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Abstract: Waves occurred on the surface of water in two-dimensional wave tank are studied. 

Deriving vorticity equation from incompressible Navier-Stokes equation, the boundary condition 

on the free surface, water bottom and flap surface are discussed. Using separation of variable 

method, velocity potential takes the general form in terms of eigen function. To obtain the values of 

horizontal and vertical velocity components, the boundary conditions on the water bottom and the 

flap surface are used and then mass transport velocity has been derived. Finally, time average of 

horizontal velocity component at mean water level is generalized. 
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1. Introduction 

A basic theory for the mass transport velocity in water waves in viscous fluid and of finite depth 

has been formulated. Longuet-Higgins [1, 2, 3] presented a simple physical model to obtain the 

Lagrangian characters including particle motion, mass transport, the Lagrangian wave period and 

the Lagrangian mean level for the surface waves that cannot directly obtain throughout the entire 

flow field. Hsien- Kuo et al. [4] discussed gravity waves in water of uniform depth of governing 

equation in Lagrangian form. If a small neutrally buoyant float is placed in a wave tank and its 

trajectory was traced as waves pass by, a small mean motion in the direction of the waves can be 

observed. There are two approaches for examining the mass transport, one is the Eulerian velocity 

which involves a fixed point to measure the mean flux of mass and other is the Lagrangian velocity 

which involves moving with water particles. The stream function for mass transport is calculated 

from the products of the first order eigen functions for progressive and local waves. Naciri and Mei 
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[5] also constructed Lagrangian asymptotic solutions of the non-linear water waves. Iskandarani 

and Liu [6] discussed on mass transport in two-dimensional wave tank. Many Lagrangian 

asymptotic solutions of the non-linear water waves have been developed such as Buldakov et al [7], 

Clamond [8] and Constantin [9]. Boufermel et al. [10] formulated velocity of mass transport taking 

as variable to model acoustic streaming. Frode [11] studied mass transport velocity in shallow 

water waves reflected at right angles from an infinite and straight coast in a rotating ocean. In this 

paper, mass transport velocity has been formulated using boundary conditions at water bottom and 

the flap surface. Finally, we see that the time average of horizontal velocity component is zero at 

mean water level which is same as Dean and Dalrymple [12]. 

 

2. Mathematical Formulation 

2.1. Governing Equation  

The motion of the water surface consists in general regular waves for local disturbance progressing 

on a constant water depth ( )hz =  as shown in Fig.1. 

 

 Figure1: Wave Train 
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For the mass transport velocityU , the stream function Ψ  can be written as  
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The Navier-Stokes equation for incompressible flow is  
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Where wandu denote the horizontal and vertical velocity components respectively, p is the 

pressure gradient, F  is the external body force and υ  denotes the kinematic coefficient of 

viscosity where, 
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[taking time average of second-order term of Eq. (6)] 

Using Eq. (7) in Eq. (8), we have  
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From Eq. (3), the stream function for the mass transport velocity U  can be written as  
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Assuming 1ψ  satisfies Laplace equation, Eq. (10) which is considered as the boundary layer theory 

can be rewritten as  
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According to Longuet-Higgins [1], boundary condition for Ψ on the bottom of water is given by  
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where 
( )∞
1sq  represents the first order tangential velocity at outer edge of the boundary layer at the 

fixed wall and superscript * represents  the complex conjugate of the value and the boundary 

condition at free surface is 
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2.2. Linear Water Wave Theory 

Linear water waves are of small amplitude for which we can linearise the equations of motion. The 

water wave motion is represented by a velocity potential ( )tzx ,,Φ  which is considered as 

( ) ( ){ }.,Re,, ti
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ωφ=Φ                                                                                             (14) 

We assume that the bottom surface is of constant depth at hz −= .The water surface is at 

0=z and the region of interest is 0<<− zh . 

Now the equations are in the following 
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The last expression can be obtained from combining of the following two equations  
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Eq. (15) is solved by the separation of variable method. So the velocity potential φ  are taken as 

( ) ( ) ( )., zPxUzx =φ                                                                                                          (19) 

Substituting this value in Eq. (15), we have 
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Solving Eq. (22), we obtain 

( ) ikzikz
BeAezP

−+= , where A and B are arbitrary constants. Therefore, Eq. (19) becomes 

( ) ( ) ( )., xUBeAezx
ikzikz −+=φ                                                                                        (24) 

Applying boundary condition  0| =
∂

∂
=hz

z

φ
 in Eq. (24), we get .2ikh

BeA
−=  

Hence, 

( ) ( ).cos hzkDzP −=  

== −ikh
BeD 2  constant. 

Therefore, Eq. (24) becomes 



 

 

 

264                                                                                                                             M.S. Parvin et al. 

( ) ( ) ( ).cos, xUhzkDzx −=φ                                                                                         (25) 

Again, solving Eq. (23), we have 
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The boundary condition at the free surface gives khgk tan2 −=ω , which is the dispersion 

relation for a free surface. 
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as the vertical eigen function in the open water region. 

Also, we can write  .
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Hence, the velocity potential eigen function expansion can be written as 
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2.3. Formulation of mass transport velocity 

The first order potential ( )zx,1φ  can be written by the eigen function expansion, 
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The velocity component in x-direction in the following form 
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The governing equation of a stream function for the mass transport of the boundary layer is given 

by Eq. (11) and the boundary conditions on the free surface, water bottom and the flap surface are 

summarized as  
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Therefore, Eq. (1) can be written as 

.cossin

cossin
cosh

1

4

3
2

22

0

2

01

kxkxA

kxkx
kh

kKaU

=

−= ωθ
                                                               (49) 

where, 
kh

kaA
2

2

0
cosh

1

4

3
ω−=                                                                                    (50) 

Again, the velocity component in z-direction in the following form 
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Therefore, at the flap surface,  
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Also Eq. (46) can be written as 

( )








∂

∂−
−=Ψ

∂

∂
∴

z

w
w

i

i
z

x

*

4

35
Re,0

ω
 

      
z

w
w

∂

∂
=

*

4

3

ω
 

( ) ( ).coshsinh
cosh

1

4

3
2

22

0

2

0 hzkhzk
kh

kKa −−= ωθ                                                  (53) 

Therefore, Eq (2) can be written as 
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From Eqs. (49) and (54), mass transport velocity has been formulated. 

2.4. Time Average of Horizontal Velocity Component  

Time average of horizontal velocity u can be expressed as  
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Using eigen function expansion, velocity potential has been derived. Then we see that time average 

of horizontal velocity component is zero, which is same as Dean and Dalrymple [15], who derived 

some nonlinear properties for water waves of small amplitude. 

 

3. Conclusion 

Mass transport velocity in two dimensional wave tank has been studied. Vorticity equation from 

incompressible Navier-Stokes equation is solved using boundary layer theory and boundary 

conditions on the free surface, water bottom and the flap surface. Generalising the velocity 

potential in terms of eigen function expansion, we obtain the velocity components which are related 

to stream function. Using the given boundary conditions, mass transport velocity has been 

formulated. Then we see time average of horizontal velocity component is zero at mean water 

level. 
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