

Universiti Malaysia Perlis

INVENTORS

DR. MOHD KHAIRUDDIN MD ARSHAD PROF. DR. UDA HASHIM NORAINI OTHMAN

CONTACT DETAILS

INSTITUTE OF NAND ELECTRONIC ENGINEERING (INEE)
UNIVERSITI MALAYSIA PERLIS
01000 KANGAR, PERLIS

ASYMMETRICAL DOUBLE GATE: SIGNIFICANT IMPROVEMENT IN **ULTRA-SCALED SOI MOSFET**

body (7 nm) V_{Sub} = V_p Substrate

AVSIA PENLIS

INTRODUCTION

Fully-depletion operation is mandatory requirement for ultra-scaled devices (i.e. < 45 nm technology) which only can be achieved either multi-gate (i.e. FinFET) or thin body Silicon-on-Insulator (SOI). Thin body SOI offers another interesting feature compared to any other technologies i.e. back-gate biasing. In this invention, we utilize asymmetrical contact from the top which provide improved performance and better controlled of short-channel effects in thin body and thin buried oxide of SOI MOSFETs.

Elimination Short Channel Smaller **Effects**

Short Channel Effects

NOVELTY

Existing Technologies

New Invention

Ground

Planar Architecture - Silicon

3D Architecture - Silicon/ SOI Platform

Planar Architecture - SOI Platform

- · Simple architecture with significant Improvement on drive current (Id-Vg and Id-Vd) without forgo the off current.
- Extension to ultra-scaled devices: support Moore's Law for ~ 10 nm technology
- Eliminate Short Channel Effects

Collaboration

- · Université catholique de Louvain, Louvain-la-neuve, Belgium
- CEA Leti, Grenoble, France

Arshad et al, Solid-State Electronics, 2014 (accepted for publication) had et al. Solid-State Electronics, 90, 2013; 56-64 nl. IEEE Trans. Electron Devices, 59, 2012: 247-251 actronics, 71, 2012: 93-100

RESULTS

I-V Characteristics

COMMERCIALIZATION POTENTIAL

22 nm gate length	Single Gate	Asymmetrical Double Gate	% improvement
V _{Th} (V)	0.45	0.30	30 %
SS (mV/dec)	95	80	15 %
DIBL (mV/V)	115	95	18 %
Ion (uA/um)	500	620	24 %

- · Lower threshold voltage (i.e suitable for low power application -energy saving)
- · Lower subthreshold slope (i.e faster switching speed between on and off).
- · Lower drain-induced barrier lowering (i.e. better control of short channel effects : translated into ~ 20 % increased in speed.

PRODUCT IMPLEMENTATION

Low power mobile application i.e. smart phone.

