Formation of carbon nanotubes from methane decomposition: Effect of concentration of Fe₃O₄ on the diameters distributions

Abstract

Fe $_3O_4$ was used to synthesize narrow diameter of carbon nanotubes (CNTs). The effect of concentration of Fe $_3O_4$ on the diameters of carbon nanotubes (CNTs) synthesized by methane decomposition at 1000°C was investigated. We used conventional impregnation method to prepare Fe $_3O_4$ /MgO catalysts. The results show that the concentration of Fe $_3O_4$ greatly affects the diameter distributions of produced CNTs. The CNTs formed by Fe $_3O_4$ /MgO catalysts, with the mole ratio set at 0.25:9.75 and 1:9 had diameter of 3.23 \pm 1.71 and 49.04 \pm 33.62nm, respectively, showing that a decrease in concentration of Fe $_3O_4$ yields smaller diameter and narrower diameter distribution. A growth model explaining tip-growth and base-growth mechanism is proposed for understanding formation of CNTs.

Keywords; Chemical Vapor Deposition (CVD), Graphite, Impregnation Method, Methane, Nanotubes