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Abstract: Waves occurred on the surface of water in two-dimensional wave tank are studied.
Deriving vorticity equation from incompressible Navier-Stokes equation, the boundary condition
on the free surface, water bottom and flap surface are discussed. Using separation of variable
method, velocity potential takes the general form in terms of eigen function. To obtain the values of
horizontal and vertical velocity components, the boundary conditions on the water bottom and the
flap surface are used and then mass transport velocity has been derived. Finally, time average of

horizontal velocity component at mean water level is generalized.
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1. Introduction

A basic theory for the mass transport velocity in water waves in viscous fluid and of finite depth
has been formulated. Longuet-Higgins [1, 2, 3] presented a simple physical model to obtain the
Lagrangian characters including particle motion, mass transport, the Lagrangian wave period and
the Lagrangian mean level for the surface waves that cannot directly obtain throughout the entire
flow field. Hsien- Kuo et al. [4] discussed gravity waves in water of uniform depth of governing
equation in Lagrangian form. If a small neutrally buoyant float is placed in a wave tank and its
trajectory was traced as waves pass by, a small mean motion in the direction of the waves can be
observed. There are two approaches for examining the mass transport, one is the Eulerian velocity
which involves a fixed point to measure the mean flux of mass and other is the Lagrangian velocity
which involves moving with water particles. The stream function for mass transport is calculated

from the products of the first order eigen functions for progressive and local waves. Naciri and Mei
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[5] also constructed Lagrangian asymptotic solutions of the non-linear water waves. Iskandarani
and Liu [6] discussed on mass transport in two-dimensional wave tank. Many Lagrangian
asymptotic solutions of the non-linear water waves have been developed such as Buldakov et al [7],
Clamond [8] and Constantin [9]. Boufermel et al. [10] formulated velocity of mass transport taking
as variable to model acoustic streaming. Frode [11] studied mass transport velocity in shallow
water waves reflected at right angles from an infinite and straight coast in a rotating ocean. In this
paper, mass transport velocity has been formulated using boundary conditions at water bottom and
the flap surface. Finally, we see that the time average of horizontal velocity component is zero at

mean water level which is same as Dean and Dalrymple [12].

2. Mathematical Formulation
2.1. Governing Equation

The motion of the water surface consists in general regular waves for local disturbance progressing

on a constant water depth (Z = h) as shown in Fig.1.
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Figurel: Wave Train

Mass transport velocity (82 U,¢ 2W1 ), defined as the average of the Lagrangian velocity which

is in terms of particle velocity and stream function can be written as
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For the mass transport velocity U , the stream function W' can be written as
oy, oy,
j l/ll dl, l/ll (3)
The Navier-Stokes equation for incompressible flow is
0 0 0 1 -
—+u—+w— U =——Vp+F +0V’u. (4)
of dx 0z P

Where u and w denote the horizontal and vertical velocity components respectively, p is the

pressure gradient, F' is the external body force and O denotes the kinematic coefficient of

viscosity where, U = —

Yol
Taking curl on both sides of Eq. (4), we have
0 d d
—tu—+w— é: w 5 since, vorticity f Vxu ©)
of dx 0z

{.‘F:—pg— o(Ve), and VXV[ {£+¢H=0}

Now, the vorticity equation from the above equation is in the following

5 2 2 .
— — —V? |V? 0. 6
(az "o VY j V= ©

ax 0z ax 0z ) odz\ ox ox\ ox 0z 0z

9> 9?
B LA Ve
(ax 0z° }/I v

Now,
vy, = o[ Viydr. (7)

[taking first-order term of Eq. (6)]

and

0 d —
(ula+w1 a—ZjVZI/II =wV'y,. 8)
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[taking time average of second-order term of Eq. (6)]

Using Eq. (7) in Eq. (8), we have

0
1//2—( Al jjv w,dt. ©)
From Eq. (3), the stream function for the mass transport velocity U can be written as
0
V“lP:( J Z 4w, ij“%dHV j Vi V1. (10)
' ox ox

Assuming Y/, satisfies Laplace equation, Eq. (10) which is considered as the boundary layer theory
can be rewritten as
d d
AL VJ l/jldt Vi, (1)
ox
According to Longuet-Higgins [1], boundary condition for ¥ on the bottom of water is given by

a_lP = S-3 q(“’) iq(”)*. (12)
on diw " 9s

where qgf) represents the first order tangential velocity at outer edge of the boundary layer at the

fixed wall and superscript * represents the complex conjugate of the value and the boundary

condition at free surface is

2

S 4dn 1
on’ T iwds M s
2.2. Linear Water Wave Theory
Linear water waves are of small amplitude for which we can linearise the equations of motion. The

water wave motion is represented by a velocity potential q)(x, Z,t ) which is considered as

®(x,7.1) = Re{p(x, 2)e™ } (14)
We assume that the bottom surface is of constant depth at z = —h.The water surface is at

z = 0 and the region of interestis—h < 7z < 0.

Now the equations are in the following

. +0,.=0,—-h<z<0. (15)
?=O, z=—h,
© (16)

99

=K¢, z=0.
0z 9.2
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The last expression can be obtained from combining of the following two equations

6

_:i ) :07

0z 1o < a7
Fiwp=gn, z=0.

2

K= @ _ k tanh kh
where g (18)

=—k,tankh, n=12,.......

Eq. (15) is solved by the separation of variable method. So the velocity potential ¢ are taken as

9(x.2)=U(x)P(z). (19)
Substituting this value in Eq. (15), we have
1d’U _ 14d°P
U dx’ P d?
The L.H.S of Eq. (20) is only a function of X and the R.H.S of Eq. (20) is only a function of z . So

(20)

each term is constant. Therefore,
1dU _ 14d°P
U di* P di’

Taking positive sign, we have from Eq. (21),

d’p

=4k’ (say) 2D

+k*P=0. 22)
dz’
and
dzU—sz—O 23)
dz’ ‘

Solving Eq. (22), we obtain

P (Z ) = Ae™ + Be™  where A and B are arbitrary constants. Therefore, Eq. (19) becomes
#(x,2) = (Ae™ + Be ™ U (). (24)

0 N
Applying boundary condition a—¢ |._,= 0 in Eq. (24), we get A = Be 20k
ré

Hence,
P(z)= Dcosk(z—h).

D =2Be ™™ = constant.

Therefore, Eq. (24) becomes
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#(x,z)= Dcosk (z—h)U(x). (25)
Again, solving Eq. (23), we have
U=Ae" +Be™, where A and B, are arbitrary constants.
Ifweset A, =0and B, =1, then U = e™.
Therefore, Eq. (25) becomes

#(x, z)= Dcosk (z—h)e™. (26)
Using Eq. (17) in Eq. (26), we have
? = —Dksin khe™ = —ion, z=0
Z

— Dksinkhe™ =ian, z=0. @7

kx

This expression for ¢ and 1) become more convenient if we write 77 =ae™ " , Eq. (27) can be

written as
D= aiw .
k sin kh
Substituting the value of D in Egs. (24) and (26), we have
aiw
x,z7)=———cosk(z—h)e™. 28
#(x, z) e (z—h) (28)
and
aiw
=——-—cosk(z—h). (29)
k sin kh ( )

The boundary condition at the free surface gives W = —gk tan kh, which is the dispersion

relation for a free surface.
The above equation is not really the dispersion relation for a free surface, it would be better to refer
to it as a transcendental equation. If we solve for all roots in the complex plane, we find that the

first root is a pair of imaginary roots. We denote the imaginary solutions of this equation by

k, = fik and real solution by k, ,n =1. The k of the imaginary solution is the wave number.
So we put @” = gk tanh kh .
Finally, we define the function P (Z) as

a,i@

P(z)= %
(=) k sink h

cosk,(z—h),n=0.
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as the vertical eigen function in the open water region.

. —k,x
Also, wecanwrite U =¢ .

Hence, the velocity potential eigen function expansion can be written as

aiw -
X,7)=—"——cosk, (z—h)e ™. 30
o )kﬁmhh (z=n) (30)
Using Egs. (18) in (30), we have
aiw kx
X,z)=——"——cosk,(z—h)e . 31
o(x,2) Kcosk (z=n) 31
Similarly, taking negative sign, we have from Eq. (20),
d*P
——k*P=0. (32)
Z
and
2
d 12]+k2U:0. (33)
dz

Solving Eq. (32), we have

P(Z)=Azekz +Bze_kz, where A, and B, are arbitrary constants. Therefore, Eq. (18)

becomes
¢(x, z) = (Azekz + Bze""z )U(x) (34)

0 _
Applying boundary condition a—¢ l._,=0 inEq. (34), we get A, = B,e 2

Z

Hence,
P =D, cosh k(z - h), where, D, = 2B,e”"" = constant.
Therefore, Eq. (34) becomes
é(x,z)= D, coshk (z—h)U (x). (35)
Again, solving Eq. (33), we have
U = A3eikx + BSe_ikX , where A, and B, are arbitrary constants.
If weset A, =0and B, =1,then U = e,
Therefore, Eq. (35) becomes
#(x,z)= D, coshk (z —h)e ™. (36)
Using Eq. (17) in Eq. (36), we have
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? = D,ksinh khe™ =ian, z =0.
4

. —iky .
= D,ksinhkhe™ =ion, z=0.
This expression for ¢ and 7] become more convenient if we write 77 = iaoe_ikx , we get

a,w
ksinh kh’
Hence, from Eq. (36), we have

aw
2)=—— Y shk(z—h)e ™. 37
#x.2) sinh S (e~ e GD

Using Eq. (18) in Eq. (37), we have

a,w
,7)=—————coshk h)e ™.
¢(x Z) K cosh kh €08 (Z )

Therefore,

a,w _ o a,ld
coshkz h '“ Z

Plx.z)=- K cosh kh “~ K cosk

cosk, (z—h)e™".

[Using eigen function expansion]

In general form, the velocity potential can be expressed as

oo

&coshk(z h)e~ =) Z 4,10 cosk (z—=h)e ””"””}

CD(x,z,t): Re| —
K coshkh ‘= Kcosk

:>CI>(x,Z,t):Re{—£coshk(z h)e “’)+i—a”lw cosk, (z—h)e™" '””}

k cosh kh w1 k, cosk h

[~ fromEq. (18), K =k =—k, ]

oo

a,m 0]
hk h —i(kx—ar) k h —k!cza)t
4O k(o P50 cosk, ek }

®(x,z,1)=Re|i’
21) {’ k cosh ki

:>CI)(x,z,t)=Re iZMCOShk(Z h) —i(kx— M)+Z 9061”160[( COSk (z h) s ior |
k cosh kh o k, cosk h

) 1
[Assuming 90 = E]
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- ®(x,2,1) = Refiwd, b, (x, 2)e™ } (38)
where,
Ka,i —ikx —k,x
¢1(x,z) mcoshk(z h)e +;mcosk (z—h)e™". (39)

2.3. Formulation of mass transport velocity

The first order potential ¢1 (x, Z) can be written by the eigen function expansion,

K coshk(z—h) iy 5T, K cosk, (z—=h) oy
2)=ig, SR — e From Eq. (39
(x2)=ia, k  coshkh z k, cosk,h + [From Ea. (9]
=ia, E—COSh k(Z — h) (cos kx —isin kx) + z a, E—COS k, (z _ h) e (40)
k  coshkh w1 k, coskh

Substituting this value in Eq. (38), we get

K cosh k(z—h) (

ia, cos kx —i sin kx)
®(x,z,1)=Re| ih, f [gozgsk]il (e=n) e
+ z a, ——"" e
k, cosk,h
- EM(COS kx — i sin kx)
= Re| v, k- coshkh (cos ax + i sin ax)

+izwan£COSkn(Z_h)e—k"x
~ .k cosk, h

n

EM{(COS kx cos ax + sin kxsin ax )+ i(cos kx sin ar — sin kxcos ax )}

0
k  coshkh
= Re 0, et Kcosk,,(z—h) ko - Kcoskn(z—h) ko
+zZa”——e " Cosa)t—Za”—— sin ax
i ik, cosk,h ~ "k, coskh
—aOECOShk(Z_h)C i K cosk ( h)e"k“‘ sin or
k  coshkh = k, cosk,h
=Re| w6, . K (cmh) hk(z— )
-H{ZanKCOS A e cosa)t—aoficoS ‘- sin(kx—a)t)}
w1k, cosk h k  coshkh

q)(x’ Z,t) = _aoeowgm
k  coshkh

cos kx a)t Ha)z KL(]:;}Z) % sin ar.
cosk,

n=l1 n

(41)

The velocity component in x-direction in the following form
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sin(kx — ax ) + HOwZan Kw % sin ar.
coshkh pll] cosk, h

od Kcoshk(z—h)

l/t:g:aoeo

42)
Now, at the bottom surface,

o, =22
= ox

. v 1 kx
_, =a,60,aK sinlkx—axt)+6,0)» a K e " sin ax.
[ = 8 cosh kh ( )+, Z,:‘:l " cosk,

ou v 1
—._, =a,0,0Kk coslkx—ax)-6,w > a, Kk
ox 00 coshkh ( )=6, Z,;:l " " cosk,h

—k .
e " sin ar.

and

ou
u$|Z N {aoﬁ oK

in(kc— )+ 6,03 a, K
coshkhsm(x ) Oa);an cosk, h

. 1
kx—at)— 6,0 Kk
cosh kh cos(kr )=6, Z,,:j" " cosk,h

e " sin a)t}

{aoﬁoka e " sin (at}

sin(kx - a)t)+ ian !

coshkh ' cosk h

e sin wt}
(43)

coskx (at Za

a,k Lk, e " sinar |
cosh kh p| cosk, h

Att=0,
u a_u| =h = 902(021{2 a, ! sin kx aok ! cos kx
ox cosh kh cosh kh

= a§002w2K2k+sin kxcos kx.
cosh” kh

(44)

The governing equation of a stream function for the mass transport of the boundary layer is given
by Eq. (11) and the boundary conditions on the free surface, water bottom and the flap surface are

summarized as

0’ 4 ow du
Y(x,0))=Re| ——— | 45
0z’ 57 (0= (1(0 ox axj @
;z (‘P(x h)=R {54;6?: u aaLxJ , where asterisk (*) is the complex conjugate.

3 ou
= y— (46)

4w Ox
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and
0 5-3i ow'
—WY(0,z)=—Re w— . 47
ox 0.2) { 4iw 0z }
Hence Eq. (46) becomes
a 3 2 2 2 2 1 .
—(P(x,h))= ——a,60, 0 K k———sinkxcoskx
0z 4@ cosh” kh 48)
__3 al6,’ oK *k + sin kx cos kx.
4 cosh” kh
Therefore, Eq. (1) can be written as
U_1 = —éagﬁ()sz2k+sin kxcos kx
4 cosh (49
= Asin kxcos kx.
3, 1
where, A =——a —_— (50)
*™" cosh? kh
Again, the velocity component in z-direction in the following form
inh & (z — e sink,(z—h
w= 9® = —aoﬁowKM cos(kx — ax)+ Hoa)z a, Ksm"—(z) e " sin ax.
coshkh ~ cosk, h
Therefore, at the flap surface,
inh k(7 — 2 sink,(z—h
WI 0 = 9® 0 = —aoﬁowchos wx + Hoa)Zan Ksm"—(z)sin ar.
0z cosh kh il cosk, h
- . k \z—h
w o =—a,6,0Kk Mcos wx + 190(02 a, Kk, COS”—(Z) sin ax.
0z cosh kh -, cosk, h
and
inh k(z - 2 sink,(z—h
wa—w =|- aOQOwchos ot + 670(02 a, Kwsin ax
0z cosh kh | cosk, h
- v k(z—h
- a,0,wKk w cos @r + 670(02 a, Kk, COS"—(Z) sin ax
cosh kh ~ cosk, h
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k h
:902(02K2{ sinh k(2 - hcosa)t z ”—sm < )sina)t}

coshkh ~ cosk, h
(51
k h
a SOk z—h) coshk(z —h) oS dof — Z K, cosk, (z— )sina)t
coshkh - cosk, h
Att=0
E;w 0, 0K { sinh k(z — h)}{aok cosh k(z — h)}
Z cosh kh cosh kh 52)
1
=0, 0’ K*alk ————sinh k(z — h)cosh k(z — h).
0 " cosh? kh ( ) ( )
Also Eq. (46) can be written as
0 5-3i ow
S —WYI(0,z)=—Re wW—
ox 0.2) { 4iw 9z }
3w
4w 0z
:éazﬁ 260K2k;sinhk(z—h)coshk(z—h) (53)
40" cosh’ kh
Therefore, Eq (2) can be written as
W 9% (0. z)
ox
=—3a09 WK k;sinhk(z—h)coshk(z—h) (54)
4 cosh” kh
= Asinh k(z — h)cosh k(z — h).
From Eqgs. (49) and (54), mass transport velocity has been formulated.
2.4. Time Average of Horizontal Velocity Component
Time average of horizontal velocity u can be expressed as
T
u(x,0,1) j u(x,0,¢ )t (55)

0

Hence Eq. (42) can be written as

ulx, z,t ——J.[a 6,k sin(kx — ar)+ 6 a)Za Ke ™ sin or |dt

n=1

n=1

T
1 v _
= ?{ao@oszcos(kx —at)- 6,0’ Zan Ke ™ cos ax} =0.

0
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Using eigen function expansion, velocity potential has been derived. Then we see that time average
of horizontal velocity component is zero, which is same as Dean and Dalrymple [15], who derived

some nonlinear properties for water waves of small amplitude.

3. Conclusion

Mass transport velocity in two dimensional wave tank has been studied. Vorticity equation from
incompressible Navier-Stokes equation is solved using boundary layer theory and boundary
conditions on the free surface, water bottom and the flap surface. Generalising the velocity
potential in terms of eigen function expansion, we obtain the velocity components which are related
to stream function. Using the given boundary conditions, mass transport velocity has been
formulated. Then we see time average of horizontal velocity component is zero at mean water

level.
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