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Pengaruh Komponen Pengisi Pada Sifat Mekanikal Dan Ciri-Ciri Kesan 

Pemesinan Pada Lilin Kelapa Sawit 

 

 

ABSTRAK 

 

 

Tesis ini membincangkan penyelidikan lengkap pada campuran lilin kelapa sawit 

dengan LLDPE dan HDPE.  Sasaran penyelidikan ialah untuk menghasilkan 

campuran lilin industri murah yang di buat daripada lilin kelapa sawit.  Campuran 

lilin yang di kaji adalah terdiri daripada lilin industri komesial untuk tujuan 

permodelan fizikal CNC.  Kajian struktur bahan seperti sturuktur mikro telah di 

jalankan sebelum menambah pengisi dan selepas penambahan pengisi.  Keputusan 

kajian telah menunjukkan bahawa pelbagai jenis pengisi akan mempengaruhi sifat-

sifat mekanik dan akhirnya akan menyumbang kepada kekuatan struktur bahan 

campuran tersebut.  Keberkesanan campuran pengisi dengan lilin kelapa sawit di 

nilai dengan menggunakan teknik yang berbeza seperti kajian terma, mekanikal dan 

juga SEM melalui kajian struktur bahan.  Keberkesanan campuran terbaik telah 

didapati daripada campuran 30%wt LLDPE + 20%wt lilin kelapa sawit + 0%wt 

fiber kelapa sawit untuk pengisi LLDPE dan 70%wt HDPE + 20%wt lilin kelapa 

sawit + 0%wt fiber kelapa sawit untuk pengisi HDPE di mana pada peringkat ini 

kekuatan tarikan dikatakan mempunyai nilai tertinggi.  Pengisi LLDPE 

dianugerahkan kelicinan permukaan terbaik selepas melalui ujian kelicinan 

permukaan setelah mendapat nilai Ra terendah iaitu 1.966 µm. 

 

 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

©
 T
hi
s i
te
m
 is
 p
ro
te
ct
ed
 b
y 
or
ig
in
al
 c
op
yr
ig
ht
 



v 
 

 
 
 
 
 

Effects of Filler Components on Mechanical Properties and Machinability 

Characteristic of Palm Oil Based Wax  

 

  

 

ABSTRACT 

 

 

 

 

This thesis presents, a comprehensive study on the blends of palm oil based wax 

with filler components such as linear low polyethylene (LLDPE) and high density 

polyethylene (HDPE).  The work targets the development of cheap industrial wax 

made from palm oil.  The blends studied comprised of commercial industrial wax for 

prototyping Computer Numerical Control (CNC) machining purpose.  

Morphological analysis also has been carried out to investigate microstructure 

before composing filler and after filler compositions.  The experiment results show 

that different kind of filler will affect mechanical properties and will attribute to 

strength of blends materials. The effectiveness of compatibility filler was evaluated 

using different techniques like thermal, mechanical and scanning electron 

microscopy via morphology study.  Best compatibilization effect was found in the 

blend at loading of 30%wt LLDPE + 20%wt raw palm oil based wax + 0%wt palm 

oil fiber for LLDPE filler and 70%wt HDPE + 20%wt raw palm oil based wax + 

0%wt palm oil fiber for HDPE filler where at these compositions, the tensile 

strength is at the highest level. LLDPE filler blends was awarded best smooth 

surface after obtain 1.966µm (Ra) value.   
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CHAPTER 1 

 

 

INTRODUCTION 

 

1.1 Palm oil based wax 

1.1.1 Introduction to fatty acid 

 Fatty Acids are aliphatic carboxylic acid with varying hydrocarbon lengths at 

one end of the chain joined to terminal carboxyl (-COOH) group at the other end. The 

general formula is R-(CH2)n-COOH. Fatty acids are predominantly unbranched and 

those with even numbers of carbon atoms between 12 and 22 carbons long react with 

glycerol to form lipids (fat-soluble components of living cells) in plants, animals, and 

microorganisms.  

 

Fatty acids all have common names respectively lilk lauric (C12), MyrIstic 

(C14), palmitic (C16), stearic (C18), oleic (C18, unsaturated), and linoleic (C18, 

polyunsaturated) acids. The saturated fatty acids have no solid bonds, while oleic acid 

is an unsaturated fatty acid has one solid bond (also described as olefinic) and 

polyunsaturated fatty acids like linolenic acid contain two or more solid bonds. Lauric 

acid (also called Dodecanoic acid) is the main acid in coconut oil (45 - 50 percent) 

and palm kernel oil (45 - 55 percent). Nutmeg butter is rich in myristic acid (also 

called Tetradecanoic acid ) which constitutes 60-75 percent of the fatty-acid content. 

Palmitic acid (also called Hexadecylic acid ) constitutes between 20 and 30 percent of 

most animal fats and is also an of most important constituent vegetable fats (35 – 45% 

of palm oil). Stearic acid ( also called Octadecanoic Acid)  is nature's most common 
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long-chain fatty acids, derived from animal and vegetable fats. It is widely used as a 

lubricant and as an additive in industrial preparations. It is used in the manufacture of 

metallic stearates, pharmaceuticals, soaps, cosmetics, and food packaging. It is also 

used as a softener, accelerator activator and dispersing agent in rubbers. Oleic acid 

(systematic chemical name is cis-octadec-9-enoic acid) is the most abundant of the 

unsaturated fatty acids in nature. 

 

1.2 Introduction to Polyethylene (PE) 

 

 Polyethylene (PE) was discovered in 1933 by Reginald Gibson and Eric 

Fewcett at the British industrial giant, Imperial Chemical Industries (ICI).  PE is the 

highest volume polymer in the world.  It is a polymer made up a repeat unit of 

ethylene, CH2 = CH2 where the chemical formula is (-CH2 - CH2-) n.  PE was produced 

at high pressure and temperature in the presence of catalyst.  The first generation of 

PE contains both long and short bunches with versatile material that offered high 

performance compared to other polymers. 

 

 With advances in catalyst technology and reactor design, different PE 

molecular structures can be produced with different physical properties.  These new 

development exhibits has indeed increase the product versatility. (Colvin,R.,2002). 

 

 The outstanding of PE are toughness, ease of processing, chemical resistance, 

abrasion resistance, electrical properties and impact resistance.  PE offers combination 

of characteristics that are suited for many applications. PE properties can be tailored 

by changing the polymerization method or reaction conditions. For example the food 
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packaging application, these products are better synthesized in solution polymerized 

linear low density polyethylene.  The polymer chain length, degree of crystallinity and 

the mechanical properties of polymers can be controlled by adding specific amount of 

co monomers to the reactor. 

 

1.3 Types of Polyethylene  

 High density polyethylene (HDPE) is a flexible and translucent material.  Its 

main qualities are toughness, rigidity, good abrasion resistance, high stress breaking 

resistance and good chemical resistance.  It is easy to process by most method with 

low cost.  HDPE is more rigid and harder than low density polyethylene.  HDPE has 

exceptional impact strength and is one of the best impact-resistant thermoplastic 

available.  Its properties can be maintained in extremely low temperatures.  It can be 

used in fresh water and salt water immersion applications. (Vasile, Cornelia 2005). 

  

 Low density polyethylene (LDPE) is a semi-rigid and translucent material.  Its 

main qualities are toughness, flexibility, resistance to chemicals, low water absorption 

and excellence electrical properties.  It is easy to process by most methods with low 

cost.  It cannot be used in extremely high temperature. However it is an excellence 

material for corrosion resistance. LDPE has lower melting point and higher clarity if 

compared to HDPE due to long side chain branching. LDPE has a very good flow 

behavior, flexible and tough at low temperature and transparent.  (Vasile, Cornelia 

2005).  
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The disadvantages of LDPE are low tensile strength, puncture and tear 

resistance with high stiffness. 

 

Linear low density polyethylene (LLDPE) is a transparent material.  It has 

more side branches than LDPE but comparatively short.  LLDPE qualities are high 

strength and stiffness, puncture and tear resistance, and excellence low temperature 

toughness.  LLDPE is used in various film applications such as food packaging. 

 

1.4 Properties of polyethylene  

1.4.1 Density 

 Density of PE depends on polymerization process and its thermal history.  

Density can significantly influence PE properties. 100% crystalline PE sample would 

have density of 1g/cm3 while the density of 100% amorphous samples is 0.85 g/cm3.  

The typical density value are 0.92-0.95 g/cm3 for LLDPE.  0.91-0.94 g/cm3 for LDPE 

and 0.95-0.96 g/cm3 for HDPE.  (Vasile, Cornelia 2005).  

 

1.4.2 Crystallinity 

 PE is described as a semi-crystalline polymer.  The properties of PE depend on 

its crystalline content.  Crystallinity in PE is primarily a function of number of 

branches present in the skeletal chains.  As more branches are present in the skeletal 

chains, crystallinity decrease significantly.  The crystallinity may vary from about 35 

to 75%.  Low crystallinity may offers good processability, better transparency and 

economical melt processing. (Price, 1997). 
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 Crystallization first begins from a nucleus and once nucleated proceed with 

the growth of folded chain ribbon-like crystallites called lamellae (see figure 1.1).  

Lamellae have various sizes and imperfections that include planar zig-zag of 

crystalline PE chains.  Lamellae are connected by “tie molecules”, leading to tougher 

structures. (see figure 1.2). 

 

 

 

 

 

  

 

 

 

 

Figure 1.1: Schematic of lamella (Liu et al.2003) 

 

 

 

 

 

 

 

Figure 1.2: Schematic of lamella connected by tie molecules (Liu et al.2003) 
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1.4.3 Mechanical properties 

 The presence of a crystalline phase enables PE to retain its mechanical 

strength over a wide range of temperatures.  Tear strength and dart impact strength are 

mechanical properties that are particularly important in terms of practical 

applications.  The tear strength decreases with increasing temperature and increases 

with increasing density, as does an increase in molecular weight.  Impact strength can 

be define as the amount of energy that PE can take up before some permanent damage 

is done.  The impact strength increases rapidly with molecular weight.  (Mark, H.F.et 

al.,1967).  

  

 The impact strength of material depends on the inherent molecular structure of 

the grade use and the morphology arising from the processing conditions.  Impact 

strength also increases with molecular weight, and with co-monomer content up to a 

certain limit.  A significant reduction in the dart impact strength as well as the tear 

strength with increasing long-chain branching (LCB) is observed for various PE.  An 

increase in LCB level results in lower impact strength and tear strength of blown 

films. (Ward, I.M.et al.,2004). 

 

 

1.5  Introduction to Fourier Transform Infra Red (FTIR) 

 Infrared spectroscopy is perform in order to study the interaction of infrared 

light with substance.  Light is composed of electric and magnetic waves, which 

vibrates in a plane that is perpendicular to each other.  In general, it is a electric wave 

of light or called the electric vector that interact with molecules.   
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 Fourier transform infrared (FTIR) spectroscopy was developed from 

Michelson interferometer which was invented in 1880 by Albert Abraham Michelson.  

With the development of technology, FTIR has been combined with other equipment 

to analyze complex mixture quickly and accurately.  The number of established 

techniques is constantly growing, making FTIR more and more useful. (Low and 

Freeman, 1967). 

 

 The performance of any Infrared spectrometer is determined by measuring its 

signal to noise ratio (SNR).  SNR is calculated by measuring the peak height of a 

feature in an infrared spectrum, such as a sample absorbance peak, and it’s divided by 

the level of noise of some baseline point nearby in the spectrum.  There are two 

advantages of FTIR.  The first is the throughput advantage since all the infrared 

radiation passes through the samples and strikes the detector at once in FTIR.  So, it 

maximizes the amount of light that can be detected during one scan. The second 

advantage of FTIR is called the multiplex advantage.  This means that all the wave 

numbers of light are detected at once and the noise of particular wave numbers is 

proportional to the square root of the time spent observing that number. 

 

1.5.1 Infrared Spectra 

All objects at a temperature above absolute zero give off infrared radiation.  

When substance absorbs infrared radiation, chemical bonds in the material would 

vibrate.  Some type of the functional groups tends to absorb infrared radiation in the 

same wave number range such as frequency range regardless of the structure of the 
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rest of the molecules.  The infrared absorption of carbonyl group ( i.e C=0)  occurs at 

1700 cm-1 in many different types of molecules. This means that wavenumbers at 

which a molecule absorbs infrared radiation indicate the presence of certain functional 

groups in such a molecule. 

 

A plot of measured infrared radiation intensity versus wavenumber is known 

as an infrared spectrum. Most modern infrared spectra are plotted with wavenumber 

on the x-axis with high wavenumber on the left while low wavenumber on the right, 

and the y-axis is plotted in absorbance, which is defined as: 

 

A = log( Io /I )     Eqn 1.1 

where 

A = absorbance 

I = light intensity with a sample in the infrared beam (sample spectrum) 

Io= light intensity measured with no sample in the infrared beam (background 

spectrum) 

 

The Io in Equation 1.3 is the background spectrum that is measured before 

measuring the sample spectrum in an FTIR.  Io measures the contribution of the 

spectrometer and the environment to a spectrum. The parameter I contains 

contribution both from the instrument, environment and sample. So the ratio of Io to I 

can cancel the instrument and environment contributions and only retain sample's 

spectrum. 
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