DESIGN AND ANALYSIS OF A WIRELESS TEMPERATURE MONITORING SYSTEM

SCHOOL OF MICROELECTRONIC ENGINEERING UNIVERSITI MALAYSIA PERLIS

2011

TEOH WEI BOON (HONS)(MICROELECTRONIC ENG.) 2011 UniMAP

orthis item is protected by original convirtent

This term is protected by original copyright

ACKOWLEDGEMENTS

Special thanks to my final year project supervisor Dr. Asral Bahari bin Jambek for his support and guidance. He is a very committed person to manage his work and he has been always available when I needed him. I'm also glad about his helpful comments on improving my performance and work quality.

I would like to thanks all technicians and teaching engineers in the microcontroller LAB, UniMAP for helpful advice and discussions, provision of training and support for the microcontroller programming and the circuit design.

Finally, I would like to express my love and gratitude to my parents and family for their inspiration and support. Last but not least, I wish to thank everyone who was involved in helping me, directly or indirectly, throughout my project.

Thister

APPROVAL AND DECLARATION SHEET

This project report titled Design and Analysis of a Wireless Temperature Monitoring System was prepared and submitted by Teoh Wei Boon (Matrix Number: 081031129) and has been found satisfactory in terms of scope, quality and presentation as partial fulfillment of the requirement for the Bachelor of Engineering (Electronic Engineering) in Universiti Malaysia Perlis (UniMAP).

Checked and Approved by
(Dr Asral Bahari bin Jambek)
Project Supervisor
orotecteo
School of Microelectronic Engineering
Universifi Malaysia Perlis
June 2011
June 2011
(C)

DESIGN AND ANALYSIS OF A WIRELESS TEMPERATURE MONITORING SYSTEM

ABSTRACT

Wireless temperature monitoring system for industrial application is widely used in nowadays. Radio Frequency (RF) is the frequency of radio waves and alternating currents which carry radio signals. The radio frequency range is from 3 kHz until 300 GHz. By using Amplitude-shift keying (ASK) to modulate the digital data as variations in the amplitude of carrier wave. The temperature sensor detects the surrounding temperature before transmitting it to a receiver. At the receiver, the temperature will be displayed on a Liquid crystal display (LCD) and laptop for easy monitoring. This paper highlights the robust verification method to ensure the accuracy of the sensing and transmitting the data. The result shows that the device can accurate by monitor and sensing the data with 99.9% accuracy.

REKAAN DAN ANALISIS SISTEM MONITORING SUHU WAYERLES

ABSTRAK

Pada masa kini suhu sistem monitoring wayerles untuk aplikasi industri digunakan secara meluas. Frekuensi Radio (RF) adalah frekuensi gelombang radio dan arus bolakbalik yang membawa isyarat radio. Jarak bagi frekuensi radio adalah dari 3 kHz hingga 300 GHz. Dengan menggunakan Amplitude-shift keying (ASK) untuk memodulasi data digital sebagai variasi amplitud gelombang pembawa. Sensor suhu mengesan suhu sekitarnya sebelum menghantarnya kepada penerima. Pada penerima, suhu akan ditunjukkan pada paparan kristal cecair (LCD) dan laptop untuk pemantauan mudah. Tulisan ini mementingkan kaedah pengesahan yang kuat untuk memastikan ketepatan sensing dan penghantaran data. Keputusan kajian menunjukkan bahawa alat ini tepat oleh monitor dan pengesan data dengan ketepatan 99.9%.

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENT		ii
APPROVAL AND DECLARATION SHEET.		iii
ABSTRAK		iv
ABSTRACT		v
TABLE OF CONTENTS		vi
LIST OF TABLES	8	ix
LIST OF FIGURES	••••••	X
LIST OF SYMBOLS, ABBREVIATIONS OR	NOMENCLARTURE	xiii

LIST OF S	YMBOLS, ABBREVIATIONS OR NOMENCLARTURE	•••••	
	xecte		
	e e e e e e e e e e e e e e e e e e e		
CHAPTER	CHAPTER 1 INTRODUCTION		
	. Xen		
1.1	SPROJECT BACKGROUND	1	
1.2	PROBLEM STATEMENT	2	
1.3	OBJECTIVES	3	
1.4	SCOPE OF STUDY	4	
1.5	GANTT CHART	4	

CHAPTER 2 LITERATURE REVIEW

2.1	Π	NTRODUCTION	5
	2.1.1	SENSORS	6
	2.1.2	TEMPERATURE MEASUREMENT	7

	2.1.3	TYPES OF TEMPEATURE SENSOR	8
2.2		WIRELESS SENSOR	14
	2.2.1	INTRODUCTION	14
	2.2.2	INFRA-RED TRANSMITTER AND RECEIVER	15
	2.2.3	RADIO FREQUENCY (RF) TRANSMITTER	
		AND RECEIVER	15
	2.2.4	ZIGBEE TRANSMITTER AND RECEIVER	16
	2.2.5	TRANSMITTER AND RECEIVER SELECTION	16
2.3		MICROCONTROLLER 8051 BASIC CONCEPT	18
	2.3.1	INTRODUCTION	18
	2.3.2	HARDWARE INTERFACING FOR	
		MICROCONTROLLERS	19
	2.3.3	SERIAL COMMUNICATION	19
CHAPTER 3 METHODOLOGY			
		XC	
0.1			01

3.1		DEVELOPMENT PROCESS	21
	3.1.1	PHASE1 – HARDWARE DEVELOPMENT	
		PROCESS	21
	3.1.2	PHASE 2 – SOFTWARE DEVELOPMENT	
		PROCESS	21
3.2	- <n< td=""><td>ELECTRONIC CONTROL SYSTEM</td><td>22</td></n<>	ELECTRONIC CONTROL SYSTEM	22
	3.2.1	TRANSMITTER PART	22
	3.2.2	MICROCONTROLLER TO RADIO	
		FREQUENCY (RF) MODULE CIRCUIT	24
3.3		RECEIVER PART	25
	3.3.1	RECEIVER CIRCUIT TO MICROCONTROLLER	25
3.4		SENSOR PART	27
	3.4.1	TEMPERATURE SENSOR (LM35DZ)	27
3.5		CONTROLLER BOARD USING 8051	
		MICROCONTROLLER (P89V51RD2BN)	29
3.6		SOFTWARE DEVELOPMENT	30
	3.6.1	ASSEMBLY LANGUAGE PROGRAMMING	31

3.6.2	M-IDE STUDIO	32
3.6.3	FLASH MAGIC	36
3.6.4	PROGRAMMING FLOW FOR THE	
	TRANSMITTER PART	38
3.6.5	PROGRAMING FLOW FOR THE	
	RECEIVER PART	41
3.6.6	GRAPHIC USER INTERFACE USING	
	VISUAL BASIC 6.0 PROGAM FLOW	43

CHAPTER 4 RESULTS AND DISCUSSION

CHA	APTER 4 R	ESULTS AND DISCUSSION	
4.1	IN	TRODUCTION	44
4.2	Н	ARWARE PART	44
	4.2.1	TEMPERATURE SENSOR (LM35) CALIBRATION	44
	4.2.2	ANALOG TO DIGITAL CONVERTER	
		(ADC 0804) CALIBRATION	45
	4.2.3.	RADIO FREQUENCY (TX433 AND RX 433)	45
	4.2.4.	TRANSMITTER AND RECEIVER SCHEMATIC	48
4.3	SC	OFTWARE PART	49
	4.3.1.	HYPER TERMINAL APPLET (HYPERTRM)	49
	4.3.2.	GRAPHIC USER INTERFACE (GUI) DISPLAY	50

CHAPTER 5 CONCLUSION

5.1	SUMMARY	51
5.2	RECOMMENDATION FOR FUTURE PROJECT	51
5.3	COMMERCIALIZATION POTENTIAL	52

REFERENCE

53

APPENDICES

APPENDIX A

(SOURCE CODE FOR 8051(P89V51RD2BN) MICROCONTROLLER PROGRAMMING)	55
APPENDIX B	
(SOURCE CODE OF VISUAL BASIC)	60
APPENDIX C (FULL SCHEMATICS OF TRANSMITTER PART) (FULL SCHEMATICS OF RECEIVER PART)	
(FULL SCHEMATICS OF TRANSMITTER PART)	64
(FULL SCHEMATICS OF RECEIVER PART)	65
APPENDIX D	
(ACTUAL CIRCUIT FOR TRANSMITTER PART)	66
(ACTUAL CIRCUIT FOR RECEIVER PART)	67
APPENDIX E. LENGT	
(DATA SHEET FOR MICROCONTROLLER (8051))	68
APPENDIX F	
(DATA SHEET FOR ANALOG TO DIGITAL CONVERTER (ADC0804))	69
APPENDIX G	
(DATA SHEET FOR ENCODER (HT12E) AND DECODER (HT12D))	70
APPENDIX H	
(DATA SHEET FOR TEMPERATURE SENSOR (LM35))	71

APPENDIX I

(DATA SHEET FOR TRANSMITTER (RF-TX-433))

APPENDIX J

(DATA SHEET FOR RECEIVER (RF-RX-433))

o this teen is protected by original convibit

72

LIST OF TABLES

Tables No.		Page
	1/18	
2.1	COMPARISON OF TEMPERATURE SENSOR TYPES	13
2.2	TABLE OF COMPARISON BETWEEN WIRELESS	
	TRANSMITTER AND RECEIVER	17
4.1	DIGITAL OUTPUT VOLTAGE RESULTS	45
4.2	COMPARISON BETWEEN ENCODER INPUT AND	
	DECODER OUTPUT	46
4.3	RESULTS OBTAINED FROM OPEN AIR (NO OBSTACLE)	46
4.4	RESULTS OBTAINED FROM TWO DIFFERENT ROOMS	
	(WITH ONE WALL AS OBSTACLE)	46
4.5	RESULT OBTAINED FROM TWO DIFFERENT HOUSES	
	(WITH SEVERAL WALL AS OBSTACLE)	46
4.6	COMPONENTS IN TRANSMITTER PART	48
4.7	COMPONENTS IN RECEIVER PART	49

LIST OF FIGURES

Figur	BLOCK DIAGRAM OF THE SYSTEM	Page
1.1	BLOCK DIAGRAM OF THE SYSTEM	2
1.2	FINAL YEAR PROJECT GANTT CHART PLAN 2010-2011	4
2.1	THERMOCOUPLE	9
2.2	FINAL YEAR PROJECT GANTT CHART PLAN 2010-2011 THERMOCOUPLE RESISTANCE THERMISTOR	11
2.3	THERMISTOR	11
2.4	TEMPERATURE-TRANSDUCER ICS	12
2.6	8051 MICROCONTROLLER ARCHITECTURE	18
2.7	P89V51RD2 MICROCONTROLLER ARCHITECTURE	19
2.8	DESCRIPTIONS PIN FOR RS232	20
3.1	ELECTRONIC CONTROL BLOCK DIAGRAM	22
3.2	INTERFACING THE LM 35WITH ADC0804 AND	
	MICROCONTROLLER	23
3.3	OSCILLATOR FREQUENCY VS. SUPPLY VOLTAGE (ENCODE)	25
3.4	OSCILLATOR FREQUENCY VS SUPPLY VOLTAGE (DECODE)	26
3.5	(A) USB 232 CONVERTER CABLE (B) DB9 CONNECTOR	27
3.6	LM35DZ TEMPERATURE SENSOR	28
3.7	PCBA CONTROLLER BOARD	29
3.8	M-IDE STUDIO FOR MCS-51	32
3.9	A BLANK NEW FILE	33
3.10	WRITING A PROGRAM	33
3.11	SAVE AS DIALOG	34
3.12	MNEMONIC INSTRUCTION	34
3.13	NO MASSAGE ERROR	35

3.14	OPEN LST FILE DIALOG	36
3.15	LST FILE	36
3.16	FLASH MAGIC	37
3.17	OUTPUT ENABLE AND RESET WITH INTR	38
3.18	FLOW CHART FOR THE PROGRAM TRANSMITTER PART	40
3.19	DECODER TIMING DIAGRAM	41
3.20	FLOW CHART OF THE RECEIVER PART SOFTWARE	
	PROGRAMMING	42
3.21	FLOW CHART OF THE GRAPHIC USER INTERFACE	43
4.1	OUTPUT VOLTAGE TEMPERATURE SENSOR	
	VERSUS TEMPERATURE READING.	45
4.2	OUTPUT VOLTAGE TEMPERATURE SENSOR VERSUS TEMPERATURE READING. ASK FROM THE ANTENNA OF RECEIVER	47
4.3	ZOOM IN THE ASK OF RECEIVER	47
4.4	FULL SCHEMATIC FOR TRANSMITTER PART	48
4.5	FULL SCHEMATIC FOR RECEIVER PART	49
4.6	TEMPERATURE RESULT ON HYPERTRM	50
4.7	GRAPHIC USER INTERFACE DISPLAY	50
4.7 GRAPHIC USER INTERFACE DISPLAY 50		