2011b),  LDPE

with kenaf (Behjat et al., 2010), HDPE with flax fiber (Li et al., 2009), PE with curaua

(Araujo et al., 2008), HDPE with bamboo flour (Liu et al., 2008), LLDPE with wood

flour (Kuan et al., 2006), PE with sisal (Torress et al., 2005), and PE with wood flour

(Farid et al., 2002).

In general, natural fibers provide many advantages for biocomposites but they

pose a problem as the usually polar fibers have inherently low compatibility with non

polar polymer matrices, especially hydrocarbon matrices such as polypropylene (PP)

and polyethylene (PE). The incompatibility may cause problems in composite

processing and material properties. To overcome this incompatibility problem, various

physical and chemical methods have been employed to modify the natural fibers

(Bledzki & Gassan, 1999). There have been several chemical modification used in

earlier research such as by grafting polymers onto the fibers (Xie et al., 2010; Beg &

Pickering, 2008), treatment with silane (Girones et al., 2007; Xie et al., 2010), bleaching

(Aisaeed et al., 2013), and alkali treatment (Alawar et al., 2009; Roy et al., 2012). One

study uses a compatibilizer and coupling agent. The addition of MAPP and MAPE as

compatibilizing agents has been used in polyolefins such as polypropylene and
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