CATALYTIC PYROLYSIS OF WASHED PALM RONNYLING LEH LUNG PRESSED FIBER USING COBALT OXIDE COATED

UNIVERSITI MALAYSIA PERLIS 2011

CATALYTIC PYROLYSIS OF WASHED PALM PRESSED FIBER USING COBALT OXIDE COATED ONTO SILICA CATALYST mal copyrile

by

ori

RONNY LING LEH LUNG

This tem is prote Report submitted in partial fulfillment of the requirements for the degree of Bachelor of Engineering

MAY 2011

ACKNOWLEDGMENT

In writing this report, I have benefited from kind hearted and professional teaching and guidaance of many people. First of all, I would like to record my heartfelt gratitude to my lovely and respected Project Supervisor, Pn Alina Rahayu Mohamed who had given me the opportunity to explore the upgrading of bio-oil through the catalytic pyrolysis process.

As a project supervisor and lecturer of University Malaysia Perlis (UniMAP), Pn. Alina is always willing to sacrifice her invaluable time to share her knowledge and rule out systematic project guidelines with me. Pn Alina always encouraged me to leap further. Her gentle but powerful words such as "all the best to you, Ronny", "Ronny, good luck", and many more encouraging had motivated me to grab every opportunity to complete this final thesis report. Without her continuing guidance, assistance, advice and suggestion, this research might not be able to complete smoothly.

I would also like to thank my project core supervisors, Encik Mahfuz Affif and Encik Ahmad Radi Wan Yaakub for their guidance concerning the correct way in pyrolysis process. During more than 6-month work at this research, they really had given me a lot of guidance. I'm ever so thankful for their teaching, guidance, encouragement and advice.

I must also pin-point my gratitude to the staff of School PPK Bioprocess Engineering who has helped one way or another during the course of my project. Thanks to them in their willingness to give me a hand whenever help is required. Finally, though Sarawak is far away, special recognition and thanks go to my parents for their support, sharing, encouragement and love that they have given to me.

APPROVAL AND DECLARATION SHEET

This project report titled catalytic pyrolysis of washed palm pressed fiber (PPF) using cobalt oxide coated onto silica catalyst was prepared and submitted by Ronny Ling Leh Lung (Matrix Number: 071140857) and has been found satisfactory in terms of scope, quality and presentation as partial fulfillment of the requirement for the Bachelor of Engineering (Bioprocess Engineering) in Universiti Malaysia Perlis (UniMAP).

(MDM. ALINA RAHAYU MOHAMED) Project Supervisor

Thistemis

Checked and Approved by

School of Bioprocess Engineering Universiti Malaysia Perlis

May 2011

PIROLISIS BERMANGKIN BAGI FIBER KELAPA SAWIT TERTEKAN DALAM KEHADIRAN MANGKIN OKSIDA KOBALT DISALUTKAN KEPADA OKSIDA SILIKA

ABSTRAK

Fiber kelapa sawit tertekan (PPF) merupakan salah satu bahan buangan daripada industri pemprosesan kelapa sawit. Projek ini adalah untuk mengkaji tindak balas pirolisis bermangkin dari PPF dengan menggunakan mangkin oksida kobalt. Mangkin (Co/SiO2) disediakan secara teknik "pengandungan basah" di mana mangkin oksida kobalt (II) disalutkan ke atas oksida silika dengan perkadaran 1:10. Eksperimen pirolisis dilakukan pada kategori yang berbeza (bermangkin dan tak-bermangkin) di mana suhu dikawal pada 450-550 °C dengan tempoh penahanan antara 30-90 saat di dalam reaktor. Kajian menunjukkan bahawa penghasilan bio-minyak melalui pirolisis bermangkin adalah lebih banyak jika dibandingkan dengan pirolisis tak-bermangkin. Hasil minyakbio bagi pirolisis tak-bermangkin adalah sebanyak 47.5 % manakala hasil yang diperolehi melalui pirolisis bermangkin mencatat peratusan yang setinggi 49.5 %. Perisian "design expert" digunakan dalam kajian ini untuk menyaring parameterparameter eksperimen yang memainkan peranan penting dalam penghasilan minyak-bio. Analisis varian (ANOVA) menunjukkan parameter yang memberi kesan positif terhadap penghasilan minyak-bio adalah suhu pirolisis (A), kategori (C) dan interaksi antara masa penahanan dan kategori (BC). Minyak-bio dianalisis dengan menggunakan spektroskopi inframerah pengubah Fourier (FTIR) untuk mengenalpasti kumpulan berfungsi yang hadir dalam minyak-bio. Berdasarkan kajian, sebatian yang didapati dalam minyak-bio ialah alkana, alkena, aldehid, keton, fenol dan alkohol. Sifat fizikal mangkin yang telah disintesis dijalankan dengan menggunakan mikroskop imbasan elektron (SEM) serta penyerakkan sinar-x (XRD). Analisis XRD menunjukkan bahawa Co/SiO₂ mempunyai struktur berhablur. Manakala analisis SEM menunjukkan bentuk mangkin yang tidak dapat dikenal pasti.

ABSTRACT

Palm pressed fiber (PPF) is one of the oil palm wastes of the rapidly expanding palm oil industry. The research describe in this paper is to investigate the behavior of catalytic pyrolysis of washed PPF using cobalt oxide catalyst. The catalyst was prepared by using wet-impregnation technique in which cobalt (II) oxide was coated onto silica oxide (Co/SiO₂) according to molar ratio 1:10. The pyrolysis experiments were carried out in a fixed bed tubular reactor under inert atmosphere at temperature range from 450 - 550 °C, holding time of 30 - 90s and category of catalytic and non-catalytic. It was found that the pyrolysis of washed PPF in the presence of catalyst can derived a higher yield of bio-oil than non-catalytic reaction. The highest percentage of bio-oil obtained for catalytic reaction was 49.5 %, whereas the highest yield of bio-oil for uncatalytic reaction was 47.5%. This study uses Design Expert software to screen out the important parameters that play significant role in the production of bio-oil. From the analysis of variance (ANOVA), factors that imposed the most significant effect on the yield of bio-oil were pyrolysis temperature (A), category (C) and interaction between holding time and category (BC). The liquid products were analyzed by using fourier transform infrared (FTIR) spectroscopy to identify the functional groups of bio-oil. From the FTIR analysis, the major compounds found in the bio-oil were alkanes, alkenes, aldehydes, ketones, phenols and alcohols. The physical properties of the synthesized catalyst were analyzed using scanning electron microscope (SEM) and xray diffraction (XRD) method. SEM analysis revealed the indefinite shape of synthesized catalyst. For XRD analysis, the studied catalyst was a crystalline structure with lots of impurities.

TABLE OF CONTENTS

			Page
	ACK	NOWLEDGEMENT	ii
	APP	NOWLEDGEMENT ROVAL AND DECLARATION SHEET TRAK TRACT	iii
	ABS	TRAK	iv
	ABS	TRACT	v
	ТАВ	LE OF CONTENTS	vi
	LIST	Γ OF TABLES	ix
	LIST	r of figures	X
	LIST	r of plates	xi
	LIST	GOF SYMBOLS, ABBREVIATIONS OR NOMENCLATURE	xii
		PTER 1 INTRODUCTION	5
	1.1 Scope of Research		
	1.2	Research Objectives	5
	n		
()	СНА	APTER 2 LITERATURE REVIEW	
	2.1	World Energy Crisis	6
	2.2	Biomass Definition	7
	2.3	Biomass Resources	7
	2.4	Major Components and Chemical Structure of Biomass	8
		2.4.1 Cellulose	8
		2.4.2 Hemicellulose	8
		2.4.3 Lignins	9
	2.5	Renewable Biomass Energy	9
	2.6	Biomass Conversion Method	10

	2.7	Fast Pyrolysis of Biomass	11
	2.8	Bio-oil / Pyrolytic Oil	12
	2.9	Catalytic Pyrolysis of Biomass	13
	2.10	Biomass Pretreatment Method	15
	2.11	Oil Palm Biomass	16
	2.12	Palm Pressed Fiber	1 9
	CHAP	PTER 3 METHODOLOGY	
	3.1	Introduction Sample Preparation	21
	3.2	Sample Preparation	22
	3.3	Catalyst Preparation and Characterizations	23
		3.3.1 X-ray Diffraction (XRD) Analysis	24
		3.3.2 Scanning Electron Microscopy (SEM) Analysis	25
	3.4	Experimental Design	27
	3.4	Experimental Set-up	27
	3.5	Biomass Pyrolysis Experiments	27
	3.6	Bio- Oil Analysis	31
	СНАР	PTER 4 RESULTS AND DISCUSSION	
	4.1	Introduction	32
	4.2	Screening Important Factors	34
	• Ġ	4.2.1 Analysis of Variance (ANOVA)	34
		4.2.2 Pareto Chart	36
	4.3	Final Equation	37
\bigcirc	4.4	R-squared Analysis	38
	4.5	Predicted Value versus Experimental Value	39
	4.6	The Effect of Reaction Parameters on Bio-Oil	41
		4.6.1 Effect of Factor A and Factor B	41
		4.6.2 Effect of Factor A and Factor C	43
		4.6.3 Effect of Factor B and Factor C	44
	4.7	Fourier Transform Infrared (FTIR) Spectroscopy Analysis	45
	4.8	Catalyst Characteristics	50
		4.8.1 X-ray Diffraction (XRD) Analysis	50

	4.8.2 Scanning Electron Microscopy (SEM) Analysis
СНА	PTER 5 CONCLUSION
5.1	Summary
5.2	Recommendation for Future Work
5.3	Commercialization Potential
REF	Recommendation for Future Work Commercialization Potential ERENCES ENDICES Indix A Indix B Indix C Indix D Indix E Steaming protected by official and a second seco
APP	ENDICES
Арре	ndix A
Арре	ndix B
Арре	ndix C
Арре	ndix D
Арре	ndix E
r	

LIST OF TABLES

	Table. No		Page
	1.1	Chemical Composition of Different Oil Palm Biomass [10-13].	3 3
	2.1	Range of Main Operating Parameters for Pyrolysis Process [32].	11
	2.2	Pyrolysis of Different Biomass [44].	17
	2.3	Proximate and Ultimate Analysis of Palm Oil Wastes [47].	19
	3.1	Washing Technique for Unwashed PPF	22
	4.1	Experimental Design Matrix and Response Value of Bio-Oil Yield	33
	4.2	Analysis of Variance (ANOVA) for 3FI Model	34
	4.3	R-Squared Analysis	38
	4.4	Comparison Value between Predicted and Experimental Result	40
	4.5	Average Wavenumber (cm ⁻¹) between Catalytic and Non-Catalytic Reaction	46
	4.6	FTIR Functional Group Composition	47
	4,7	Stretching Frequency between FTIR Spectrum Of RON 95 and Bio-Oil	48
(\bigcirc)	4.8	Interplanar Spacing from the Results Interpreted from XRD	51

LIST OF FIGURES

	Figures No		Page
	1.1	Products and Wastes from Every Bunch of Fresh Fruit Bunch (FFB) [7].	2
	2.1	The solid wastes from palm oil mill (POM) [44].	18
	3.1	Methodology of Catalytic and Non-Catalytic Pyrolysis for Washed PPF	21
	3.2	Schematic Drawing for A Powder X-Ray Diffractometer [49].	25
	3.3	A Schematic Diagram of SEM [51].	26
	3.4	Experimental Unit for Catalytic and Non-Catalytic Pyrolysis Experiments As Modified from [53].	28
	3.5	Schematic Drawing of Fixed-Bed Tubular Reactor	29
	4.1	Half-Normal Plot	35
	4.2	Pareto Chart	36
	4.3	Predicted Value Versus Experimental Result	39
	4.4	The Effect of Factor A and Factor B on Product Yield	41
~	4,5	The Contour Plot for Model Term AB	42
\bigcirc	4.6	The 3D-Surface for Model Term AB	42
	4.7	The Effect of Factor A and Factor C on Product Yield	43
	4.8	Effect of Factor B and Factor C on Product Yield	44
	4.9	IR Spectra for Petrol Fuel RON 95	49
	4.10	X-Ray Diffractograms of the Synthesized Co/Sio ₂ Catalyst	50
	4.11	Indefinite Shape of Synthesized Catalyst By SEM at Magnification 5000X	52
	4.12	Indefinite Shape of Synthesized Catalyst By SEM at	52

Magnification 50,000X LIST OF PLATES

Plate. No		Page
2.1	.1 Recovered Fiber from Pressed Palm Fruit	
2.2	Palm Pressed Fiber (PPF) from Northstar Palm Oil Mill in Kuala Ketil, Kedah	20
3.1	Analysis of Pyrolysis Liquid using FTIR	31
4.1 Type of Condensate Oils Produced from Pyrolysis Process		

LIST OF SYMBOLS, ABBREVIATIONS OR NOMENCLATURE

PPF	Palm Pressed Fiber
EFB	Empty Fruit Bunch
FFB	Fresh Fruit Bunch
POM	Palm Oil Mill
DOE	Design of Experimental Software
SEM	Scanning Electron Microscope
XRD	X-ray Diffraction
LHV	Level Heating Value
FTIR	Fourier Transform Infrared Spectroscopy
NREL	National Renewable Energy Laboratory
ANOVA	Analysis of Variance
Std. Dev	Standard Deviation
3FI	Three Factor Interaction
d.f.	Degree of freedom
CV	Coefficient of Variation
A	Pyrolysis Temperature
B	Holding Time
	Category
\bigcirc	