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ABSTRACT
The decay of the grid-generated turbulence has been investigated numerically by solving the time-dependent three-
dimensional Navier-Stokes equations with k-e turbulence model for a compressible fluid. Turbulence grids are 
placed in the shock tube to generate shock induced turbulence in the wake of the grid plate. All turbulent fluctuations 
are computed along the longitudinal distance in the wake of the grid plate in the shock tube and it is observed that 
the decay of the turbulence and the decay of Turbulence Kinetic Energy (TKE) level are accelerated along the 
downstream direction and the percentage of decay depends on the strength of incident shock wave. Due to stronger 
compressibility effects on decaying turbulent field, all length scales are decreased along the downstream direction. 
The decay of dissipation rate of TKE is observed along the downstream direction for gradually decreasing the 
turbulence intensity in the wake of the grid plate.

Keywords: Shock wave; Turbulence decay; Navier-Stokes equations; Turbulence model; Turbulent region; 
	 Turbulence grids.

1.0	 Introduction
In this paper, the investigations on the decay of grid-
generated turbulence in the shock tube are conducted 
and it is one of the innovative works on grid-generated 
turbulence. Due to turbulence decay, the strength of the 
turbulence in the wake of the grid plate gradually decreases 
which may create problems in interaction of reflected 
shock with homogeneous, isotropic turbulence. 

The turbulence decay in turbulent flow fields is of 
great practical importance in engineering applications. 
These types of phenomena are commonly seen in 
aeromechanical systems and in combustion processes as 
well as in high-speed rotor flows. For designing aero-
mechanism systems such as transport aircraft of supersonic 
and hypersonic speed, the shock/turbulence interaction 
as well as turbulence decay in shock induced turbulent 
field are the important phenomena. After computing the 
turbulence fluctuations, a numerical simulation was carried 
out by Jinnah and Takayama [1] at different strengths of 

reflected shock wave and it was found that the strength of 
the turbulence was also changed during interaction with 
reflected shock wave. The effect of the initial conditions 
on the decay of homogeneous and isotropic turbulence 
is still under debate, and there is a substantial body of 
experimental evidence which would seem to suggest 
that the initial conditions and the slope of the spectrum, 
at low wave numbers, determine the value of the decay 
exponents. It is observed that the actual decay rate of 
the isotropic turbulence is not only affected by the large 
scale properties, but also by the small scale properties. 
An asymptotic similarity state of decaying isotropic 
turbulence at high Reynolds numbers was predicted by 
Kolmogorov [2] based on a supposed dynamical invariant 
of the flow field found earlier by Loitsianski [3]. However, 
it was later shown by Batchelor and Proudman [4] that the 
Loitsianski integral is, in fact, not invariant. Furthermore, 
Saffman [5] proposed a mean of turbulence generation 
for which this integral diverges. For this Saffman flow, 



Numerical Simulation of the Decay of Grid-generated 
Turbulence in a Shock Tube

Journal – The Institution of Engineers, Malaysia (Vol. 75, No. 1, June 2014) 41

a new invariant was discovered, and a similarity state 
of decaying homogeneous turbulence at high Reynolds 
numbers was postulated based on this invariant. Recent 
large-eddy simulations of decaying isotropic turbulence 
have confirmed the existence of this exact similarity state 
to within a few percent. Previous closure calculations and 
numerical simulations have studied the decay of an initially 
axisymmetric turbulence [6] in the context of the return-
to-isotropy problem. The direct numerical simulations 
performed in the latter two works were necessarily limited 
to low Reynolds numbers, and the computer resources 
available at those times allowed only a resolution of 
323. Previously, Lavoie et al. [7] investigated potential 
effects of inflow conditions on the decay of approximately 
homogeneous isotropic turbulence. Inflow conditions 
refer to the way the turbulence was generated. In the wind 
tunnel experiments of these authors, the turbulence was 
passively generated by square-mesh biplane grids placed 
at the test section entry. A particular aspect of the potential 
dependence on inflow conditions was whether the power-
law decay of the far downstream turbulence depends on 
them. Lavoie et al. [7] tried four different conventional 
passive grids (with square or with round bars with/without 
a small helical wire) and two different test sections (one 
with and one without a secondary contraction to improve 
isotropy). They did not find any significant effect of 
inflow conditions on the decay exponent other than that 
of anisotropy which was, itself, depended on inflow 
conditions and persisted far downstream. Krogstad and 
Davidson [8] carried out a similar wind tunnel study but 
with two multi-scale grids and one conventional grid. 
Their grids were all mono-planar and their two multi-scale 
grids were chosen from one of the three design families of 
multi-scale grids introduced by Hurst and Vassilicos [9], 
specifically the family of fractal cross grids. These grids 
are very different in design from the low-blockage space-
filling fractal square grids which have been used in the 
vast majority of subsequent works on multi-scale/fractal-
generated turbulence and which revealed the possibility of 
a decaying turbulence without the expected high Reynolds 
number dissipation scaling.

Many researchers considered the decay of a two-
dimensional homogeneous turbulence in a fluid of infinite 
extent. One of the attractions of studying two-dimensional 
turbulence was its computational simplicity with respect 
to fully developed three-dimensional turbulence. 
Nevertheless, numerical simulations are still non-trivial, 
requiring high resolution and long-time integrations, and 
the asymptotic behavior of the statistics during the decay 
remains an open problem. Chasnova [10] contribution was 
to present some new direct numerical simulation results for 

decaying two-dimensional turbulence. Particular emphasis 
was placed on determining the long-time asymptotic 
evolution of the energy and entropy as a function of the 
initial Reynolds number of the flow field. He considered 
the asymptotic statistical evolution of the flow field 
without specifically confronting the existence of coherent 
vortices or their intermittent distribution in the fluid. This 
was counter to most current trends in two-dimensional 
turbulence research. A careful study of the dependence of 
the decay statistics on the initial Reynolds number of the 
turbulence may yield some useful information about the 
physics of the decay. In this previous study, large-eddy 
simulations were used to confirm theoretical predictions of 
asymptotic decay laws for the energy and the self-similar 
decay of the energy spectrum based on low wave number 
spectral invariants. The higher resolutions obtainable in 
simulations of two-dimensional turbulence permitted a 
study of two-dimensional decay at relatively high Reynolds 
numbers by direct numerical simulations without the need 
for sub-grid scale modeling. For the present numerical 
simulation, the three-dimensional Navier-stokes equations 
using k-e turbulence model, are solved by shock capturing 
method where for more accurate solutions, the grid 
adaptation technique is used. Grid adaptation techniques 
with k-e turbulence model are the improved techniques 
to determine the turbulence decay in the wake of the 
turbulence grids.

2.0	 Numerical Methods
2.1   Governing Equations
For the present computations, the three-dimensional 
numerical code is developed to determine the decay of the 
shock induced turbulence in the shock tube and the validity 
of the present 3D code has been performed by Jinnah and 
Takayama [11]. Without external forces and heat sources, 
the conservative form of non-dimensionalized governing 
equation in 3D Cartesian coordinate system is

where Q = [r, ru, rv, rw, e, rk, re], the vector of 
conservative variables which contains mass, momentum 
and energy. All variables are calculated in per unit volume. 
r is taken as the mass per unit volume. Three momentum 
terms in three-dimensional Cartesian coordinates system 
are ru, rv and rw per unit volume. Total energy, e, turbulent 
kinetic energy, rk and turbulent dissipative energy, re are 
the energy terms per unit volume in these computations. 
F, G and H are the three inviscid flux vectors in x-, y-, and 

Journal – The Institution of Engineers, Malaysia (Vol. 75, No. 1, June 2014) 41



Mohammad Ali Jinnah

Journal – The Institution of Engineers, Malaysia (Vol. 75, No. 1, June 2014)42

z-axis respectively. Similarly F
v
, G

v
 and H

v
 are the three 

viscous flux vectors in x-, y-, and z-axis respectively. Also 
r is the fluid density and u,v and w are velocity components 
in each direction of Cartesian coordinates. While e is the 
total energy per unit volume, pressure p can be expressed 
by the following state equation for ideal gas,

p = (g –1)[e – 2
1 (u2+ v2+ w2)]

where g is the ratio of specific heats.

The source term S(Q) of the k-e turbulence model is 
written  by,

S(Q)= [ 0, 0, 0, 0, 0, P
k
 – re – D

k
 , (c

e1
 P

k
  –  c

e2
  re) k

e  ]

where the production  term  P
k
  is  given  in  Cartesian 

coordinates as

and  the destruction term  D
k
  is  given  as   D

k
 = T.

2
g
r  ke

The mass average turbulent kinetic energy and 
homogeneous component of turbulent kinetic energy 
dissipation rate are defined by as

k = 2
1  c

t
2 (u2+v2+w2)    and  e = c

m
 k2  

The various constants in the k-e turbulence model are 
listed as follows:

c
μ
 = 0.09, c

t
 = 0.03, c

m
 = 0.09, c

e1
 = 1.45, c

e2
 = 1.92, sk = 1.00,   s

e
 = 1.30

The governing equations described above for 
compressible viscous flow are discretised by the finite 
volume method. A second-order, upwind Godunov 
scheme of Flux vector splitting method is used to 
discretize the inviscid flux terms and MUSCL-Hancock 
scheme with k-e turbulence model is used for interpolation 
of variables where HLL Reimann solver is used for shock 
capturing in the flow. Central differencing scheme is used 
in discretizing the viscous flux terms. The upstream of 
incident shock wave is set as inflow boundary condition, 
the properties and velocities of which are calculated from 
Rankine-Hugoniot conditions with incident shock Mach 
number. The downstream inflow boundary condition and 
wall surface are used as solid boundary conditions where 
the gradients normal to the surface are taken zero. All solid 
walls are treated as viscous solid wall boundary. For the 

two-equation k-e turbulence model on solid boundaries, μt 
is set to zero.

2.2	 Grid Systems and Grid Adaptation
    Three dimensional hexahedral cells with adaptive grids 
are used for these computations. In this grid system, the 
cell-edge data structures are arranged in such a way that 
each cell contains six faces which are sequence in one 
to six and each face indicates two neighboring cells that 
is left cell and right cell providing all faces of a cell are 
vectorized by the position and coordinate in the grid system. 
The initial three-dimensional grid system with turbulence-
generating grids is shown in Fig.1. The physical size of 
each cell before adaptation is equal to 5x5x5 (mm) and the 
initial number of cell is 2876.

The grid adaptation is one of the improved and 
computational time saving techniques, which is used in 
these computations. The grid adaptation is performed by 
two procedures, one is refinement procedure and another 
is coarsening procedure. The refinement and coarsening 
operations are handled separately in computation. The 
criterion used for grid adaptation is based on the truncation 
error ( ) of the Taylor series expansion of density. The 
truncation error indicator  is defined for every face of a 
cell and given by the ratio of the second-order derivative 
term to the first order one of the Taylor series of density so 
that 

  =max 

where c represent the location of any face of a cell and 
i and j represent left cell and right cell of that face, dl is 

the center distance between cell i and j, 
i
 and 

j
 

are the density gradient for cell i and j, 
lc
= (r

i
-r

j
)/dl, 

r
c
 is the density at the interface of right cell and left cell 

and a
f
 is the constant  which  is initially designed to prevent 

Figure 1: Three-dimensional grids and the position of the 
turbulence-generating grids are shown.
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a zero denominator. The value of a
f
 is used as 0.02 and it 

is problem-independent parameter. The refinement and 
coarsening operation for any cell depends on  value and 
the value of  is determined for each face of a cell. The 
criterion for adaptation for any cell is

Refinement=maximum  of six faces of a cell >er

Coarsening=maximum  of six faces of a cell <ec

where er and ec are the threshold values for refinement and 
coarsening. In these computations, the value of er is used 
as 0.44 and the value of ec is used as 0.40 and the level of 
refinement is 2.  

In the refinement procedure, the cells are selected 
for refinement in which every cell is divided into eight 
new sub cells and these new sub cells are arranged in a 
particular sequence so that these sub cells are used suitably 
in the data-structure. In the coarsening procedure, the eight 
sub cells, which are generated from the primary cell, are 
restored into the primary cell.

3   Results and Discussion
For the numerical simulation, turbulence grids are placed 
in the shock tube parallel to yz-plane and the position of 
the grid plate is shown in Fig.1. The total open area of grid 
plate is 50.6 % and the configuration of the grid plate is 
shown in Fig.2. Turbulence grids are uniform in size and 
spacing, so the shock wave and the gas flow, following 
the shock wave after passing through turbulence grids, 
generate a compressible flow of homogeneous, isotropic 
turbulence and at the same time, the turbulence decay 
phenomena happened along the longitudinal direction in 
the wake of the grid plate.

To compute turbulent parameters in the turbulent 
region, a selected turbulent region is taken in the wake 
of the grid plate, which is shown in Fig.3. The region 
between lateral plane AA and BB (parallel to the yz-plane) 
is taken as the selected turbulent region as shown in Fig.3 
and the centerline along the longitudinal direction (x-axis) 

of the turbulent region is treated as the centerline of the 
turbulent region. 30 points of equal spacing are taken on the 
centerline of the selected turbulent region and all turbulent 
parameters (velocity fluctuations, pressure fluctuations 
etc.) are computed on these 30 points for the turbulent 
region. The lateral planes intersect these 30 points and 
parallel to the yz-plane are treated as grid-data planes and 
the grids cut by the grid-data planes (lateral planes on 30 
points) are the grids on the grid-data planes. The value of 
any turbulent parameter on the centerline of the turbulent 
region is the average value of all the grid values on the 
grid-data plane where the grids near the boundary are not 
taken into account due to viscous effect. All the relevant 
turbulent parameters (velocity fluctuations, pressure 
fluctuations etc.) are determined along the centerline 
of the turbulent region for the shock position at the end 
wall of the shock tube. The longitudinal distances (x/d) 
of any point on the centerline of the turbulent region are 
determined from the grid plate where d is the maximum 
dimensional length of the grids.

The wall pressure fluctuations <p>/∆P, are calculated 
from the computed numerical data where the RMS value 
of wall pressure fluctuation,

<p> =  

Where the average pressure, P
av

 is (1/n)  , p
i
 is the 

instantaneous pressure and n is the number of grids, cut off 
by the grid-data plane where the grids near the boundary 
are not taken into account due to viscous effect. ∆P is the 
pressure difference between upstream and downstream of 
the shock wave.

Similarly the turbulence intensities, <u>/∆U are 
calculated from the measured numerical data where, the 
longitudinal velocity fluctuation in x-axis,

Figure 2: The configuration of the turbulence-generating 
grids in the grid plate.

Figure 3: Sectional view of zx-plane where the location of 
selected turbulent region is shown.
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u´=

The RMS value of longitudinal velocity fluctuation in 
x-axis, 

<u> =  and

Skewness of velocity fluctuation, S
u
=  .

The average longitudinal velocity,

U
av

 is (1/n)     

where u
i
 is the instantaneous longitudinal velocity. ∆U is 

the velocity difference between upstream and downstream 
of the shock wave.

The lateral velocity fluctuation in y-axis,

v´ = 

The RMS lateral velocity fluctuation in y-axis, 

<v> = 

The average lateral velocity in y-direction,

V
av

 is (1/n)

where, v
i
 is the instantaneous lateral velocity in y-direction.

Similarly, the lateral velocity fluctuation in z-axis,

w´=

The RMS lateral velocity fluctuation in z-axis, 

<w> =

The average lateral velocity in z-direction, W
av

 is 

(1/n)  where, w
i
 is the instantaneous lateral velocity 

in z-direction.
The RMS longitudinal turbulence intensity variations 

are determined along the centerline of the selected 
turbulent region in the wake of the turbulence grids. The 
decay phenomena in 3D turbulent field are observed along 
the longitudinal direction and the variations of turbulence 
decay are determined along the longitudinal direction by 
taking the reference value as an initial value. It is observed 
in Fig.4 that the decay rate at the near region of the grid 

plate is lower and the percentage of longitudinal decay is 
accelerated as increasing the longitudinal distance from the 
grid plate. The approach to isotropy of the flow was assessed 
by considering the skewness of the velocity fluctuations 
Su

. From the results of Mohamed and Larue [12], it is 
observed that the uncertainty in their measurement of S

u
 

is 0.01, these authors concluded that the position where 
S

u 
= ±0.01 is taken for isotropic flow. According to this 

recommendation, the present flow appears to be isotropic 
at all downstream positions where the value of S

u
 is always 

less than 0.01 in the turbulent region.

The RMS lateral turbulence intensity variations are 
determined along the centerline of the selected turbulent 
region in the wake of the turbulence grids. It is observed 
in Fig.5-6 that the decay of lateral turbulence intensities 
along the longitudinal direction are more fluctuating 
and the lateral turbulence decay phenomena along the 

Figure 4: The longitudinal turbulence intensity decay along 
the centerline of the turbulent region.

Figure 5: The lateral (y-axis) turbulence intensity decay 
along the centerline of the turbulent region.
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longitudinal direction are identical which was explained 
by Barre et al. [13] and confirmed that the <v> and <w> 
components behave in the same way along the lateral 
direction in the turbulent region. 

The decay of pressure fluctuations are determined 
along the centerline of the selected turbulent region in 
the wake of the turbulence grids and it is observed that no 
substantial pressure fluctuations variations occur along the 
longitudinal direction in the 3D turbulent region. 

The dissipative-length scale is defined by the 
expression, k3/2/e where the turbulent kinetic energy, 

k=  and k
i
 is the instantaneous turbulent kinetic 

energy for any grid on the grid-data plane and n is the 
number of grid on the grid-data plane where the grids 
adjacent to the boundary are not taken into account due to 

viscous effect. Similarly the dissipation rate, e=  

where e
i
 is the instantaneous TKE dissipation rate for any 

grid on the grid-data plane. The decay of the dissipative-
length scale is determined along the centerline of the 
turbulent region in the wake of the grid plate which is 
shown in Fig.7. It is observed that no substantial change of 
the dissipative length scale decay occurs at the near region 
of the grid plate and the percentage of decay increases 
gradually as increasing the longitudinal distance. The DNS 
data of Lee et al. [14] and the DNS data of Hannappel and 
Friedrich [15] indicated that the velocity length scale and 
the dissipative length scale increased during expansion 
process. The DNS results of Lee et al. [16] had indicated 
a small increase of dissipative length scales through weak 

shock interactions. Due to stronger compressibility effects, 
the turbulent dissipative length scale decreases and as the 
compressibility effects decrease, the dissipative length 
scale increases. 

The velocity length scale is defined by the expression, 
k1/2. The decay of velocity length scale is determined along 
the centerline of the turbulent region in the wake of the 
grid plate which is shown in Fig.8. It is observed that 
no substantial velocity length scale decay occurs at the 
near region of the grid plate and the decay rate increases 
gradually as increasing the longitudinal distance [17].

The decay of the turbulent kinetic energy (TKE) is 
determined along the centerline of the selected turbulent 
region which is shown in Fig.9. It is observed that the 
TKE variations are reasonable for the present turbulent 

Figure 6: The lateral (z-axis) turbulence intensity decay 
along the centerline of the turbulent region.

Figure 7: The decay of dissipative length scale along the 
centerline of the turbulent region.

Figure 8: The decay of velocity length scale along the 
centerline of the turbulent region.
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flow with an initial TKE.  The TKE evolves towards outlet 
of the nozzle divergent and it represents the turbulence 
intensity of the turbulent region. The solution of Navier-
Stokes equations provides the information of turbulent 
kinetic energy (TKE) level in the flow field where the TKE 

is computed from the equation,  and 

in this case, the values of TKE are directly related to 
the velocity fluctuations of the fluid particles. On the 
other hand, the TKE is obtained from the solution of two 
equations of k-e turbulence model and the accuracy of 
the TKE value depends on the modeling equations. The 
values of TKE obtained from the velocity fluctuations of 
the fluid particles in the flow field are compared with the 
values of TKE obtained from the solution of two equations 
of k-e turbulence model because all turbulence modeling 
equations are not ideal and it must have some deviations 
between these results. The comparisons between the decay 
of TKE values obtained from the solution of Navier-
Stokes equations and the solution of turbulence model are 
determined along the centerline of the turbulent region 
and the comparisons are shown in Fig.9 and the deviations 
between these results are 10-20 %. Even though the present 
deviation is more due to unsteady state condition but their 
decaying characteristics are almost similar. 

The dissipation rate of TKE is changed depending on 
the compressibility level of the turbulent field and this 
value vanishes for incompressible flow. Due to shock 
wave interaction with the turbulent field of stronger 
compressibility level, the dissipation rate is decreased 
more and so more dissipation energy converts to thermal 
energy or internal energy of the flow. The decay of 

dissipation rate is characterized along the centerline of the 
turbulent region and the characteristic curve is shown in 
Fig.10. It is observed that the decay of dissipation rate is 
accelerated as increasing the longitudinal distance. Even 
though change of compressibility is very low but due to 
weaker turbulence fields, the dissipation rate decreases as 
increasing the longitudinal distance from the turbulence 
grids.

4   Conclusions
A numerical simulation has been conducted to determine 
the decay of the 3D turbulence in the wake of the 
turbulence grids along the centerline of the shock tube. The 
present computational results indicate that the turbulence 
decaying phenomena in the wake of the turbulence grids 
are the key factors during interaction with shock, reflected 
from the end wall of the shock tube. The use of the present 
technique has the advantage to get the different turbulence 
fields where the intensity of the turbulence varies along 
the downstream direction of the shock wave. So due to 
the turbulence decay, it is possible to get the outcomes of 
the shock wave interaction with turbulence of different 
strengths and the interaction results provide the important 
information on shock wave interaction with different 
strengths of turbulent fields. The behavior of turbulence 
properties are analyzed due to turbulence decay in the wake 
of the turbulence grids. It is observed from the decaying 
phenomena that all turbulent length scales decrease and 
this result agrees with other existing computational results. 
The dissipation rate of turbulence kinetic energy depends 
on the turbulence strength and due to turbulence decay 
along the longitudinal direction; the dissipation rate of 

Figure 9: The decay of TKE along the centerline of the 
turbulent region.

Figure 10: The decay of dissipation rate of TKE along the 
centerline of the turbulent region.
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TKE is decreased more as the longitudinal distance from 
the turbulence grids increases. 
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