DEVELOP ALGORITHM FOR INVERSE PARK TRANSFORMATION

a by original core

FAIRUZ NADZIRAH BINTI MOHAMAD IBRAHIM

© This item is prot

SCHOOL OF MICROELECTRONIC ENGINEERING UNIVERSITI MALAYSIA PERLIS 2011

DEVELOP ALGORITHM FOR INVERSE PARK **TRANSFORMATION**

FAIRUZ NADZIRAH BINTI MOHAMAD IBRAHIM

Report submi

JUNE 2011

ACKNOWLEDGEMENT

Alhamdulillah firstly, I thanks Allah, the mighty for giving me the strength to be able to finish this Final Year Project. I would like to express my special appreciation and gratitude to my final year project supervisor, En.Razaidi Bin Hussin for the advices, guidance and enthusiasm given throughout the progress of this project.

I would like to thanks my group under the same supervisor for their information, support, and encouragement. I hope all of us would be able to achieve a great success in all our future undertakings. Also thanks to my parents and family who support me, cared for me and encouraged me all the time.

Lastly, to my friends and also to those who are involved, your support and contribution are really appreciated. I wish for them all the best in the future. Without them, this project report would not be as it is today.

Thank you and May God bless you all.

APPROVAL AND DECLARATION SHEET

This project report titled Develop Algorithm for Inverse Park Transformation was prepared and submitted by Fairuz Nadzirah Binti Mohamad Ibrahim (Matrix Number: 081031249) and has been found satisfactory in terms of scope, quality and presentation as partial fulfillment of the requirement for the Bachelor of Engineering (Electronic Engineering) in Universiti Malaysia Perlis (UniMAP).

Checked and Approved by

(RAZAIDI BIN HUSSIN)
Project Supervisor

School of Microelectronic Engineering Universiti Malaysia Perlis

June 2011

DEVELOP ALGORITHM FOR INVERSE PARK TRANSFORMATION

ABSTRAK

Park Transformation digunakan untuk mewujudkan perubahan pada nilai arus Ids dan Iq. Ianya juga adalah untuk mengawal bahagian persamaan di antara arus vector stator dan arus vector rotor. Inverse Park Transformation digunakan untuk menukar rangka stasioner. Teori CORDIC digunakan untuk mengira nilai modul sinus dan kosinus yang digunakan dalam persamaan matematik bagi Inverse Park Transformation. Nilai ini kemudiannya didarabkan dengan nilai masukan Vd dan Vq mengikut persamaan di dalam formula Inverse Park Transformation untuk mendapatkan nilai sudut putaran bagi motor sehingga 360 darjah.

DEVELOP ALGORITHM FOR INVERSE PARK TRANSFORMATION

ABSTRACT

The park transform can be used to realize the transformation of the Ids and the Iqs current from the stationary to the moving reference frame and control the spatial relationship between the stator vector current and rotor flux vector. The inverse park transform used to transform the rotating frame into the stationary frame. This project aims to develop an algorithm for Inverse Park Transformation by using the selection approach. The theory CORDIC used to calculate the value of sine and cosine module that being used in the Inverse Park Transform mathematical equation. Then by using the formula or mathematical equation for Inverse Park Transformation, the value of sine and cosine are multiply by the input of Vd and Vq to get the angle rotation for the motor up to 360 degree.

TABLE OF CONTENTS

		Page
ACE	KNOWLEDGMENT	i
APP	PROVAL AND DECLARATION SHEET	ii
ABS	TRAK	iii
ABS	TRACT	iv
TAB	BLE OF CONTENTS	v -vii
LIST	Γ OF TABLE	viii
LIST	Γ OF FIGURES	ix - x
CHA	KNOWLEDGMENT PROVAL AND DECLARATION SHEET STRAK STRACT BLE OF CONTENTS F OF TABLE F OF FIGURES APTER 1 INTRODUCTION Introduction	
1.1	Introduction	1
1.2	Background of study	1
1.3	Research Statement	2
1.4	Objective of the Project	2
1.5	Scope of work	3
1.6	Gantt chart	3
1.7	Thesis Structure	4
1.8	Summary	5
CHA	APTER 2 LITERATURE REVIEW	
2.1	Introduction	6
2.2	Verilog HDL	6

2.3	Modeling Structure	7
2.4	CORDIC(Coordinate Rotation Digital Computer)	8
2.5	Electrical Motor Control	10
2.6	AC Motor	10
	2.6.1 Stator	12
	2.6.2 Rotor	12
	2.6.3 Enclosure	13
2.7	Motion Profile Controller	14
2.8	Field Orientated Control	15
2.9	Space Vector Definition and Projection	15
2.10	Clarke Transformation	16
2.11	2.6.2 Rotor 2.6.3 Enclosure Motion Profile Controller Field Orientated Control Space Vector Definition and Projection Clarke Transformation Forward Park Transformation Inverse Park Transformation	18
2.12	Inverse Park Transformation	19
2.13	The Space Vector Pulse Width Modulation(SVPWM)	20
2.14	Summary	21
CHA	PTER 3 METHODOLOGY	
3.1	Chapter Overview	22
3.2	Project Planning	22
3.3	Phase 1 (Literature Review)	24
3.4	Phase 2 (Studying Software)	24
	3.4.1 Selection of ModelSim Software	25
3.5	Phase 3 (System Development)	25
	3.5.1 Understand the Inverse Park Transformation Block Diagram	25
	3.5.2 Calculation Sine and Cosine using CORDIC Theory	27
	3.5.3 Design the Circuit	31
	3.5.4 Design Verilog HDL Code	32
	3.5.5 Compile and Simulation Process	34
3.6	Summary	35

CHA	PTER 4 RESULT AND DISCUSSION	
4.1	Chapter Overview	36
4.2	Compilation Report	36
4.3	Waveform Result	38
4.4	Speed Analysis	53
4.5	Summary	55
	Waveform Result Speed Analysis Summary PTER 5 CONCLUSION Summary Commercialisation Innovation & Scientific Value Proposed Future Work ERENCES nical Review nical Report	
	963	
CHA	PTER 5 CONCLUSION	
5.1	Summary	56
5.2	Commercialisation	57
5.3	Innovation & Scientific Value	57
5.4	Proposed Future Work	57
	X80	
REFI	ERENCES	58
Techi	nical Review	59
Techi	nical Report	62
APPE	ENDICES	
Appe	ndices A	
Appe	ndices B	
Appe	ndices C	
Appe	ndices D	

LIST OF TABLE

Tables No.	Declaration of input and output Original copyrights As item, is protected by original copyrights As item, is pr	Page
4.1	Declaration of input and output	52
	.xell	
•		

LIST OF FIGURES

Tables No.	Example of module format source code	Page
2.1	Example of module format source code	7
2.2	Example of how to declare input and output source	8
2.3	AC Motor construction basic part	11
2.4	Stator Winding Partially Completed and Winding Completed	12
2.5	Rotor and Lamination	13
2.6	Partially Assembled Motor	14
2.7	Stator curret space vector and its component in (a,b,c)	16
2.8	Stator curret space vector and its component in (a,b)	17
2.9	Clarke transformation module	18
2.10	Stator curret space vector and its component in (a,b) and in the d,q	18
2.11	Forward Park Transformation module	19
2.12	Voltage Current in Inverse Park Transformation	19
2.13	Inverse Park Transformation module	20
2.14	Space Vector Pulse Width Modulation(SVPWM), Vector and sector	21
3.1	Process Flow of the Project	23
3.2	Diagram Showing Implematation Block Diagram of Inverse Park	26
	Transformation	
3.3	Circuit implement from Inverse Park Transformation	32
3.4	Simulation Project Flow	33
4.1	Compilation Report for cordic.v	37
4.2	Compilation Report for cordic_tb.v	37
4.3	Compilation Summary Report	38
4.4	Ouadrant of the total angle (0 - 360°)	39

4.5	The value j=17	40
4.6	The value j=25	41
4.7	The value j=88	42
4.8	The value $j=117$	43
4.9	The value $j=130$	44
4.10	The value j=168	45
4.11	The value j=200	46
4.12	The value j=227	47
4.13	The value j=275	48
4.14	The value j=308	49
4.15	The value j=322	50
4.16	The value j=168 The value j=200 The value j=227 The value j=275 The value j=308 The value j=322 The value j=358 Input clock 1, time execute 750ns	51
4.17	Input clock 1, time execute 750ns	53
4.18	Input clock 3, time execute 2250ns	53
4.19	Input clock 5, time execute 3700ns	54
4.20	Input clock 10, time execute 7500ns	54
4.21	Analysis of Overall Speed Result	55
	Analysis of Overall Speed Result	