APPLICATION OF SOLAR-POWERED SIGNBOARD USING LED LIGHT FOR COMMERCIALIZATION

by History EILA MASNI AB LATIF EILA MASNI AB LATIF Apport submitted in partial fulfillment of the requirements for the degree of Bachelor of Engineering

JUNE 2013

APPLICATION OF SOLAR-POWERED SIGNBOARD USING LED LIGHT FOR COMMERCIALIZATION

SCHOOL OF ENVIRONMENTAL ENGINEERING UNIVERSITI MALAYSIA PERLIS 2013

ACKNOWLEDGEMENT

My grateful and would like to express my sincere gratitude to my supervisor, Ir. Muhammad Arkam Bin Che Munaaim for his invaluable guidance, continuous encouragement and constant support in making this research possible. I really appreciate his guidance from the initial to the final level that enabled me to develop an understanding of this research thoroughly. Without his advice and assistance it would be a lot tougher to completion. I also sincerely thanks for the time spent proofreading and correcting my mistakes.

My sincere thanks go to staff of the School of Environmental Engineering, UniMAP, for their concern on the final year project and providing the facilities to carry out the project. The equipment in lab is very useful for students in completing the project. Many thanks go to all my friends for their excellent co-operation, inspirations and supports especially for Building Engineering during this study. This experience with all you guys will be remembered as important memory for me to face the new chapter of life as an engineer.

(C)

I acknowledge my sincere indebtedness and gratitude to my parents for their love, dream and sacrifice throughout my life. I am really thankful for their sacrifice; patience and understanding that were inevitable to make this work possible. Their sacrifice had inspired me from the day I learned how to read and write until what I have become now. I cannot find the appropriate words that could properly describe my appreciation for their devotion, support and faith in my ability to achieve my dreams.

Lastly, I would like to thanks any person which contributes to my final year project directly or indirectly. I would like to acknowledge their comments and suggestions, which was crucial for the successful completion of this study.

APPROVAL AND DECLARATION SHEET

This project report titled Application of Solar-powered Signboard Using LED Light For Commercialization was prepared and submitted by Eila Masni Binti Ab Latif (Matrix Number: 101200199) and has been found satisfactory in terms of scope, quality and presentation as partial fulfillment of the requirement for the Lering) Bachelor of Engineering (Building Engineering) in Universiti Malaysia Perlis (UniMAP).

(IR. MUHAMMAD ARKAM BIN CHE MUNAAIM)

Project Supervisor

School of Environmental Engineering Universiti Malaysia Perlis

June 2013

APLIKASI PAPAN TANDA SOLAR DENGAN MENGGUNAKAN LAMPU LED UNTUK DIKOMERSIALKAN

ABSTRAK

copyright Kajian ini membincangkan mengenai aplikasi papan tanda kuasa solar menggunakan lampu LED untuk dikomersialkan yang merupakan reka bentuk inovatif di mana infrastruktur ini dilengkapi dengan lampu dan papan tanda daripada sistem tenaga solar. Sistem baru ini adalah bertujuan untuk memberi keselesaan manusia pada tahap yang lebih tinggi serta makumat kepada pengguna dan prototaip direka untuk Pusat Pengajian Kejuruteraan Alam Sekitar (PPKAS), Universiti Malaysia Perlis. Ia adalah alternatif menilai potensi papan tanda solar menggunakan lampu LED berbanding dengan papan tanda konvensional sedia ada yang menggunakan lampu pendaflour. 2 unit panel solar 20 watt disambungkan kepada bateri dan pengawal cas solar disambungkan kepada bateri untuk mengelakkan cas yang berlebihan pada bateri. Lampu KED dipasang di dalam papan tanda yang direka. Objektif kajian adalah untuk menilai potensi cahaya LED dan untuk merumuskan satu konfigurasi papan tanda menggunakan sistem solar dan LED. Tempoh masa lampu menyala pada waktu malam telah direkodkan secara pemerhatian untuk mengetahui kapasiti bateri menyalakan lampu pada waktu malam sekurang-kurangnya selama 4 hingga 8 jam. Kos permulaan untuk sistem solar lampu LED adalah lebih tinggi daripada sistem konvensional lampu pendaflour yang sedia ada. Pemerhatian telah dibuat bahawa kos operasi adalah bergantung kepada sumber pemasangan iaitu bagi papan tanda solar, ia menggunakan lampu LED yang mempunyai kos operasi percuma kerana menggunakan tenaga matahari secara terus. Penggunaan tenaga solar dan sistem lampu cekap dapat menjimatkan 50% jumlah tenaga, sifar dalam kos operasi, dan juga secara tidak langsung mengurangkan 142.96 kg pelepasan gas karbon dioksida.

ABSTRACT

This study presents the application of solar power signboard using LED light for commercialization which is an innovative design of signboard was proposed where the infrastructure equipped with lamps and electrical signboard powered by solar PV energy system. The new system was aimed to provide higher level human comfort as well as information to user, and the prototype was applied in School of Environmental Engineering, "Universiti Malaysia Perlis". It alternatively evaluates the potential of solar-powered signboard using LED light with comparison to the existing conventional signboard using fluorescent lamp. 2 unit of solar panel 20 watt was connected to the battery and solar charge controller connected to the battery to avoid battery overload charge. The LED lights were installed in the signboard designed. The objectives in this study, to evaluate the potential of LED light and to formulate a signboard configurations using solar powered and LED. The period of time the lighting at night was recorded by observation to consider the battery capacity which is at least lighten at night for 4 to 8 hours. The initial cost for solar-powered system LED light was higher than the existing conventional signboard system fluorescent lamp. The observation was made that operating cost is depending to the sources of the installation which is for solar-powered signboard using LED light was directly used the energy from the sun so it had free for operating cost. Use solar energy and efficient lighting system saved 50% amounts of energy, zero in operating cost, and also indirectly reducing emission 142.96 kg of carbon dioxide.

TABLE OF CONTENTS

	Page
ACKNOWLEDGMENT	i
APPROVAL AND DECLARATION SHEET	ii
ABSTRAK	iii
ABSTRACT	iv
TABLE OF CONTENTS	v
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF SYMBOLS, ABBREVIATIONS OR NOMENCLATURE	xi
LIST OF APPENDICES	xiii
. spru	

CHAPTER 1 INTRODUCTION

1.1	Introduction	1
1.2	Objectives	3
1.3	Problem Statements	3
1.4	Scope of Project	4
1.5	Project Overview	5
1.6	Thesis Outlines	6

CHAPTER 2 LITERATURE REVIEW

2.1	Introduction	7
2.2	Researchers Overview	8
2.3	Main Equipment of Project	13

	2.3.1	Solar Panel	13
	2.3.2	Solar Charge Controller	16
	2.3.3	Signage	17
	2.3.4	Light Source	18
2.4	Light	Emitting Diodes (LED)	19
2.5	Benef	its of LED	19
	2.5.1	Energy Efficiency	19
	2.5.2	Environmentally Safe	20
	2.5.3	Long Lifetime	20
	2.5.4	No Emitted Infrared or Ultraviolet Radiation	20
	2.5.5	Durability	20
2.6	Specif	Tications of the LED Sources	21
	2.6.1	Efficiency and Efficacy	21
	2.6.2	Lifetime	21
	2.6.3	Directionality	21
	2.6.4	Correlated Colour Temperature	22
	2.6.5	Colour Rendering Index (CRI)	22
	2.6.6	RGB (Red, Green, Blue)	22
		oro	
CH	APTER	3 METHODOLOGY	
3.1	Introd	uction	24
3.2	Litera	ture Review	26
3.3	Exper	iment Set-up	26
3.4	Area o	of Study	27
3.5	Design	n Configuration	28
	3.5.1	Mono-crystalline Photovoltaic	28
	3.5.2	Rechargeable Battery	30
	3.5.3	Solar Charge Controller	33
	3.5.4	LED Light	34
	3.5.5	Signboard	37
3.6	Instru	mentation Set-up	39
3.7	Conce	ptual Design with Sun Path	40

CHAPTER 4 RESULT AND DISCUSSION

4.1	Introdu	uction	43
4.2	Result	s	43
	4.2.1	Initial Cost of Solar-powered System using LED light	43
	4.2.2	Initial Cost of Conventional System Using Fluorescent Lamp	44
	4.2.3	Operating Cost of Solar-powered using LED light	45
	4.2.4	Operating Cost of Electricity with Fluorescent Lamp	46
	4.2.5	Estimated Maintenance Cost of Solar-powered LED Light and	48
		Fluorescent Lamp in 2 years.	
	4.2.6	Estimated of Overall System Cost for Solar-powered	50
		Signboard Using LED Light and Existing Conventional	
		System Using Fluorescent Lamp.	
	4.2.7	Variable Cost of Solar-powered LED Light and Conventional	51
		Fluorescent Lamp	
4.3	Discus	sion	53
СН	DTFD	5 CONCLUSION AND RECOMMENDATION	
		S CONCLUSION AND RECOMPLETEDATION	
5.1	Introd	uction	55
5.2	Conclu	usion	55
5.3	Recon	nmendation for Future Project	57
5.4	Comm	nercialization Potential	58

REFERENCES

59

APPPENDICES

Appendix A

Appendix B

Appendix C

vii

LIST OF TABLES

Tables No.		Pages
2.1	Listed several journal/thesis done the research uses of the light source	9
2.2	Light source used in indoor and outdoor illumination	12
2.3	Summary of comparison type solar panel	15
2.4	Summary of benefits and specifications of LED light	23
3.1	Characteristic of solar panel	30
3.2	Characteristic of rechargeable battery for PV system	32
3.3	Technical specification for solar charge controller 12/24V	34
3.4	Characteristic of absolute maximum rating for LED 5050 (1 watt)	36
3.5	Characteristic of typical electrical for LED 5050 (1 watt)	36
3.6	Descriptions of instrumentation set-up for solar signboard	40

LIST OF FIGURES

Figures No.		Page
2.1	Average module efficiency of solar module	13
2.2	Average performance ratio of each type of solar module	14
2.3	Mono-crystalline solar panel	16
2.4	Solar panel charge controller 12V	17
2.5	Example of LED light signage	18
2.6	LED light	18
3.1	Flow chart of methodology	25
3.2	Key plan	27
3.3	Actual solar panel mono-crystalline 20W 12V	29
3.4	Full view of solar panel on the top of roof	29
3.5	Rechargeable battery 12V 16A	31
3.6	Rechargeable battery in the box	31
3.7	Solar Charge Controller DC 12V 16A	33
3.8	LED 5050 (1 watt)	35
3.9	24 units LED light installed in the signboard	35
3.10	Designed signboard using poly-carbonate	37

3.11	Full view of LED signboard at the post guard	38
3.12	Actual LED signboard	38
3.13	Instrumentation set-up	39
3.14	Sun path diagram for Jejawi 3 Academic Complex Centre, Arau, Perlis	41
3.15	Conceptual design with sun path	42
4.1	Initial cost of solar-powered LED light and conventional fluorescent lamp	44
4.2	Energy consumption of LED light and fluorescent lamp	46
4.3	Operating cost of solar-powered LED light and conventional fluorescent lamp for a year	47
4.4	Maintenance cost of solar-powered LED light and conventional fluorescent lamp in 2 years	48
4.5	Maintenance cost of solar-powered LED light and conventional fluorescent lamp in 10 years	49
4.6	Maintenance cost of solar-powered LED light and conventional fluorescent lamp in 20 years	49
4.7 0	Overall system cost of solar-powered LED light and conventional fluorescent lamp in a year	50
4.8	Variable cost of solar-powered LED light and conventional fluorescent lamp in 10 years	51
4.9	Variable cost of solar-powered LED light and conventional fluorescent lamp in 20 years	52

LIST OF SYMBOLS, ABBREVIATIONS OR NOMENCLATURE

LED	Light-emitting Diodes
PV	Photovoltaic
kWh	Kilowatt-hour
m ²	Meter square
%	Percentage
ft	Feet
0	Degree
V	Voltage
CIS	Copper-indium-diselenide
RM	Ringgit Malaysia
m	Meter
CFL	Compact Fluorescent Lamp
EEFL	Electrode less Fluorescent Lamps
RTP	Rapid Termal Processing
°C	Degree Celsius
W	Watt
ССТ	Correlated Colour Temperature

- CRI Colour Rendering Index
- RGB Red, Green, Blue

Р Power

Ampere Amp

Millimeter mm

DC

o this term is protected by original copyright TNB

g

Kg

 CO_2

LIST OF APPENDICES

Appendix A

Glossary

o this term is protected by original convitent Appendix B Appendix C