LOAD TEST OF 0.5HP AC INDUCTION MOTOR USING COUPLING SYSTEM

by itemaconvitent by itemaconvitent by original convitent of TING SIU HUI Christernischer Submittert of the requ² of P

MAY 2011

LOAD TEST OF 0.5HP AC INDUCTION MOTOR USING COUPLING SYSTEM

SCHOOL OF ELECTRICAL SYSTEMS ENGINEERING UNIVERSITY MALAYSIA PERLIS

2011

ACKNOWLEDGEMENT

Thanks God for giving me the wisdom, strength, healthy and blessing for me to successfully complete my Final Year Project. First and foremost, I would like to express my highest thankful to my supervisor, En.Anayet Karim for his support and guidance that he given to me during the process on doing my project, which has led me to the completion of the project.

Secondly, to my family for the financial support and to my girlfriend, Kelly Hii for the moral support which given me the encouragement to success in this project.

Thanks to all of the quality and reliability personnel, especially Uncle Kok for provide me the workshop to do the coupling steel bar for the use in load test of induction motor. And to En.Azrin, the lab assistant for given me the ideal on doing the hardware construction in the lab. And also my fellow friends that working together with me that provide the necessary support, valuable advice, friendly help and interesting in discussions around my work which help me so much to gain new ideal in my project.

Finally, my special thanks to University Malaysia Perlis (UniMAP) for given me the change to expose myself to the Final Year Project and allowed me to apply theory and practical knowledge as well.

DECLARATION SHEET

I hereby declare that my Final Year Project Thesis is the result of my research work under supervision of ANAYET KARIM. All literature sources used for the writing of this thesis have been adequately referenced.

	ant the second sec
	N/16
	(0 ⁹)
Name	: TING SIU HUI
Candidate number	: 071091278
Supervisor	: ANAYET KARIM
Title of thesis	: LOAD TEST OF 0.5HP AC INDUCTION MOTOR
4	USING COUPLING SYSTEM
	•
. tell	
is	

Candidate's signature:	Supervisor signature:
Date:	Date:

APPROVAL AND DECLARATION SHEET

This project report titled Load Test of 0.5HP AC Induction Motor Using Coupling System was prepared and submitted by Ting Siu Hui (Matrix Number: 071091278) and has been found satisfactory in terms of scope, quality and presentation as partial fulfillment of the requirement for the Bachelor of Engineering (Electrical Systems Engineering) in Universiti Malaysia Perlis (UniMAP).

A
COX
tinc
Checked and Approved by
×C
(ANAYET KARIM)
Project Supervisor
x trils
\bigcirc

School of Electrical Systems Engineering Universiti Malaysia Perlis

May 2011

UJIAN BEBAN PENJANA MOTOR DENGAN MENGGUNAKAN SISTEM SINAPSIS

ABSTRAK

Penjana motor digunakan di seluruh dunia sebagar pekerja dalam aplikasi industri seperti kipas, pam, peralatan mesin, lif dan alat pengangkutan. Penjana motor mempunyai ciri-ciri yang ringkas dan pelbagai, mudah diservis, mempunyai kecekapan yang tinggi dan harganya adalah berpatutan. Ciri-ciri ini mendorong kepada standardisasi dan perkembangan motor dalam bidang pembuatan dan infrastruktur dan diperkenalkan secara meluas dalam pelbagai bidang. Oleh itu, usaha untuk meningkatkan kecekapan motor akan memberikan kesan yang positif dalam mengurangkan pembaziran tenaga elektrik terutamanya dalam bidang industri. Terdapat pelbagai kaedah yang boleh dipakai untuk menentukan kecekapan penjana motor. Antaranya adalah menjalankan ujian tanpa beban, ujian angkir terkunci, ujian rintangan arus terus dan ujian beban terhadap penjana motor untuk mendapatkan berbagai-bagai nilai yang dikehendaki. Pengiraan akan dijalankan untuk menentukan spesifikasi penjana motor seperti nilai rintangan keseluruhan, kebocoran galangan, kehilangan kuasa, arus dan lain-lain. Akhirnya, kecekapan penjana motor dapat ditentukan.

LOAD TEST OF 0.5HP AC INDUCTION MOTOR USING COUPLING SYSTEM

ABSTRACT

Induction motors are used worldwide as the workhorse in industrial application such as fan, pumps, machine tools, elevators and conveyors. It offers users simplicity, rugged construction, easy maintenance, relatively high efficiency and cost effective pricing. These factors have promoted standardization and development of a manufacturing infrastructure that has led to a vast installed base of motors. Thus, improvements in the efficiency of the electrical drives would offer significant effects in reducing industrial electrical energy usage. There are various types of method in determining the efficiency of induction motors. Among them are No-Load Test, Blocked Rotor Test, DC Resistance Test and Load Test for rotating machine to get various data on the induction motor. A proper parameter calculation need to be carried on to obtain the range of specification of the induction motor such as the total resistance, the leakage impedances, the losses estimation, stator current, rotor current and so on. Finally, the efficiency of the AC Induction Motor is determined.

(C)

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENT	i
DECLARATION SHEET	ii
APPROVAL AND DECLARATION SHEET	iii
ABSTRAK	iv
ABSTRACT	v
TABLE OF CONTENTS	vi
LIST OF TABLES	ix
LIST OF FIGURES	X
LIST OF SYMBOLS, ABBREVIATIONS OR NOMENCLATURE	xii
xecter	

CHAPTER 1 INTRODUCTION

Introduction	1
Aims and Objectives	2
Problem Statement	2
Scope of the Project	2
Project Overview	3
Outline of the Report	4
	Introduction Aims and Objectives Problem Statement Scope of the Project Project Overview Outline of the Report

CHAPTER 2 LITERATURE REVIEW

2.1	Introd	uction	5
 2.2 A 2. 2. 2. 2. 2. 2. 	AC In	duction Motor Construction	5
	2.2.1	Principle of Operation	6
	2.2.2	Stator	8
	2.2.3	Rotor	8
	2.2.4	AC Induction Motor Categorization	10

		2.2.4.1 Single Phase AC Induction Motor	10
		2.2.4.2 Three Phase AC Induction Motor	11
	2.2.5	The Concept of Rotor Slip	11
2.3	Efficie	ency	12
2.4	Types	of Power Losses in Electrical Motor	13
	2.4.1	Electrical Losses	15
	2.4.2	Core Losses	16
	2.4.3	Friction and Windage Losses	17
	2.4.4	Stray Losses	17
2.5	Power	Factor	19
	2.5.1	True, Reactive and Apparent Power	21
	2.5.2	Power Triangle	22
		in an	
		ALL B	
CH	APTER 3	METHODOLOGY	
3.1	Introd	uction	23
3.2	No-Lo	pad Test	23
	3.2.1	Method of Test	26
3.3	Block	ed Rotor Test	27
	3.3.1	Method of Test	28
3.4	DC Re	esistance Test	31
	3.4.1	Method of Test	32
3.5	Load	Гest	34
	3.5.1	Coupling Characteristic	36
	3.5.2	Method of Test	37
3.6	Summ	ary	38

CHAPTER 4 RESULTS AND DISCUSSION

4.1	Introduction	39
4.2	No-Load Test Data	39
4.3	Blocked Rotor Test Data	40
4.4	DC Resistance Test Data	41
4.5	Load Test Data	43

4.6	Efficiency based on calculation from the No-Load Test,	
	DC Resistance Test and Blocked Rotor Test	44
	4.6.1 Discussion based on the No-Load Test, DC resistance Test	
	and Blocked Rotor Test results	47
4.7	Efficiency based on calculation from Load Test	48
	4.7.1 Discussion based on the Load Test results	51

CHAPTER 5 CONCLUSION

		X	
CHAF	TER 5 CONCLUSION		
5.1	Conclusion	No.	52
5.2	Recommendation for future project	COX	53
		ionio.	
		S	

REFERENCES

APPENDIXES

	iles i	
REFERENC	ES	
References		54
	xe ^{Ct}	
APPENDIXI	es of	
Appendix A	Parameter calculation for No Load Test	55
Appendix B	Parameter calculation for Load Test	59
Appendix C	Separating Friction and Windage Loss based on No-Load Test	65
Appendix D	The calculation of the DC Resistance Test average value	67
Appendix E	Project Picture	69

LIST OF TABLES

Tables		Page
2.1	The summary of induction motor losses	18
3.1	Rules of thumb for dividing rotor and stator circuit reactance	30
4.1	No-Load Test Data	40
4.2	Blocked Rotor Test Data	41
4.3	Data of DC Resistance Test with 1 K Ω current limiting resistance	41
4.4	Data of DC Resistance Test with 20 K Ω current limiting resistance	42
4.5	Data of DC Resistance Test with 50 K Ω current limiting resistance	42
4.6	Data of DC Resistance Test with 100 K Ω current limiting resistance	42
4.7	Load test data for 2.5KG load	43
4.8	Load test data for 5.0KG load	43
4.9	Load test data for 7.5KG load	43
4.10	Induction Motor Parameters obtained from calculation	44
4.11	Loss segregation of 0.5 Hp Induction Motor	45
4.12	Power and Loss Segregation of Induction Motor for 2.5KG Load Test	48
4.13	Power and Loss Segregation of Induction Motor for 5.0KG Load Test	48
4.14	Power and Loss Segregation of Induction Motor for 7.5KG Load Test	49

LIST OF FIGURES

Figures		Page
1.1	Flow chart process of the project	3
2.1	Moving magnet cutting across a conducting ladder	6
2.2	Ladder bent upon itself to form a squirrel cage	7
2.3	Induction Motor stator	8
2.4	Sketch of cage rotor [3]	9
2.5	Wound rotor	9
2.6	Electric motor categorization	10
2.7	Typical distribution of the induction motor losses as a function of the load [9]	13
2.8	Power flow diagram	14
2.9	Losses Chart	15
2.10	Phasor diagram of the voltage and current	19
2.11	Power Factor Correction circuit [2]	20
2.12	Power triangle [7]	22
3.1	No-Load Test Connection [3]	24
3.2 🔘	Equivalent circuit of No-Load Test [3]	24
3.3	No-Load Test setup	26
3.4	Blocked Rotor test circuit [3]	27
3.5	Block rotor test setup	28
3.6	Equivalent circuit of Blocked Rotor Test	29
3.7	Test circuit for a dc resistance test [3]	31
3.8	Connection of DC resistance test with three phase induction motor	32
3.9	DC resistance test setup	33
3.10	Load Test circuit connection [3]	34
3.11	Load Test setup	35

3.12	Coupling	36
4.1	The percentage of loss segregation of 0.5 Hp Induction Motor	45
4.2	The number loss segregation of 0.5 Hp Induction Motor	46
4.3	The power flow diagram of the losses	46
4.4	Number of power and loss segregation with different load	49
4.5	The power flow diagram for load test	50

OTHIS item is protected by original copyright

LIST OF SYMBOLS, ABBREVIATIONS OR NOMENCLATURE

EMF	Electromagnetic Force
η	Efficiency
NEMA	National Electrical Manufacturers Association
<i>I</i> ₁	Stator Current
PF	Power Factor
S	Slip
Нр	Horsepower
$P_{F\&W}$	Friction and Windage Losses
n _s	Synchronous Speed
kVAR	Kilo Volt-Amperes-Reactive
kW	Kilowatt
kVA	Kilovolts-Amperes
I_L	Line Current
V_{L-L}	Line-to-Line Voltage
I _X	Reactive Component
I _P	Load Component current
θ	Electrical Angle
P _{in}	Input Power
Pout	Output Power
P _{rot}	Rotational Losses
P _{mec h}	Mechanical Power
P_{AG}	Air Gap power
<i>R</i> ₂	Rotor Resistance
P _{core}	Core Losses
P_{NL}	No-Load Power
I _{NL}	No-Load Current
R_{NL}	No-Load Resistance

Z_{NL}	No-Load Impedance
<i>R</i> ₁	Stator Resistance
<i>X</i> ₁	Stator Leakage Reactance
<i>X</i> ₂	Rotor Leakage Reactance
X_m	Magnetizing Reactance
P_{BR}	Blocked Rotor Power
I _{BR}	Blocked Rotor Current
R_{BR}	Blocked Rotor Resistance
Z_{BR}	Blocked Rotor Impedance
X _{BR}	Blocked Rotor Reactance
V _{dc}	DC Voltage
<i>I</i> _{dc}	DC Current
I _c	Per-Phase Stator Core Loss Current
<i>I</i> _m	Magnetizing Current
R_c	Per-Phase Stator Core Loss Resistance
L_m	Per-Phase Stator Magnetizing Inductance
V_p	Phase Voltage
P _{core}	Core Losses
P _{SCL}	Stator Copper Losses
P _{RCL}	Rotor Copper Losses
f_t	Frequency of the Blocked-Rotor Test Voltage
f _B	Rated Frequency
P _{stray} (IEEE)	Stray Load Losses Based On IEEE 112-B Standard
P	True Power
Q	Reactive Power
S	Apparent Power
<i>n_{slip}</i>	Slip Speed
n_m	Mechanical Shaft Speed
W _{sync}	Synchronous Angular Velocity
W _m	Mechanical Angular velocity