DEVELOPMENT OF AN ADAPTIVE NEURO-CONTROLLER AND SATELLITE SIMULATOR FOR NANO-SATELLITE ATTITUDE CONTROL **SYSTEM**

stientenis

UNIVERSITI MALAYSIA PERLIS

2013

UNIVERSITI MALAYSIA PERLIS

DECLARATION OF THESIS				
Author's full name :	: <u>S</u>	SITI MARYAM BT SHARUN		
Date of birth :	: <u>2</u> 7	27 TH JANUARY 1972		
Title :	<u>S</u>	DEVELOPMENT OF AN ADAPTIVE NEURO-CONTROLLER A SATELLITE SIMULATOR FOR NANO-SATELLITE ATTITUDE CONTROL SYSTEM	<u>ND</u>	
Academic Session :	: <u>20</u>	2008 - 2012		
		becomes the property of Universiti Malaysia Perlis (UniMAP) a This thesis is classified as :	ind to be	
	. (C	Contains confidential information under the Official Secret Act	1972)*	
		Contains restricted information as specified by the organization esearch was done)*	on where	
OPEN ACCESS		agree that my thesis is to be made immediately available copy or on-line open access (full text)	as hard	
		he UniMAP to reproduce this thesis in whole or in part for the e only (except during a period of years, if so requested		
C this tem is the contract of				
SIGNAT	URE	SIGNATURE OF SUPER	VISOR	
			<u>MASHOR</u>	
(NEW IC NO. / P	ASSPOR	RT NO.) NAME OF SUPERVISOR		

NOTES: * If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentially or restriction.

ACKNOWLEDGEMENT

In the name of Allah, the Most Gracious and the Most Merciful. First and foremost, I would like to thank Allah s.w.t for giving me the strengths and His blessing in completing this thesis. Alhamdulillah, all praises to Allah. Special appreciation goes to my supervisor, Prof. Dr. Mohd Yusoff Mashor for providing me the knowledge and whom never failed and stops giving me support from the beginning until the end which makes this research possible to be completed. His guidance and motivations always keep me focused on the objective of the research and choosing the right way in accomplishing it. Not forgetting a big appreciation towards my second supervisor, Prof. Dr. Sazali bin Yaacob for all the support in terms of knowledge, advice and streaming motivation during this period which help to keep my faith solid as ever.

I would also liketo convey my gratitude to the Ministry of Higher Education (MOHE), for the scholarship as well as Astronautic Technology (M) Sdn. Bhd. (ATSB) for providing the information and constructive guidance during the research study. I would like to express my deepest gratitude to my beloved husband, mother and my sons, and the rest of my family for the prayer, love, motivation and encouragement that inspire me to strive harder for achieving the dreams.

Last but not least, I would like to thank InnoSAT team members especially Wan Nurhadani, Norhayati, Anis and Zul Azfar. My fellow friends, especially to Nadiatun, Hazlyna, Rafikha, Khusairi, Aimi and everyone that involves in this research directly and indirectly. Your help and encouragement really means to me. Thank you very much. To my beloved parents, Sharun Ibrahim & Che Gayah Mat Taib My lovely husband, Suhairi Mohamed & My sons, Muhammad Sufi Muhammad Isa Muhammad Aliff Muhammad Aliff Muhammad Aqil Chilistheri And last but not least To all my family members

TABLE OF CONTENTS

			PAGE
THESIS DECI	LARA	ATION	i
ACKNOWLE	DGEN	MENT	ii
TABLE OF C	ONTE	ENTS ATIONS S sprotected by original copyright S sprotected by original copyright	iv
LIST OF TAB	LES	ovino	х
LIST OF FIG	URES	all cor	xiii
LIST OF ABB	REVI	ATIONS	XX
LIST OF SYM	BOL	s by	xxiv
ABSTRAK		ecter	xxix
ABSTRACT		orote	XXX
CHAPTER 1	INT	RODUCTION	
	1.1	Introduction	1
THIS	1.2	Problem Statement	4
\bigcirc	1.3	State-of-the-art	6
	1.4	Research Objective	8
	1.5	Scope of Research	9
	1.6	Thesis Outline	11
CHAPTER 2	LIT	ERATURE REVIEW	
	2.1	Introduction	14
	2.2	Small Satellite	15

		2.2.1	Cube SAT	17
		2.2.2	Innovative Satellite (InnoSAT)	20
	2.3	Satelli	te Attitude Control System	22
		2.3.1	Spin Stabilization	24
			2.3.1.1 Single Spin	25
			2.3.1.2 Dual Spin	25
		2.3.2	Three-Axis-Stabilization	26
			Three-Axis-Stabilization 2.3.2.1 Magnetic Control 2.3.2.2 Wheels	27
			2.3.2.2 Wheels	28
			2.3.2.3 Thrusters	29
		2.3.3	Passive Control	31
			2.3.3.1 Gravity Gradient	32
			2.3.3.2 Passive Magnetic	34
		2.3.4	Magnetic Torques and Magnetometer	35
	2.4	Artific	ial Neural Network	36
• 3	en	2.4.1	Types of ANN	38
This		2.4.2	Application of ANN in Control System	44
Ó		2.4.3	Application of ANN in Satellite Attitude	47
			Control	
	2.5	Previo	us Work of Satellite Attitude Control	48
		2.5.1	Intelligent Adaptive Controller	49
		2.5.2	Conventional Controller	52
	2.6	Hardw	vare-In-Loop Satellite Simulator	55
	2.7	Summ	ary	59

CHAPTER 3 MATHEMATICAL MODELLING OF INNOVATIVE SATELLITE

	3.1	Introd	uction	62
	3.2	Coord	inate Reference Frames	64
		3.2.1	The Inertial Frame	65
		3.2.2	The Orbital Frame	65
		3.2.3	The Body Frame	66
	3.3	Angul	ar Momentum and the Inertia Matrix	67
		3.3.1	Principal Axes of Inertia	71
		3.3.2	Euler's Moment Equations	72
	3.4	Attitu	de Kinematics Equations of Motion	72
		3.4.1	Angular Velocity Vector of a Rotating Frame	73
		3.4.2	Angular Velocities for the Transformation	74
	3.5	Attitu	de Dynamics Equations of Motion	76
		3.5.1	Equations of Motions for Satellite Attitude	77
	-C.	3.5.2	Gravity Gradient Moment	78
.5	Xe.	3.5.3	Linearized Attitude Dynamics	83
LUI	3.6	Gravit	ty Gradient Attitude Control	85
\bigcirc		3.6.1	Purely Passive Control Method	86
		3.6.2	Simulation Result of Purely Passive Control	90
			Method	
	3.7	Active	e Control Method	97
		3.7.1	Active Control Method with small Euler	98
			angle	
		3.7.2	Active Control Method with Gravity Gradient	100

 \bigcirc

		3.7.3	Active Control Method with Coupling Factor	101
	3.8	Summ	ary	102
CHAPTER 4			ENT CONTROLLER FOR SATELLITE CONTROL	
	4.1	Introd	uction	104
	4.2	Adapt	ive Neuro-Controller	105
		4.2.1	Control Scheme	108
		4.2.2	Controller Structure	114
			4.2.2.1 Multi Layered Perceptron (MLP)	115
			Network	
			4.2.2.2 Hybrid Multi Layered Perceptron	116
			(HMLP) Network	
		4.2.3	Estimation Algorithm	122
		4.2.4	Performance Analysis of ANC based on MLP	127
	- C	12	and HMLP network	
.5	4.3	Modif	ied PID Controller	131
LUI	4.4	Adapti	ve Parametric Black Box (APBB) controller	133
\bigcirc	4.5	The sin	nulation for Y-Thompson Spin Rate Data	135
	4.6	Simula	ation Result of Active Control method for	139
InnoSAT plant with small Euler angle				
		4.6.1	Performance comparison between MLP,	143
			HMLP, APBB and MPID controller using	
			step input and square wave input data	
		4.6.2	Performance comparison between MLP,	165

vii

		HMLP, APBB and MPID controller using Y-	
		Thompson spin rate data.	
	4.7	Simulation Result of Active Control method for	168
		InnoSAT plant with Gravity Gradient (GG) Torque	
		4.7.1 Performance comparison between ANC and	169
		MPID controller using step input and square	
		wave input data	
		4.7.2 Simulation result for ANC controller using	170
		Y- Thompson spin rate data.	
	4.8	Simulation Result of Active Control method for	182
		InnoSAT plant with Cross Coupling Factor	
	4.9	Conclusion	191
CHAPTER 5	PLU	JG AND PLAY InnoSAT ACS SIMULATOR	
	5.1	Introduction	193
	5.2	Previous work of Attitude Control Satellite	194
	en	Simulator	
, his	5.3	Satellite Simulator Development for InnoSAT ACS	196
©		system	
	5.4	Requirements for ACS and Microcontroller	199
	5.5	Microcontroller Specification and Assessment	202
		5.5.1 Comparison between RCM3400 and	205
		RCM4100	
		5.5.2 Floating-Point Value Storage	206
	5.6	Memory Management and Allocation	208
	5.7	Hardware-In-Loop-Simulation Technique	211

		5.7.1	Requirements	213
		5.7.2	MCU and Computer Interface	214
		5.7.3	Real Time Simulation	218
	5.8	Result	and Discussion for InnoSAT ACS Simulator	219
		5.8.1	Comparison Result of HILS and MATLAB	221
			simulation for InnoSAT plant with small	
			Euler angle	
		5.8.2	Comparison Result of HILS and MATLAB	233
			simulation for InnoSAT plant with GG	
			Torque	
		5.8.3	Comparison Result of HILS and MATLAB	245
			simulation for InnoSAT plant with Cross	
			Coupling Factor	
		5.8.4	Comparison Result of HILS and MATLAB	257
		54	simulation for InnoSAT plant using Y-	
	en	Þ	Thompson spin rate data.	
THIS	5.9	Concl	usions	261
CHAPTER 6	CON	ICLUS	IONS AND FUTURE WORK	
	6.1	Concl	usions	263
	6.2	Resea	rch Contributions	265
	6.3	Recon	nmendations for Future Work	266
	REF	EREN	CES	268
	APP	ENDIC	CES	282
	LIST	r of pi	UBLICATIONS	305

LIST OF TABLES

NO.		PAGE
2.1	Satellite categorization with respect to mass	17
3.1	Summary of stability conditions in terms of principal moments of	90
	inertia	
3.2	Satellite Characteristics and Initial Conditions for InnoSAT	91
3.3	InnoSAT Characteristics and Initial Conditions for Active Control	99
	Method	
4.1	Analysis of hidden nodes numbers using ANC based on MLP	127
	network for InnoSAT plant with small Euler angle	
4.2	Analysis of hidden nodes numbers using ANC based on HMLP	129
	network for InnoSAT plant with small Euler angle	
4.3	The Step Response Analysis of MLP, HMLP, MPID and APBB	145
	controllers for Roll Axis	
4.4	The Step Response Analysis of MLP, HMLP, MPID and APBB	146
	controllers for Pitch Axis	
4.5	The Step Response Analysis of MLP, HMLP, MPID and APBB	146
	controllers for Yaw Axis	
4.6	MSE for MLP, HMLP, PID and APBB controllers with unity gain	149
4.7	MSE for MLP, HMLP, PID and APBB controller with varying gain	152
4.8	MSE for MLP, HMLP, PID and APBB controller with measurement	154
	noise	
4.9	MSE for MLP, HMLP, PID and APBB controller with one sample	157
	time delay	

4.10	MSE for MLP, HMLP, PID and APBB controller with all conditions	159
4.11	MSE for MLP, HMLP, PID and APBB controller with step	162
	disturbance	
4.12	Best controller performance analysis for InnoSAT Euler model based	163
	on time response	
4.13	Best controller performance analysis for InnoSAT Euler model based	164
	on Mean Square Error (MSE)	
4.14	MSE for MLP, HMLP, MPID and APBB controller with Y-	166
	Thompson data	
4.15	The Step Response Analysis of ANC and MPID controllers for Roll	169
	Axis	
4.16	Step Response Analysis of ANC and MPID controllers for Pitch Axis	169
4.17	The Step Response Analysis of ANC and MPID controllers for Yaw	169
	Axis	
5.1	Comparison Features of Rabbit 3000 and Rabbit 4000	204
5.2	IEEE 754-2008 internal floating an double representation	206
5.3	Time response analysis for ANC with 3 input and ANC with 8 input	220
5.4	MSE of Simulation and HILS with step input	223
5.5	MSE of Simulation and HILS with square wave input	225
5.6	MSE of Simulation and HILS with varying gain	228
5.7	MSE of Simulation and HILS with measurement noise	230
5.8	MSE of Simulation and HILS with step disturbance	233
5.9	MSE of Simulation and HILS for GG model with step input	236
5.10	MSE of Simulation and HILS for GG model with square wave input	238
5.11	MSE of Simulation and HILS for GG model with varying gain	240

5.12	MSE of Simulation and HILS for GG model with measurement noise	242
5.13	MSE of Simulation and HILS for GG model with step disturbance	244
5.14	MSE of Simulation and HILS for cross coupling with step input	248
5.15	MSE of Simulation and HILS for cross coupling with square wave	251
	input	
5.16	MSE of Simulation and HILS with for cross coupling with varying	253
	gain	
5.17	MSE of Simulation and HILS for cross coupling with measurement	255
	noise	
5.18	MSE of Simulation and HILS for cross coupling with step	257
	disturbance	
5.19	MSE of Simulation and HILS for Y-Thompson input	260
A.1	Satellite Characteristics and Initial Conditions for TiungSAT-	283
	1(Micro-satellite)	
	· 5 P	
	1(Micro-satellite)	
	ris	
\bigcirc		

LIST OF FIGURES

NO.		PAGE
1.1	Block diagram of satellite sub-systems	2
1.2	Block diagram of satellite control	9
1.3	Block diagram of satellite attitude control system	10
2.1	(a) Original design of an off the shelf CubeSAT development-Kit,	18
	(b) 3D image of the CubeSAT with label that used for simulation in	
	STK, (c) Exploded viewof CubeSAT 3D Object	
2.2	Poly Pico-satellite Orbital Deployer(P-POD) and cross section	19
2.3	External view of InnoSAT showing main external components with	21
	coordinate system	
2.4	Block Diagram of Attitude Determination and Control System	23
2.5	Example of feed-forward neural network	39
2.6	Example of feed-back neural network	42
2.7	The new EPOS facility: (a) robotics-based testbed and (b) operation	59
	station	
3.10	Satellite and desired orbital frame	65
3.2	Definition of the orbit reference frame	67
3.3	Angular motion of a rigid body	70
3.4	Gravitational moments on an Asymmetric Satellite	79
3.5	Stability and instability regions for GG-stabilized satellites	89
3.6	Roll angle response of InnoSAT	94
3.7	Pitch angle response of InnoSAT	94
3.8	Yaw angle response of InnoSAT	95

3.9	Roll angle response of TiungSAT-1	96
3.10	Pitch angle response of TiungSAT-1	96
3.11	Yaw angle response of TiungSAT-1	97
4.1	Flow-chart of ANC for InnoSAT plant	108
4.2	Block Diagram of a Model Reference Adaptive System	109
4.3	Adaptive Neuro-Controller based on MRAC scheme	110
4.4	Root Locus Stability Test for Model Reference Parameter	112
4.5	Adaptive Neuro-Controller with Stabilizer	113
4.6	Root Locus Stability Test for InnoSAT plant with Lead	114
	Compensator	
4.7	MLP network with one hidden layer	116
4.8	HMLP network with one hidden layer	117
4.9	Output Response of ANC based on HMLP network for 15 hidden	130
	nodes with one sample delay	
4.10	Output Response of ANC based on HMLP network for 15 hidden	131
	nodes with step disturbance	
4.11	Modified PID Controller based on MRAC scheme	133
4.12	APBB Controller based on MRAC scheme	134
4.13	Y-Thompson Spin for Roll Axis	137
4.14	Y-Thompson Spin for Pitch Axis	138
4.15	Y-Thompson Spin for Yaw Axis	138
4.16	Simulation of varying gain	140
4.17	Additive noise at the plant output	141
4.18	Step input disturbance of 5% at 300s to 600s	142
4.19	Model Reference Output for Step Input response	145

4.20	Step response of MLP, HMLP, APBB and PID controllers for	146
	InnoSAT Euler model	
4.21	Model Reference Output for Square Wave Input	148
4.22	Performance Comparison for InnoSAT Euler model with unity gain	149
4.23	(a) is the zoom out of output response in Figure 4.22 and (b) is	150
	model following error of the zoom out response in (a)	
4.24	Performance Comparison for InnoSAT Euler model with varying	151
	gain	
4.25	(a) is the zoom out of output response in Figure 4.24 and (b) is	152
	model following error of the zoom out response in (a)	
4.26	Performance Comparison for InnoSAT Euler model with	154
	measurement noise	
4.27	(a) is the zoom out of output response in Figure 4.26 and (b) is	155
	model following error of the zoom out response in (a)	
4.28	Performance Comparison for InnoSAT Euler model with one	156
	sample time delay	
4.29	(a) is the zoom out of output response in Figure 4.28 and (b) is	157
\bigcirc	model following error of the zoom out response in (a)	
4.30	Performance Comparison for InnoSAT Euler model with the	159
	combination all operating conditions	
4.31	(a) is the zoom out of output response in Figure 4.30 and (b) is	160
	model following error of the zoom out response in (a)	
4.32	Performance Comparison for InnoSAT Euler model with step	162
	disturbance	
4.33	(a) is the zoom out of output response in Figure 4.32 and (b) is	163

model following error of the zoom out response in (a)

4.34	Performance Comparison for InnoSAT Euler model by using Y-	166
	Thompson spin rate data	
4.35	(a) is the zoom out of output response in Figure 4.34 and (b) is	167
	model following error of the zoom out response in (a)	
4.36	Step response of ANC and MPID controllers with unity gain	172
4.37	Output response of ANC and MPID controllers with unity gain	173
4.38	Output response of ANC and MPID controllers with varying gain	174
4.39	Output response of ANC and MPID controllers with measurement	175
	noise	
4.40	Output response of ANC and MPID controllers with one sample	176
	time delay	
4.41	Output response of ANC and MPID controllers with all operating	177
	conditions	
4.42	(a) is output response of ANC and MPID controllers with step	179
	disturbance and (b) is the zoom out of output response in (a)	
4.43	Output response of ANC controller using Y-Thompson spin rate	181
Õ	data	
4.44	The zoom out of output response in Figure 4.43	182
4.45	Block Diagram of Two Axis InnoSAT plant with Cross Coupling	183
4.46	Step Response of InnoSAT plant with cross coupling effect	185
4.47	InnoSAT response with cross coupling for unity gain	186
4.48	InnoSAT response with cross coupling for varying gain	187
4.49	InnoSAT response with cross coupling for measurement noise	188
4.50	InnoSAT response with cross coupling for step disturbance	189

4.51	InnoSAT response with cross coupling using Y-Thompson spin rate	190
	data	
4.52	The zoom out of output response in Figure 4.51	191
5.1	Flowchart of simulator development for InnoSAT ACS system	198
5.2	Block Diagram for ACS Subsystem (middle) and other subsystems	201
	for DTUsat system	
5.3	RCM4100 with low-EMI Rabbit 4000 based CPU	204
5.4	RCM4100 with low-EMI Rabbit 4000 based CPU RCM4100 Development Kit with cable connection	205
5.5	IEEE 754 floating point segmentation standard	206
5.6	Mapping of Rabbit 4000 Physical Memory Space	210
5.7	General Block Diagram of HILS technique for InnoSAT plant	212
5.8	Satellite simulator connection for InnoSATACS system	213
5.9	Standard RS232 Cable, Programming Cable and USB Converter for	215
	RCM Development Kit	
5.10	Match-Pattern procedure for HILS technique	216
5.11	Communication protocol between hardware simulator (HS) and	216
	software simulator (SS) for InnoSAT ACS Simulator	
5.12	Flowchart of HILS technique for InnoSAT ACS Simulator	217
5.13	Step Response Analysis for ANC with 3 input and ANC with 8	221
	input	
5.14	Output Response and Model Following Error of Simulation and	223
	HILS for Euler model with step input	
5.15	Output Response and Model Following Error of Simulation and	225
	HILS for Euler model with square wave input	
5.16	Output Response and Model Following Error of Simulation and	227

HILS for Euler model with varying gain

- 5.17 Output Response and Model Following Error of Simulation and 230HILS for Euler model with measurement noise
- 5.18Output Response and Model Following Error of Simulation and232HILS for Euler model with step disturbance
- 5.19 (a) is output response of Simulation and HILS for GG model with 236step input and (b) is the zoom out of the output response and model following error in (a)
- 5.20 Output Response and Model Following Error of Simulation and 238HILS for GG model with square wave input
- 5.21 Output Response and Model Following Error of Simulation and 240 HILS for GG model with varying gain
- 5.22 Output Response and Model Following Error of Simulation and 242 HILSfor GG model with measurement noise
- 5.23 Output Response and Model Following Error of Simulation and 244 HILS for GG model with step disturbance
- 5.24 (a) is output response of Simulation and HILS for cross coupling 248 with step input and (b) is the zoom out of the output response and model following error in (a)
- 5.25 Output Response and Model Following Error of Simulation and 251HILS for cross coupling with square wave input
- 5.26 Output Response and Model Following Error of Simulation and 253HILS for cross coupling with varying gain
- 5.27 Output Response and Model Following Error of Simulation and 255HILS for cross coupling with measurement noise

5.28	Output Response and Model Following Error of Simulation and	257
	HILS for cross coupling with step disturbance	
5.29	(a) is output response of Simulation and HILS for Y-Thompson	260
	input and(b) is the zoom out of the output response in (a)	
A.1	Definition of the orientation of the satellite axes u , v , w in the	280
	reference frame 1, 2, 3	
B.1	Uncompensated Root Locus for InnoSAT plant	290
B.2	Compensated Root Locus for InnoSAT plant	292
B.3	Root Locus for X axis of InnoSAT Euler Model	294
B.4	Root Locus for Lead Compensator	295
B.5	Root Locus for InnoSAT plant with Lead Compensator	296
C.1	Output Response of ANC Parameter (W1- hidden node 1)	297
C.2	Output Response of ANC Parameter (W1- hidden node 2)	298
C.3	Output Response of ANC Parameter (W1- hidden node 3)	298
C.4	Output Response of ANC Parameter (W2 - output node)	299
C.5	Output Response of ANC Parameter (WL- linear to output node)	299
C.6	Output Response of ANC Parameter (B - bias input)	300
C.	InnoSAT response with cross coupling for 3% measurement noise	301
C.8	InnoSAT response with cross coupling for 4% measurement noise	302
C.9	InnoSAT response with cross coupling for 5% measurement noise	303

LIST OF ABBREVIATIONS

- ACS Attitude Control System
- ADC Analog to Digital converter
- ADS Attitude Determination System
- ADCS Attitude Determination and Control System
- inalcopyright AOCS Attitude and Orbit Control System
- ANC Adaptive Neuro-Controller
- ANGKASA National Aerospace Agency
- Artificial Neural Network ANN
- Adaptive Parametric Black Box APBB
- ATSB Astronautic Technology (M) Sdn. Bhd.
- ATOF ASCII to floating point
- ARLS Adaptive Recursive Least Square
- Command and Data Handling C&DH

Complementary metal-oxide-semiconductor CMOS

- COMM Communication System
- CFB Circulated Fluidized-Bed
- CPU Central Processor Unit
- DARPA's Defense Advanced Research Projects Agency's
- EduSAT **Educational Satellite**
- EDAC Error Detection and Correction Circuit
- EEPROM Electrical Erasable Programming Read Only Memoary
- EMI Electromagnetic Interference

- EPOS European Proximity Operations Simulator
- European Student Moon Orbiter ESMO
- European Space Agency ESA
- FF Forgetting Factor
- FLC Fuzzy Logic Control
- Feed-Forward Neural Network FFNN
- FBFR Fluidized Bed Furnace Reactor
- Genetic Algorithm Particle Swarm Optimization GAPSO -at. Binalcop
- GPS **Global Positioning System**
- GG Gravity Gradient
- Ground Station/Segment GSEG
- GIT Georgia Institute of Technology
- Generalized Predictive Control GPC
- Hardware-in-loop-simulation HILS
- Hybrid Multi Layered Perceptron HMLP
- High Earth Orbit HEO
- Hardware Simulator HS
- I²C Inter-integrated Circuit
- IPSO Improved Particle Swarm Optimization
- InnoSAT **Innovative Satellite**
- LS Least Square
- Low Earth Orbit LEO
- LTI Linear Time-Invariant
- Microcontroller Unit MCU

- MEO Medium Earth Orbit
- MRP Modified Rodrigues Parameter
- MLP Multi Layered Perceptron
- Model Reference Adaptive Control MRAC
- MPID Modified Proportional, Integral, Derivative
- MPC Model Predictive Control
- MIMO Multiple Input Multiple Output
- n orienal copyright MIT Massachusetts Institute of Technology
- Mean Square Error MSE
- Momentum Back-Propagation MBP
- Neural Network NN
- Neural Network Controller NNC
- North Sea Observer NSO
- Neural Network Simple Adaptive Control NNSAC
- Nonlinear Adaptive Model Predictive Control NAMPC
- Neural Network Model Predictive Control **NNMPC**
- Non-linear Auto-Regressive Moving Average with exogenous input NARM
- OBC **On-Board** Computer
- PC Personal Computer
- PSO Particle Swarm Optimization
- PD Proportional Derivative
- PID Proportional, Integral, Derivative
- Poly-Pico Satellite Orbital Deployer P-POD
- Passive Magnetic Control PMC