

EFFECT OF MIXING CONDITIONS ON THE PROPERTIES AND **CHARACTERISTIC OF KAOLIN GEOPOLYMERS**

by

, this item is protected **HEAH CHENG YONG** (1040410479)

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

School of Materials Engineering UNIVERSITI MALAYSIA PERLIS

2014

UNIVERSITI MALAYSIA PERLIS

DECLARATION OF THESIS			
Authoria	full name		
		•	
Date of I	oirth	:	
Title		:	
			X
Academ	ic Session	:	othe
I hereby	declare that the	e thesis l	becomes the property of Universiti Malaysia Perlis (UniMAP) and to be placed
-			esis is classified as :
	CONFIDENTIA	L	(Contains confidential information under the Official Secret Act 1972)*
	RESTRICTED		(Contains restricted information as specified by the organization where
	RESTRICTED		research was done)*
	OPEN ACCES	6	I agree that my thesis is to be made immediately available as hard
			copy or on-line open access (full text)
l the au	ithor give perm	uission to	the UniMAP to reproduce this thesis in whole or in part for the purpose of
		\sim	only (except during a period of years, if so requested above).
			Certified by:
	\bigcirc		
-	SIGNA	TURE	SIGNATURE OF SUPERVISOR
_			
	(NEW IC NO. /	PASSPO	,
	Date :		Date :

NOTES: * If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentially or restriction.

ACKNOWLEDGEMENT

The work presented in this thesis was carried out under the supervision of Brig. Gen. Dato' Prof. Dr. Kamarudin Hussin. I extend my deepest sense of gratitude for his perseverance, constructive advice and continual encouragement throughout the studies.

My humblest thanks go to Mr. Mustafa Al-Bakri for his constant attention and technical assistance. I would like to extend my gratitude to Assoc. Prof. Dr. Khairul Nizar and Dr. Luqman for their guidance and enthusiastic support. Thanks are also dedicated to Assoc. Prof. Ruzaidi by sharing their expertise and valuable suggestions.

Further acknowledgements to Center of Excellence Geopolymer & Green Technology (CEGeoGTech) for allowing me to access the laboratories and facilities with deep gratefulness to all the colleagues in this center whose involve in various ways. My sincerest thanks go to School of materials engineering, Dr. Khairel Rafezi as dean especially, and all other management staffs, thank you for helping me get established in this project, and the entire laboratory teams for helping me out with experimental works.

Immense appreciation is expressed to King Abdulaziz City for Science and Technology (KACST), as collaboration bodies with Universiti Malaysia Perlis (UniMAP) by providing the research grant throughout this research. Moreover, grateful acknowledgement is expressed to ministry of higher education (MOHE) Malaysia for providing me scholarship to pursue my studies.

Last but not least to my family, for their continuing support and encouragement throughout the entire study. Their endless love and moral support gave me strength equaled by no one.

TABLE OF CONTENTS

PAGE

THESIS DECLARATION	i
ACKNOWLEDGEMENT	ii
TABLE OF CONTENTS	iii
LIST OF TABLES LIST OF FIGURES LIST OF ABBREVIATIONS ABSTRAK ABSTRACT CHAPTER 1: INTRODUCTION	ix
LIST OF FIGURES	xii
LIST OF ABBREVIATIONS	xix
ABSTRAK	xx
ABSTRACT	xxi
201	
CHAPTER 1: INTRODUCTION	
1.1 Research Background	1
1.2 Problem Statement	8
1.3 Objectives of Study	9
CHAPTER 2: LITERATURE REVIEW	
2.1 Geopolymers	11
2.1.1 Geopolymers Terminology	12
2.2 Constituents of Geopolymers	14
2.2.1 Source	15
2.2.2 Alkaline Activator	18
2.3 Geopolymerization	21
2.3 Geoporymenization 2.3.1 Reaction Mechanism of Kaolinite	
	21
2.3.2 Geopolymerization Reaction	24

2.4 Compressive strength of Geopolymers	29
2.5 Characterization of Geopolymers	30
2.5.1 Microstructural Analysis (SEM)	30
2.5.2 Phase Analysis (XRD)	33
2.5.3 Functional Group Identification (FTIR)	38
2.6 Factors Affecting Properties of Geopolymers	42
2.6.1 NaOH Concentration	42
2.6.2 Solids-to-Liquid (S/L) Ratio	44
2.6.3 Sodium Silicate-to-Sodium Hydroxide (Na ₂ SiO ₃ /NaOH) Ratio	46
2.6.4 Curing Temperature and Time	48
2.6.5 Mixing Process	51
2.6.6 Role of Water	52
2.7 Oxide Molar Ratios of Geopolymer Mixture	54
2.8 Kaolin	57
2.8.1 Kaolin Limitation in Geopolymer Research	59
2.9 Mechanical Treatment of Kaolin	61
A MIS	
CHAPTER 3: METHODOLOGY	
3.1 Materials	64
3.1.1 Sodium Hydroxide (NaOH)	64
3.1.2 Liquid Sodium Silicate (Na ₂ SiO ₃)	64
3.1.3 Kaolin	65
3.2 Preparation of Kaolin Geopolymers	66
3.2.1 Preparation of NaOH Solution	66
3.2.2 Preparation of Alkaline Activator Solution	66
3.2.3 Mixing Process	67

3.2.4 Moulding and Compaction	67
3.2.5 Curing Process	67
3.3 Preparation of Mechanical-treated Kaolin Geopolymers	68
3.4 Calculation for Geopolymer Preparation	68
3.5 Details of Mixing Conditions	68
3.5.1 Effect of NaOH Concentration on Kaolin Geopolymers	69
3.5.2 Effect of Solids-to-Liquid (S/L) Ratio on Kaolin Geopolymers	69
3.5.3 Effect of Sodium Silicate-to-Sodium Hydroxide (Na ₂ SiO ₃ / NaOH) Ratio on Kaolin Geopolymers	70
3.5.4 Effect of Curing Temperature and Time on Kaolin Geopolymers	70
3.5.5 Effect of Mechanical Treatment of Kaolin on Kaolin Geopolymers	72
3.6 Physical Analyses and Mechanical Testing	72
3.6.1 Particle Size Analysis of Kaolin	72
3.6.2 Surface Area Analysis on Kaolin	73
3.6.3 Workability Test of Kaolin Geopolymers	73
3.6.4 Bulk Density Measurement of Kaolin Geopolymers	74
3.6.5 Compressive Test of Kaolin Geopolymers	74
3.7 Materials Characterization	75
3.7.1 Chemical Composition Analysis of Kaolin	75
3.7.2 Microstructural Analysis of Kaolin and Kaolin Geopolymers	76
3.7.3 Elemental Composition Analysis of Kaolin and Kaolin Geopolymers	76
3.7.4 Phase Analysis of Kaolin and Kaolin Geopolymers	77
3.7.5 Functional Group Identification of Kaolin and Kaolin Geopolymers	77
3.8 Experimental Flow Chart	78

CHAPTER 4: RESULTS AND DISCUSSION

4.1 Physical Analyses and Characterization of Kaolin	80
4.1.1 Chemical Composition Analysis	80
4.1.2 Particle Size Analysis	81
4.1.3 Surface Area Analysis	82
4.1.4 Microstructural Analysis	83
4.1.5 Elemental Composition Analysis	84
4.1.6 Phase Analysis	86
 4.1.5 Elemental Composition Analysis 4.1.6 Phase Analysis 4.1.7 Functional Group Identification 	87
	89
 4.2 Effect of NaOH Concentration on Kaolin Geopolymers 4.2.1 Workability 4.2.2 Bulk Density 	89
4.2.2 Bulk Density	90
4.2.3 Compressive Strength	91
4.2.4 Microstructural Analysis	95
4.2.5 Phase Analysis	98
4.2.6 Functional Group Identification	102
4.3 Effect of Solids-to-liquid (S/L) Ratio on Kaolin Geopolymers	106
4.3.1 Workability	106
4.3.2 Bulk Density	107
4.3.3 Compressive Strength	108
4.3.4 Microstructural Analysis	112
4.3.5 Phase Analysis	115
4.3.6 Functional Group Identification	117
4.4 Effect of Sodium Silicate-to-Sodium Hydroxide (Na ₂ SiO ₃ /NaOH) Ratio on Kaolin Geopolymers	121
4.4.1 Workability	121

4.4.2 Bulk Density	122
4.4.3 Compressive Strength	123
4.4.4 Microstructural Analysis	125
4.4.5 Phase Analysis	128
4.4.6 Functional Group Identification	131
4.5 Effect of Curing Temperature and Time on Kaolin Geopolymers	134
4.5.1 Bulk Density	134
4.5.2 Compressive Strength	138
4.5.3 Microstructural Analysis	142
 4.5.1 Bulk Density 4.5.2 Compressive Strength 4.5.3 Microstructural Analysis 4.5.4 Phase Analysis 4.5.5 Eunctional Group Identification 	144
4.5.5 Functional Group Identification	147
4.6 Effect of Mechanical Treatment of Kaolin on Kaolin Geopolymers	152
4.6.1 Chemical Composition Analysis of Mechanical-treated Kaolin	152
4.6.2 Particle Size Analysis of Mechanical-treated Kaolin	153
4.6.3 Surface Area Analysis of Mechanical-treated Kaolin	154
4.6.4 Bulk Density	155
4.6.5 Compressive Strength	157
4.6.6 Microstructural Analysis	159
4.6.7 Elemental Composition Analysis	162
4.6.8 Phase Analysis	168
4.6.9 Functional Group Identification	171
4.7 Summary on the Effect of Oxide Molar Ratios on Kaolin Geopolymers	178

CHAPTER 5: CONCLUSIONS AND SUGGESTIONS

5.1 Conclusions	184
5.2 Suggestions	186

REFERENCES

APPENDICES

APPENDIX A: ASTM C109	202
APPENDIX B: Calculation of Geopolymer Mixture	213
APPENDIX C: ASTM C143	214
APPENDIX D: BS EN12390-7 APPENDIX E: List of Publications APPENDIX F: List of Exhibition and Awards	219
APPENDIX E: List of Publications	232
APPENDIX F: List of Exhibition and Awards	235
APPENDIX F: List of Exhibition and Awards APPENDIX F: List of Exhibition and Awards original	

LIST OF TABLES

NO.		PAGE
Table 1.1	Bibliographic history of important inventions on alkali- activated binders (Li et al., 2010; Roy, 1999)	1
Table 1.2	Major production of kaolin worldwide in 2010 ("U.S. Geological Survey, Mineral Commodity Summaries," 2011)	7
Table 1.3	Malaysia Kaolin Production by year ("U.S. Geological Survey, Mineral Commodity Summaries," 2011)	7
Table 3.1	Specification of NaOH flakes	64
Table 3.2	Specification of liquid Na ₂ SiO ₃	65
Table 3.3	Properties of kaolin	65
Table 3.4	Details of mixing conditions for kaolin geopolymers of Mixtures 1–25	71
Table 4.1	Chemical composition of kaolin, as determined using XRF analysis	81
Table 4.2	Elemental composition of kaolin, as determined using EDX analysis	85
Table 4.3	Summary on assignment of FTIR absorption bands of kaolin	88
Table 4.4	Summary on assignment of FTIR absorption bands of kaolin geopolymers for Mixtures 2, 3 and 5 (various NaOH concentrations)	105
Table 4.5	Peak height of geopolymer bonding, in term of percentage transmittance, of kaolin geopolymers for Mixtures 2, 3 and 5 (various NaOH concentrations)	105
Table 4.6	Summary on assignment of FTIR absorption bands of kaolin geopolymers for Mixtures 6, 8 and 9 synthesized with various S/L ratios	120
Table 4.7	Peak height of geopolymer bonding, in term of percentage transmittance, of kaolin geopolymers for Mixtures 6, 8 and 9 (various S/L ratios)	120
Table 4.8	Summary on assignment of FTIR absorption bands of kaolin geopolymers for Mixtures 10, 11 and 14 synthesized with	

	various Na ₂ SiO ₃ /NaOH ratios	133
Table 4.9	Peak height of geopolymer bonding, in term of percentage transmittance, of kaolin geopolymers for Mixtures 10, 11 and 14 (various $Na_2SiO_3/NaOH$ ratios)	134
Table 4.10	Summary on assignment of FTIR absorption bands of kaolin geopolymers for Mixtures 18 (curing at 60 $^{\circ}$ C) cured for 72 hours	150
Table 4.11	Summary on assignment of FTIR absorption bands of kaolin geopolymers for Mixtures 19 (curing at 80 $^{\circ}$ C) and 20 (curing at 100 $^{\circ}$ C) cured for 48 hours	151
Table 4.12	Peak height of geopolymer bonding, in term of percentage transmittance, of kaolin geopolymers for Mixtures 18–20 with various curing temperatures and times	151
Table 4.13	Peak height of OH ⁻ stretching vibration and bending, in term of percentage transmittance, of kaolin geopolymers for Mixtures 18–20 with various curing temperatures and times	152
Table 4.14	Chemical composition of untreated and mechanical-treated kaolin, as obtained by XRF analysis	153
Table 4.15	BET surface area of untreated and mechanical-treated kaolin	155
Table 4.16	Elemental composition of mechanical-treated kaolin geopolymers tested after 7 days determined using EDX analysis	165
Table 4.17	Elemental composition of mechanical-treated kaolin geopolymers tested after 28 days determined using EDX analysis	167
Table 4.18	Summary of Na, Si and Al contents, Si/Al and Na/Al ratios of mechanical-treated kaolin geopolymers	168
Table 4.19	Summary on assignment of FTIR absorption bands of untreated and mechanical-treated kaolin	173
Table 4.20	Peak height of FTIR absorption bands of untreated and mechanical-treated kaolin	174
Table 4.21	Summary on assignment of FTIR absorption bands of mechanical-treated kaolin geopolymers for Mixtures 21, 23 and 25 cured at 60 $^{\circ}$ C for 72 hours	177
Table 4.22	Peak height of geopolymer bonding, in term of percentage transmittance, of mechanical-treated kaolin geopolymers for Mixtures 21, 23 and 25 cured at 60 $^{\circ}$ C for 72 hours	177

Table 4.23The oxide molar ratios and compressive strength after 180
days of testing of kaolin geopolymers at various NaOH
concentrations (Mixtures 1–5), S/L (Mixture 6–9) and
Na2SiO₃/NaOH ratios (Mixture 10–15)

179

o this term is protected by original copyright

LIST OF FIGURES

NO.		PAGE
Figure 2.1	Different geopolymer systems based on the number of siloxo Si– O units (Davidovits, 2002)	14
Figure 2.2	Chemical attack of kaolinite layers (grey circle represents the aluminium hydroxyl side groups) (Davidovits, 2008)	22
Figure 2.3	Chemical mechanism of kaolinite with NaOH solution (Davidovits, 2008)	23
Figure 2.4	Schematic diagram of geopolymers formation (Davidovits, 1991)	24
Figure 2.5	Schematic outline of geopolymerization reaction (Provis et al., 2006; Provis et al., 2005; Provis & Van Deventer, 2007a, 2007b)	26
Figure 2.6	Model proposed for geopolymerization (Duxson et al., 2007)	28
Figure 2.7	ESEM micrograph of metakaolin geopolymer matrix cured at 20 $^{\circ}$ for 28 days (Zhang et al., 2007)	31
Figure 2.8	SEM micrographs of (a) metakaolin geopolymers and (b) fly ash geopolymers cured at room temperature for 24 hours and at 80 °C for another 24 hours (Kong et al., 2007)	32
Figure 2.9	In situ ESEM micrographs and EDX spectra of metakaolin geopolymers analyzed after (a) 30 minutes (K: Al: Si = 0.83: 1.0: 1.58) and (b) 4 hours (K: Al: Si = 0.99: 1.0: 1.49) (Sun et al., 2004)	33
Figure 2.10	XRD diffractograms for poly(sialate-siloxo) geopolymers with SiO_2/Al_2O_3 molar ratios of (a) 4.02; (b) 3.98; (c) 3.39 and (d) 4.11 (Davidovits, 1991)	34
Figure 2.11	XRD diffractograms of metakaolin and the corresponding geopolymers synthesized with various NaOH concentrations and cured at room temperature ($20 ^{\circ}$) for 60 minutes and at 65 $^{\circ}$ for another 10 hours (Wang et al., 2005)	35
Figure 2.12	XRD diffractograms of Algerian metakaolin geopolymers activated with alkaline liquid sodium silicate at various Si/Al ratios and cured at 50 $^{\circ}$ for 24 hours (Zibouche et al., 2009)	36

Figure 2.13	XRD diffractograms of metakaolin and metakaolin geopolymers cured at 20 °C and 80 °C for 7 days (AC = air curing and SC = steam curing) (Xiao et al., 2009)	37
Figure 2.14	FTIR spectra of original fly ash (FA) and geopolymers activated using NaOH and liquid sodium silicate with SiO ₂ /Na ₂ O ratio of 0.19 and tested after 8 hours, 60 days and 180 days (Criado et al., 2007)	39
Figure 2.15	FTIR spectra of metakaolin and the corresponding geopolymer cured at room temperature (20 $^{\circ}$ C) for 60 minutes and at 65 $^{\circ}$ C for another 10 hours (Wang et al., 2005)	40
Figure 2.16	FTIR spectra of fly ash geopolymers produced through separate mixing and normal mixing and cured at 65 °C for 48h (Rattanasak & Chindaprasirt, 2009)	41
Figure 2.17	Structure of kaolinite (Varga, 2007)	58
Figure 2.18	SEM micrograph of kaolinite (Varga, 2007)	59
Figure 3.1	Experimental flow chart	79
Figure 4.1	Particle size distribution of kaolin	82
Figure 4.2	SEM micrograph of kaolin.	84
Figure 4.3	EDX spectrum of kaolin at Point 1	85
Figure 4.4	XRD diffractogram of kaolin	86
Figure 4.5	FTIR spectrum of kaolin	88
Figure 4.6	Mini-slump flow of fresh kaolin geopolymer paste for Mixtures 1–5 synthesized with various NaOH concentrations	89
Figure 4.7	Bulk density of kaolin geopolymers for Mixtures $1-5$ (various NaOH concentrations) cured at 80 °C for 24 hours and tested after 1, 7, 60 and 180 days	91
Figure 4.8	Compressive strength of kaolin geopolymers for Mixtures $1-5$ (various NaOH concentrations) cured at 80 °C for 24 hours and tested after 1, 3, 7, 28, 60, 90 and 180 days	94
Figure 4.9	SEM micrographs of kaolin geopolymers for (a) Mixture 2, (b) Mixture 3 and (c) Mixture 5 tested after 1 day (A – Unreacted kaolin particle, B – Geopolymer gel and C – Loosely-packed structure)	97

Figure 4.10	 SEM micrographs of kaolin geopolymers for (a) Mixture 2, (b) Mixture 3 and (c) Mixture 5 tested after 7 days (A – Unreacted kaolin particle, B – Geopolymer gel and C – Loosely-packed structure) 	
Figure 4.11	SEM micrographs of kaolin geopolymers for (a) Mixture 2, (b) Mixture 3 and (c) Mixture 5 tested after 60 days (A – Unreacted kaolin particle, B – Geopolymer gel and C – Loosely-packed structure)	98
Figure 4.12	SEM micrographs of kaolin geopolymers for (a) Mixture 2, (b) Mixture 3 and (c) Mixture 5 tested after 180 days (A – Unreacted kaolin particle, B – Geopolymer gel and C – Loosely- packed structure)	98
Figure 4.13	XRD diffractograms of kaolin geopolymers for Mixtures 2, 3 and 5 synthesized with various NaOH concentrations and tested after 7 days	100
Figure 4.14	XRD diffractograms of kaolin geopolymers for Mixture 2 tested after 1, 7, 60 and 180 days	101
Figure 4.15	FTIR spectra of kaolin geopolymers for Mixtures 2, 3 and 5 synthesized with various NaOH concentrations and tested after 7 days	103
Figure 4.16	FTIR spectra of kaolin geopolymers for Mixture 2 tested after 1, 7, 60 and 180 days	104
Figure 4.17	Mini-slump flow of fresh kaolin geopolymers for Mixtures 6–9 synthesized with various S/L ratios	106
Figure 4.18	Bulk density of kaolin geopolymers for Mixtures 6–9 (various S/L ratios) cured at 80 $^{\circ}$ C for 24 hours and tested after 1, 7, 60 and 180 days	108
Figure 4.19	Compressive strength of kaolin geopolymers for Mixtures 6–9 (various S/L ratios) cured at 80 °C for 24 hours and tested after 1, 3, 7, 28, 60, 90, 180 days	111
Figure 4.20	Peeled-off feature of kaolin geopolymer for Mixture 6 (S/L ratio of 0.60) after 28 days of testing	112
Figure 4.21	SEM micrographs of kaolin geopolymers for (a) Mixture 6, (b) Mixture 8 and (c) Mixture 9 tested after 1 day (A – Unreacted kaolin particle, B – Geopolymer gel and C – Loosely-packed structure)	114

Figure 4.22	 SEM micrographs of kaolin geopolymers for (a) Mixture 6, (b) Mixture 8 and (c) Mixture 9 tested after 7 days (A – Unreacted kaolin particle, B – Geopolymer gel and C – Loosely-packed structure) 	
Figure 4.23	SEM micrograph of kaolin geopolymers for (a) Mixture 6, (b) Mixture 8 and (c) Mixture 9 tested after 60 days (A – Unreacted kaolin particle, B – Geopolymer gel and C – Loosely-packed structure)	114
Figure 4.24	SEM micrograph of kaolin geopolymers for (a) Mixture 6, (b) Mixture 8 and (c) Mixture 9 tested after 180 days (A – Unreacted kaolin particle, B – Geopolymer gel and C – Loosely- packed structure)	115
Figure 4.25	XRD diffractograms of kaolin geopolymers for Mixtures 6, 8 and 9 synthesized with various S/L ratios and tested after 7 days	116
Figure 4.26	XRD diffractograms of kaolin geopolymers for Mixture 8 tested after 1, 7, 60 and 180 days	117
Figure 4.27	FTIR spectra of kaolin geopolymers for Mixtures 6, 8 and 9 synthesized with various S/L ratios and tested after 7 days	118
Figure 4.28	FTIR spectra of kaolin geopolymers for Mixture 8 tested after 1, 7, 60 and 180 days	119
Figure 4.29	Mini-slump flow of fresh kaolin geopolymers for Mixtures 10–15 synthesized with various Na ₂ SiO ₃ /NaOH ratios	121
Figure 4.30	Bulk density of kaolin geopolymers for Mixtures 10–15 (various Na ₂ SiO ₃ /NaOH ratios) cured at 80 °C for 24 hours and tested after 1, 7, 60 and 180 days	123
Figure 4.31	Compressive strength of kaolin geopolymers for Mixtures $10-15$ (various Na ₂ SiO ₃ /NaOH ratios) cured at 80 °C for 24 hours and tested after 1, 3, 7, 28, 60, 90 and 180 days	125
Figure 4.32	SEM micrographs of kaolin geopolymers for (a) Mixture 10, (b) Mixture 11 and (c) Mixture 14 tested after 1 day (A – Unreacted kaolin particle, B – Geopolymer gel and C – Loosely-packed structure)	127
Figure 4.33	SEM micrographs of kaolin geopolymers for (a) Mixture 10, (b) Mixture 11 and (c) Mixture 14 tested after 7 days (A – Unreacted kaolin particle, B – Geopolymer gel and C – Loosely- packed structure)	127

Figure 4.34	SEM micrographs of kaolin geopolymers for (a) Mixture 10, (b) Mixture 11 and (c) Mixture 14 tested after 60 days (A – Unreacted kaolin particle, B – Geopolymer gel and C – Loosely- packed structure)	
Figure 4.35	SEM micrograph of kaolin geopolymers for (a) Mixture 10, (b) Mixture 11 and (c) Mixture 14 tested after 180 days (A – Unreacted kaolin particle, B – Geopolymer gel and C – Loosely- packed structure)	128
Figure 4.36	XRD diffractograms of kaolin geopolymers for Mixtures 10, 11 and 14 tested after 7 days	130
Figure 4.37	XRD diffractograms of kaolin geopolymers for Mixture 14 tested after 1, 7, 60 and 180 days	130
Figure 4.38	FTIR spectra of kaolin geopolymers for Mixtures 10, 11 and 14 synthesized with various Na ₂ SiO ₃ /NaOH ratios and tested after 7 days	132
Figure 4.39	FTIR spectra of kaolin geopolymers for Mixture 14 tested after 1, 7, 60 and 180 days	133
Figure 4.40	Bulk density of kaolin geopolymers for Mixture 17 (Cured at 40 °C for 24, 48 and 72 hours) and tested after 1, 3, 7 and 28 days	136
Figure 4.41	Bulk density of kaolin geopolymers for Mixture 18 (Cured at 60 °C for 24, 48 and 72 hours) and tested after 1, 3, 7 and 28 days	136
Figure 4.42	Bulk density of kaolin geopolymers for Mixture 19 (Cured at 80 °C for 24, 48 and 72 hours) and tested after 1, 3, 7 and 28 days	137
Figure 4.43	Bulk density of kaolin geopolymers for Mixture 20 (Cured at 100 $^{\circ}$ C for 24, 48 and 72 hours) and tested after 1, 3, 7 and 28 days	137
Figure 4.44	Compressive strength of kaolin geopolymers for Mixtures 16–20 cured at various curing temperatures for 24 hours and tested after 1, 3, 7 and 28 days	138
Figure 4.45	Compressive strength of kaolin geopolymers for Mixtures 16–20 cured at various curing temperatures for 48 hours and tested after 1, 3, 7 and 28 days	141
Figure 4.46	Compressive strength of kaolin geopolymers for Mixtures 16–20 cured at various curing temperatures for 72 hours and tested after 1, 3, 7 and 28 days	141

Figure 4.47	SEM micrographs of kaolin geopolymers for Mixture 18 (cured at 60 $^{\circ}$ C for 72 hours) and tested after (a) 1 day and (b) 28 days (A – Unreacted kaolin particle, B – Geopolymer gel and C – Loosely-packed structure)	
Figure 4.48	SEM micrographs of kaolin geopolymers for Mixture 19 (cured at 80 $^{\circ}$ C for 48 hours) and tested after (a) 7 days and (b) 28 days (A – Unreacted kaolin particle, B – Geopolymer gel and C – Loosely-packed structure)	
Figure 4.49	SEM micrographs of kaolin geopolymers for Mixture 20 (cured at 100 $^{\circ}$ C for 48 hours) and tested after (a) 7 days and (b) 28 days (A – Unreacted kaolin particle, B – Geopolymer gel and C – Loosely-packed structure)	144
Figure 4.50	XRD diffractograms of kaolin geopolymers for Mixture 18 (cured at 60 $\%$ for 72 hours) and tested after 1, 3, 7 and 28 days	146
Figure 4.51	XRD diffractogram of kaolin geopolymers for Mixtures 19 (cured at 80 $^{\circ}$ for 48 hours) and 20 (cured at 100 $^{\circ}$ for 48 hours) tested after 7 and 28 days	
Figure 4.52	FTIR spectra of kaolin geopolymers for Mixture 18 (cured at 60 $^{\circ}$ C for 72 hours) and tested after 1, 3, 7 and 28 days	149
Figure 4.53	FTIR spectra of kaolin geopolymers for Mixtures 19 (cured at 80 \degree for 48 hours) and 20 (cured at 100 \degree for 48 hours) and tested after 7 and 28 days	150
Figure 4.54	Particle size distribution of untreated (0 hours) and mechanical- treated kaolin (1, 2, 3, 4 and 5 hours)	154
Figure 4.55	Bulk density of mechanical-treated kaolin geopolymers for Mixtures 21, 23 and 25 tested after 1, 3, 7 and 28 days	157
Figure 4.56	Compressive strength of mechanical-treated kaolin geopolymers for Mixtures 21–25 tested after 1, 3, 7 and 28 days	159
Figure 4.57	gure 4.57 SEM micrographs of (a) untreated kaolin (0 hours) and mechanical-treated kaolin for (b) 1 hour, (c) 3 hours and (d) 5 hours	
Figure 4.58	SEM micrographs of mechanical-treated kaolin geopolymers for (a) Mixture 21, (b) Mixture 23 and (d) Mixture 25 tested after 7 days (A – Unreacted kaolin particle, B – Geopolymer gel and C – Loosely-packed structure)	161
Figure 4.59	SEM micrographs of mechanical-treated kaolin geopolymers for (a) Mixture 21, (b) Mixture 23 and (d) Mixture 25 tested after 28 days (A – Unreacted kaolin particle and B – Geopolymer gel)	162

Figure 4.60	EDX spectrum of mechanical-treated kaolin geopolymers for Mixture 21 tested after 7 days (Point 1 in Figure 4.58a)		
Figure 4.61	EDX spectrum of mechanical-treated kaolin geopolymers for Mixture 23 tested after 7 days (Point 2 in Figure 4.58b)		
Figure 4.62	EDX spectrum of mechanical-treated kaolin geopolymers for Mixture 25 tested after 7 days (Point 3 in Figure 4.58c)		
Figure 4.63	EDX spectrum of mechanical-treated kaolin geopolymers for Mixture 21 tested after 28 days (Point 4 in Figure 4.59a)		
Figure 4.64	EDX spectrum of mechanical-treated kaolin geopolymers for Mixture 23 tested after 28 days (Point 5 in Figure 4.59b)	166	
Figure 4.65	EDX spectrum of mechanical-treated kaolin geopolymers for Mixture 25 tested after 28 days (Point 6 in Figure 4.59c)	167	
Figure 4.66	5 XRD diffractograms of (a) untreated kaolin (0 hours) and mechanical-treated kaolin for (b) 1 hour; (c) 3 hours and (d) 5 hours		
Figure 4.67	XRD diffractograms of mechanical-treated kaolin geopolymers for Mixtures 21, 23 and 25 cured at 60 °C for 72 hours and tested after 7 days	170	
Figure 4.68	XRD diffractograms of mechanical-treated kaolin geopolymers for Mixtures 21, 23 and 25 cured at 60 $^{\circ}$ C for 72 hours and tested after 28 days	171	
Figure 4.69	FTIR spectra of untreated (0 hours) and mechanical-treated kaolin milled at 1, 3 and 5 hours	172	
Figure 4.70	FTIR spectra of mechanical-treated kaolin geopolymers for Mixtures 21, 23 and 25 cured at 60 °C for 72 hours and tested after 7 days	176	
Figure 4.71	FTIR spectra of mechanical-treated kaolin geopolymers for Mixtures 21, 23 and 25 cured at 60 °C for 72 hours and tested after 28 days	176	
Figure 4.72	Changes in oxide molar ratios and compressive strength (after 180 days of testing) with various NaOH concentrations (Mixtures 1–5)	182	
Figure 4.73	Changes in oxide molar ratios and compressive strength (after 180 days of testing) with various S/L ratios (Mixtures 6–9)	182	
Figure 4.74	Changes in oxide molar ratios and compressive strength (after 180 days of testing) with various Na ₂ SiO ₃ /NaOH ratios (Mixtures 10–15)	183	

LIST OF ABBREVIATIONS

aq	Aqueous
BET	Branauer-Emmett-Teller
CO ₂	Carbon Dioxide
CSH	Calcium Silicate Hydrated
EDX	Energy Dispersive X-ray Spectroscopy
FTIR	Fourier Transform Infrared Spectroscopy
Κ	Potassium
kg	Kilogram
КОН	Potassium Hydroxide
K_2SiO_3	Potassium Silicate
LOI	Lost of Ignition
Na	Sodium
Na ₂ SiO ₃ NaOH	Sodium Silicate
NaOH	Sodium Hydroxide
PS	Poly (sialate)
PSD	Particle Size Distribution
S	Solid
SEM	Scanning Electron Microscope
S/L	Solids-to-Liquid Ratio
X_{50}	Mean Particle Size
XRD	X-ray Diffraction
XRF	X-Ray Fluorescence

Kesan Keadaan Pencampuran Terhadap Sifat Dan Ciri-Ciri Geopolimer Kaolin

ABSTRAK

Proses penggeopolimeran dengan menggunakan kaolin sebagai sumber aluminosilikat telah dijalankan. Matlamat kajian ini adalah untuk mengkaji kesan kepekatan NaOH, nisbah sumber aluminosilikat/larutan pengaktif beralkali, nisbah Na2SiO3/NaOH dan keadaan pengawetan serta rawatan mekanikal ke atas kaolin terhadap sifat-sifat geopolimer kaolin. Keputusan kajian ini menunjukkan bahawa kepekatan NaOH 8M, nisbah sumber aluminosilikat/larutan pengaktif beralkali 1.0, nisbah Na₂SiO₃/NaOH 0.32 dan keadaan pengawetan pada 60 $^{\circ}$ untuk 72 jam adalah keadaaan pencampuran optima. Rawatan mekanikal dengan menggunakan proses pengisaran telah dijalankan ke atas kaolin untuk tujuan meningkatkan kereaktifan kaolin terhadap proses penggeopolimeran. Masa pengisaran kaolin yang optimum adalah 5 jam. Rawatan mekanikal ke atas kaolin telah berjaya mengurangkan saiz zarah dan meningkatkan luas permukaan zarah serta menghasilkan geopolimer kaolin dengan kekuatan mampatan yang lebih baik (9.58 MPa) berbanding dengan geopolimer kaolin yang disintesis daripada kaolin tanpa rawatan mekanikal (5.94 MPa). Ukuran ketumpatan pukal menunjukkan bahawa geopolimer kaolin adalah bahan ringan (< 1870 kg/m³). Kebolehkerjaan mesti diambil kira semasa sintesis geopolimer kerana ia menjejaskan perkembangan kekuatan mampatan geopolimer kaolin. Analisis mikrostruktur (SEM) menunjukkan bahawa pelarutan kaolin dalam larutan pengaktif beralkali adalah rendah. Ini ditunjukkan oleh kehadiran zarah-zarah kaolin yang tidak bereaksi dalam mikrostruktur. Pembentukan gel geopolimer yang seragam boleh diperhatikan apabila diuji pada jangka masa panjang. Keputusan analisis komposisi unsur (EDX) menyokong bahawa geopolimer kaolin mengalami pembangunan struktur dan ini ditunjukkan dengan peningkatan nisbah Na/Al dan Si/Al. Dari analisis fasa (XRD), zeolit dapat diperhatikan dalam geopolimer kaolin selepas penggeopolimeran. Fasa amorfus geopolimer dan fasa berhablur zeolit menyumbang kepada kekuatan mampatan geopolimer kaolin. Walau bagaimanapun, intensiti fasa berhablur ini berkurangan secara beransur-ansur pada jangka masa panjang dan keputusan kajian menunjukkan bahawa kehadiran fasa berhablur ini dalam geopolimer kaolin boleh merendahkan kekuatan mampatan geopolimer. Selain itu, pengenalpastian kumpulan berfungsi (FTIR) turut menunjukkan pembentukan ikatan geopolimer yang lebih banyak dalam geopolimer kaolin apabila diuji pada jangka masa panjang. Berdasarkan keputusan kekuatan mampatan, nisbah molar oksida SiO₂/Al₂O₃, Na₂O/SiO₂, H₂O/Na₂O dan Na₂O/Al₂O₃ yang optima dalam sintesis geopolimer kaolin ialah 3.28, 0.28, 14.61 dan 0.92. Secara umumnya, kaolin mempunyai kereaktifan yang rendah dan memerlukan lebih banyak masa untuk pelarutan kaolin dalam larutan pengaktif beralkali untuk pembentukan struktur geopolimer. Tindak balas penggeopolimeran yang lambat menyumbang kepada pembangunan kekuatan mampatan yang lebih. Sebagai kesimpulan, hasil kajian ini memberi pemahaman pada sifat (kekuatan mampatan, kebolehkerjaan dan ketumpatan pukal) dan ciri-ciri (mikrostruktur, fasa dan kumpulan berfungsi) geopolimer kaolin. Cadangan untuk kajian masa depan adalah untuk meningkatkan kereaktifan kaolin terhadap penggeopolimeran supaya dapat meningkatkan kekuatan mekanikal.

Effect of Mixing Conditions on the Properties and Characteristic of Kaolin Geopolymers

ABSTRACT

Geopolymerization process utilizing kaolin as aluminosilicate source was performed. The goal of this study was to investigate the effect of NaOH concentration, S/L ratio, Na₂SiO₃/NaOH ratio, curing temperature and time as well as mechanical treatment of kaolin on kaolin geopolymers. The results showed that 8M of NaOH concentration, S/L ratio of 1.00, Na₂SiO₃/NaOH ratio of 0.32 and curing conditions at 60 °C for 72 hours were the optimum mixing conditions for kaolin geopolymers synthesis. In order to increase the reactivity of kaolin towards geopolymerization reaction, mechanical treatment of kaolin was conducted through milling process. The optimum milling time of kaolin was 5 hours. Mechanical treatment of kaolin has successfully decreased the particle size and increased the surface area of kaolin particles, producing mechanicaltreated kaolin geopolymers with better compressive strength (9.58 MPa) compared to kaolin geopolymer synthesized with untreated kaolin (5.94 MPa). Bulk density measurement showed that kaolin geopolymers were lightweight (< 1870 kg/m³). During the geopolymers synthesis, workability must be taking into consideration since it affected significantly the strength development of kaolin geopolymers. Microstructural analysis (SEM) revealed that kaolin geopolymers only undergo low dissolution as shown by the presence of large amounts of unreacted kaolin particles in the microstructure of kaolin geopolymers. However, the formation of homogeneous geopolymer gel was observed at longer day of testing. Besides, elemental composition analysis (EDX) results supports the continuous development of geopolymer structure as indicated by the increased Na/Al and Si/Al ratios by the day of testing. Zeolites peaks appeared in Raolin geopolymers after the geopolymerization reaction as determined by phase analysis (XRD). The amorphous geopolymer and crystalline zeolite phases contributed to the strength of geopolymers. Even so, these crystalline zeolites peaks gradually decreased in intensity at longer day of testing and were found degraded the compressive strength of geopolymers. Functional group identification (FTIR) shows the formation of more geopolymer bonding in kaolin geopolymers at longer testing day. On the other hand, based on compressive strength results, the optimum oxide molar ratios of SiO₂/Al₂O₃, Na₂O/SiO₂, H₂O/Na₂O and Na₂O/Al₂O₃ for kaolin geopolymers synthesis were concluded at 3.28, 0.28, 14.61 and 0.92, respectively. In general, kaolin has low reactivity and it required more time for dissolution in alkaline activator solution and hence the formation of geopolymer structure. The slow rate of geopolymerization reaction led to a slow strength development of geopolymers. As a conclusion, this study provides a better understanding of the properties (compressive strength, workability and bulk density) and characteristic (microstructure, phases and functional groups) of kaolin geopolymers. Thus, for future research, it is suggested to increase the reactivity of kaolin towards geopolymerization reaction in order to improve the mechanical strength.

CHAPTER 1

INTRODUCTION

1.1 Research Background

The history of the development of alkali-activated binders had major contribution starting from 1940's. Researcher Purdon, who activated blast furnace slag using sodium hydroxide (NaOH) concluded that alkali hydroxides act as catalysts (Pacheco-Torgal et al., 2008b). Table 1.1 summarizes the historical background of important inventions in the field of alkali-activated binders (Li et al., 2010; Roy, 1999). Referring to Table 1.1, Feret's work was considered relevant in this field; however, his work focused more on using blast furnace slag and Portland cement rather than about alkali-activated binders (Pacheco-Torgal et al., 2008b).

Table 1.1: Bibliographic history of important inventions on alkali-activated binders (Li
et al., 2010; Roy, 1999).

Year	Author	Significance
1939	Feret	Slags used for cement
1940	Purdon	Alkali-slag combinations
1959	Glukhovsky	Theoretical basis of alkaline cements
1965	Glukhovsky	First called "alkaline cements"
1979	Davidovits	"Geopolymer" term
1985	Davidovits & Sawyer	Patent of "Pyrament" cement
1986	Malek et al.	Slag cement-low level radioactive wastes forms
1987	Davidovits	Ancient and modern concretes were compared

1989	Deja & Malolepsy	Resistance to chlorides was shown
1989	Roy & Langton	Ancient concretes analogs
1989	Talling & Brandstetr	Alkali-activated slag
1992	Roy & Silsbee	Alkali-activated cements: an overview
1993	Roy & Malek	Slag cement
1994	Glukhovsky	Ancient, modern and future concretes
1995	Wang & Scivener	Slag and alkali-activated microstructure
1996	Shi	Alkali-activated slag
1997	Fernandez-Jimenez & Puertas	Kinetic studies of alkali-activated slag cements
1998	Katz	Microstructure of alkali-activated fly ash
1999	Davidovits	Chemistry of geopolymeric systems, technology
1999	Palomo	Alkali-activated fly ash - a cement for the future
2000	Gong & Yang	Alkali-activated red mud-slag cement
2000	Puertas	Alkali-activated fly ash/slag cement
2001	Bakharev	Alkali-activated slag concrete
2003	Palomo & Palacios	Immobilization of hazardous wastes
2004	Grutzeck	Zeolite formation
2006	Sun	Sialite technology
2007	Duxson	Geopolymer technology: the current state of the
6	Duxson	art
2008	Hajimohammadi et al.	One-part geopolymer
2009	Provis & Deventer	Structure, processing, properties and industrial
		applications
2010	Daniel et al.	Effect of elevated temperatures on geopolymer
2010	Villa et al.	Alkaline activation of natural zeolite

General history of alkali-activated binders has started since 1957. Glukhovsky, a scientist working in Ukraine at Kiev Institute of Civil Engineering (KICE) in USSR