

A thesis submitted in fulfillment of the requirements for the degree of Master of Science (Electrical System Engineering)

School of Electrical System Engineering UNIVERSITI MALAYSIA PERLIS

2012

UNIVERSITI MALAYSIA PERLIS

DE	CLARATION OF THESIS
Author's full name :	Nor Ashbahani Binti Mohamad Kajaan
Date of birth :	14 December 1986
Title :	The Effect of Lamination Thickness of Transformer Core
	on the Flux and Power Loss Distribution Using Grain-
	Oriented 3.1% Silicon Iron
Academic Session :	2009-2012
I hereby declare that the t	hesis becomes the property of Universiti Malaysia Perlis
(UniMAP) and to be placed at	t the library of UniMAP. This thesis is classified as:
CONFIDENTIAL	(Contains confidential information under the Official
	Secret Act 1972)
	0
RESTICTED	Contains restricted information as specified by the
	organization where research was done)
0	
OPEN ACCESS	I agree that my thesis is to be made immediately available
	as hard copy or on-line open access (full text)
I the author give permission	to the UniMAP to reproduce this thesis in whole or in part for
the purpose of research or ac	adamic exchange only (except during a period of part of
so requested above)	define exchange only (except during a period of years, if
so requested above).	Contification
	Certified by:
SIGNATURE	SIGNATURE OF SUPERVISOR
<u>861214-38-6442</u> NEW IC. NO/ PASPOR	Prof. Dr. Ismail Bin Daut RT NO. NAME OF SUPERVISOR
Date: 08 MAY 2012	Date: 08 MAY 2012

ACKNOWLEDGMENT

In The Name Of Allah, The Beneficent The Merciful

Alhamdulillah, finally I have finished my Master at UniMAP. Firstly, thanks to the strength given by Allah, to undergo this master project that I have been working from last two years. Without God's favor, I do not think I can finish my project without much obstacles and made thing easy for me during the progress.

At this column, I would like to express my appreciation to my supervisor, Prof. Dr. Ismail Bin Daut who provided many valuable suggestion and constructive criticism that greatly influence to this project.

00

Also, I would like to thank

Mr. Suhaimi Zakaria and also for the technicians for the continuous support and helps that have been provided throughout this project.

To the friends who has been very supportive and willing to give me a hand when needed, thank you so much. A lot of thanks also expressed to the lecturers and the staffs,

Electrical Energy & Industrial Electronic Systems, Universiti Malaysia Perlis (UniMAP).

o this item is protected by original convirgit

Untuk Ayahanda dan Bonda yang dikasihi, Abang, Kak Ina, Kak Ila, Abang Yon, Abang Mamat, Ayu, Awish dan Amalia. Teristimewa buat Suami tercinta, Reza serta keluarga yang banyak memberi sokongan dan dorongan.

TABLE OF CONTENTS

		PAGE
THES	SIS DECLARATION	i
ACKN	NOWLEDGEMENT	ii
TABL	LE OF CONTENTS	iv
LIST	OF FIGURES	ix
LIST	OF TABLES	xxiii
LIST	OF ABBREVIATIONS	xxiv
LIST	OF SYMBOLS	XXV
ABST	'RAK	xxvii
ABST	RACT	xxviii
CHAI	PTER PINTRODUCTION	
1.1 🤇	Introduction to the Transformer	1
1.2	Problem Statement	2
1.3	Objective of the Research	2
1.4	Research Background	3
CHAI DIST	PTER 2 MAGNETIC PROPERTIES, LOSSES AND FLUX RIBUTIONS	
2.1	General Classes of Electrical Steels	5
2.2	Classes of Magnetic Materials	6

2.3	Introdu	action to Magnetic Properties of Ferromagnetic Materials	7
	2.3.1	Magnetic Domains	7
	2.3.2	The Magnetism and Magnetization Curve	11
	2.3.3	Magnetostriction and Magnetostricitive Materials	15
	2.3.4	Hysterisis Loop and Magnetic Properties	17
2.4	Losses	in a Transformer	19
	2.2.1	Hysteresis Loss	19
	2.2.2	Eddy-Current Loss	20
	2.2.3	Iron Loss	21
	2.2.4	Power Losses under Rotational and Alternating Magnetization	22
	2.2.5	No-load Losses	29
2.3	Magne	tic Flux Distribution in Transformer Core	30
	2.3.1	In-plane Flux Distribution	30
	2.3.2	Normal Flux Distribution	31
	2.3.3	The Effect of T-Joint to the Performance of Transformer Core	33
	2.3.4	The Effect of Corner Joint to the Performance of Transformer Core	35
	is	*	_

CHAPTER 3 FINITE ELEMENT METHOD SOFTWARE

3.1	3D Th	ree Phase Transformer Core Modelling	37
3.2	Three	Phase Transformer Core FEM Analysis	38
	3.2.1	Three Phase Transformer Core Drawing	38
	3.2.2	Three Phase Transformer Core Simulation	39

CHAPTER 4 THE MEASUREMENT APPARATUS AND TECHNIQUE

4.1	Main Apparatus		49
	4.1.1	Actual Model Transformer	49

	4.1.2	Core Material and the Geometry	51
	4.1.3	Epstein Test Frame	52
	4.1.4	Arrays of Search Coil	54
		4.1.4.1 In-plane Search Coil	56
		4.1.4.2 Normal Search Coil	58
	4.1.5	The Thermistor	59
	4.1.6	Power Analyzer	61
	4.1.7	Multimeter	62
	4.1.8	Three Phase Variable Voltage Regulator	63
	4.1.9	Connection Board	63
	4.1.10	Oscilloscope	64
4.2	The Sof	tware Technique	65
	4.2.1	Matlab Software	65
СНАР	ггр 5 т	HE MEASUBEMENT PROCEDURE	
CHAL	IEN 5 I.	THE MEASUREMENT I ROCEDURE	
5.1	List of I	Project Procedure	65
	5.1.1	Calculation of the Primary Winding Line Voltage of the Transformer	68
\bigcirc	5.1.2	Setting up the Transformer Frame	68
	5.1.3	Arrangement of All Silicon Steel Plate at the Transformer Frame	69
	5.1.4	Circuit Connection	69
	5.1.5	Switching on the Three Phase Variable Voltage Regulator	70
	5.1.6	Measuring and Recording the Value of Experimental Result	70
	5.1.7	Adjusting the Voltage Regulator Step by Step	71
	5.1.8	Finishing Data Recording and Switching Off the Power Supply	71
5.2	In-Plane	e and Normal Search Coil Procedure	71

5.3	Therm	istor Testing Procedure	72
5.4	Descrij	ption of the Calculated System	73
	5.4.1	Calculation the Input Voltage for the Epstein Test Frame	73
	5.4.2	Calculation the Input Voltage for the Transformer Core	74
	5.1.3	Calculation for Building Factor	75

CHAPTER 6 RESULTS & DISCUSSIONS

6.1	The FE	M Simulation for Different Transformer Core Thickness	76
6.2	Nomina Thickne	al Loss and Power Loss of Different Transformer Core	79
6.3	Buildin	g Factor of Different Transformer Core Thickness	82
6.4	Flux Le Differei	eakage of the Grain Oriented Silicon Iron Steel M4 with nt Thickness	83
6.5	3 rd and a with Di	5 th harmonic of the Grain Oriented Silicon Iron Steel M4 fferent Thickness	84
6.6	Analysi T-Joint	s the Flux of Different Transformer Core Thickness at the for Different Grain Oriented Silicon Iron Steel M4 Thickness	86
	6.6.1	The Flux of Localized Flux Density	86
	6.6.2	The Flux of Localized Flux Density of 3 rd Harmonic	94
	6.6.3	The Flux of Localized Flux Density of 5 th Harmonic	102
C	6.6.4	The Flux of Normal Flux Density	110
	6.6.5	The Flux of Normal Flux Density of 3 rd Harmonic	118
	6.6.6	The Flux of Normal Flux Density of 5 th Harmonic	126
6.7	Analysi Corner	s the flux of Different Transformer Core Thickness at the for Different Grain Oriented Silicon Iron Steel M4 Thickness.	134
	6.7.1	The Flux of Localized Flux Density	134
	6.7.2	The Flux of Localized Flux Density of 3 rd Harmonic	142
	6.7.3	The Flux of Localized Flux Density of 5 th Harmonic	150

	6.7.4	The Flux of Normal Flux Density	158
	6.7.5	The Flux of Normal Flux Density of 3 rd Harmonic	166
	6.7.6	The Flux of Normal Flux Density of 5 th Harmonic	174
6.8	The Loo	calized Power Loss Using Thermistor Method	182
6.9	Flux Pa	th and Flux Transfer Mechanism	197
6.10	Econon	nical Aspects	201
СНАРТ	TER 7 C	ONCLUSIONS	
7.1	Conclus	sion	203
7.2	Recom	mendation for Future Work	205
7.3	Comme	ercialization Potential	206
REFER	ENCES	*ed by O'	207
APPEN	DIX-A	rect	214
APPEN	DIX-B	om is pro	216
LIST O	F PUBL	ACATIONS	217
Õ	(h).		

LIST OF FIGURES

NO.		PAGE
2.1	B-H loop for hard and soft ferromagnetic materials.	8
2.2	During initial magnetization, high induction will occur due to domains orientation in line with the field growing.	9
2.3	Example of domain wall structure of certain ferromagnetic material.	9
2.4	Image of cross sectional are of grain oriented silicon iron, M4 with 0.23mm thickness.	10
2.5	Image of cross sectional are of grain oriented silicon iron, M4 with 0.27mm thickness.	11
2.6	A piece of ferromagnetic material which is not magnetized. The domain poles are not aligned.	12
2.7	Magnetized ferromagnetic material. The domain poles aligned with an external magnetic force.	12
2.8	The magnetizing curve for a nonmagnetic material.	13
2.9	The magnetizing curve of a ferromagnetic core.	14
2.10	The magnetization curve for various ferromagnetic materials.	14
2.11	Length in the material varies due to the rotation of magnetic domains.	16
2.12	Magnetostatic energy force the domain structure to rotate perpendicular to applied force.	16
2.13	A hysteresis loop for ferromagnetic material.	18
2.14	Figure shows hysteresis loop and its waveforms.	20
2.15	Distributions of iron loss at the corner joint region in the transformer core.	22
2.16	Distributions of magnetic flux at the corner joint region in the transformer core.	23
2.17	Cross section of magnetic flux between two adjacent laminations at the corner region.	23
2.18	The comparison of power loss under rotational and alternating magnetization of 3% silicon-iron sheet.	24

2.19	Analysis of rotating components into orthogonal components.	25
2.20	Rotational power losses per cycle, P_r/f versus magnetization, M/M_s for different rotational frequencies on grain-oriented 3% SiFe disk samples.	26
2.21	Three parts of losses that are hysteresis loss, eddy current loss and anomalous loss for grain-oriented steel.	28
2.22	Alternating power loss for various flux densities.	28
2.23	Figure shows a graphically how transformer losses increase with loading.	29
2.24	Magnetic flux lines in three phase transformer core shows maximum flux occur in the middle limb.	31
2.25	The magnitude and direction of the 50Hz component of the flux in the rolling plane at the T-joint.	32
2.26	The flux component that normal to the rolling plane.	32
2.27	Various type of overlaps in the T-joint.	33
2.28	Localized power loss distribution at T-joint.	34
2.29	Schematic layout of (a) butt-lap joint corner and (b) mitred overlap joint.	36
3.1	The AutoCAD drawing for 2D model of three phase transformer core.	38
3.2	Launch Magnetostatic analysis.	39
3.3	Create Engineering Data.	40
3.4	Adding new material into software library.	41
3.5	Adding material properties of the material used.	41
3.6	Entering values of Coercive Force (H) and Residual Induction (B _r).	42
3.7	Launch DesignModeler.	42
3.8	Importing model into DesignModeler.	43
3.9	Generate model.	43
3.10	Three phase transformer core model.	44
3.11	Enclosure of transformer core model.	44

3.12	Launching Mechanical.	45
3.13	Assigning some properties of transformer core model.	46
3.14	Transformer core magnet coordinate.	46
3.15	Mesh refining details.	47
3.16	Meshed three phase transformer core model.	48
3.17	Simulation in progress.	48
4.1	The test platform for the transformer model.	50
4.2	The actual test platform for the transformer model.	50
4.3	The core material for this investigation that is cold rolled grain-oriented silicon iron (3% SiFe).	51
4.4	The mitred lap corner joint with overlap length of 5mm.	52
4.5	Dimensions of experimental cores with 60° T-joint.	52
4.6	Connection circuit of the Epstein test frame.	53
4.7	The actual connection of Epstein test frame circuit.	54
4.8	The concept of using search coil technique.	55
4.9	Search coil been attached to the transformer core steel plate.	55
4.10	Horizontal position of search coil is in rolling direction while vertical position of search coil is in transverse direction.	56
4.11	The holes distance for the search coil to be inserted.	57
4.12	Actual figure of search coil been thread into the 10mm hole.	57
4.13	The in-plane search coils locations at the T-joint and corner joint.	58
4.14	The 10mm x 10mm search coil on the laminations.	58
4.15	Actual figure of 10mm x 10mm search coil on the laminations.	59
4.16	Position of search coils for measuring normal flux distribution at T-joints and corner joints.	59
4.17	Circuit to measure temperature rise from the thermistor.	60
4.18	The locations of the thermistor at the T-joint and corner joint.	61

4.19	Power analyzer (PM 300).	62
4.20	Digital multimeter to display the value of the line voltage.	62
4.21	Voltage supply for actual transformer model.	63
4.22	Connection board of the actual transformer model.	64
4.23	Oscilloscope.	64
4.24	Probe of the oscilloscope.	65
4.25	The meshgrid graph of the power loss distributions at the T-joint of transformer core lamination.	66
4.26	Example of contour graph of power loss at the T-joint.	66
5.1	The flow chart of project procedure.	67
5.2	The circuit diagram for the actual model of the transformer core.	70
5.3	The probe being connected to the search coil.	72
6.1	The magnetic flux density on three phase transformer core lamination for 0.23mm thickness.	77
6.2	The data for FEM simulation for transformer core with 0.23mm thickness.	77
6.3	The magnetic flux density on three phase transformer core lamination for 0.27mm thickness.	78
6.4	The data for FEM simulation for transformer core with 0.27mm thickness.	78
6.5	The thickness comparison of nominal loss.	81
6.6	The thickness comparison of power loss.	81
6.7	The thickness comparison of building factor.	83
6.5	Flux leakage of 0.23mm thickness.	84
6.5	Flux leakage of 0.27mm thickness.	84
6.10	3 rd and 5 th harmonic of 0.23mm thickness.	85
6.11	3 rd and 5 th harmonic of 0.27mm thickness.	85

6.12 The mesh graph of localized flux density at T-joint during 1.0T for

	grain oriented silicon iron steel M4, 0.23mm thickness.	88
6.13	The variations of localized flux density at T-joint during 1.0T for grain oriented silicon iron steel M4, 0.23mm thickness.	88
6.14	The mesh graph of localized flux density at T-joint during 1.5T for grain oriented silicon iron steel M4, 0.23mm thickness.	89
6.15	The variations of localized flux density at T-joint during 1.5T for grain oriented silicon iron steel M4, 0.23mm thickness.	89
6.16	The mesh graph of localized flux density at T-joint during 1.8T for grain oriented silicon iron steel M4, 0.23mm thickness.	90
6.17	The variations of localized flux density at T-joint during 1.8T for grain oriented silicon iron steel M4, 0.23mm thickness.	90
6.18	The mesh graph of localized flux density at T-joint during 1.0T for grain oriented silicon iron steel M4, 0.27mm thickness.	91
6.19	The variations of localized flux density at T-joint during 1.0T for grain oriented silicon iron steel M4, 0.27mm thickness.	91
6.20	The mesh graph of localized flux density at T-joint during 1.5T for grain oriented silicon iron steel M4, 0.27mm thickness.	92
6.21	The variations of localized flux density at T-joint during 1.5T for grain oriented silicon iron steel M4, 0.27mm thickness.	92
6.22	The mesh graph of localized flux density at T-joint during 1.8T for grain oriented silicon iron steel M4, 0.27mm thickness.	93
6.23	The variations of localized flux density at T-joint during 1.8T for grain oriented silicon iron steel M4, 0.27mm thickness.	93
6.24	The mesh graph of localized flux density of 3 rd harmonic at T-joint during 1.0T for grain oriented silicon iron steel M4, 0.23mm thickness.	96
6.25	The variations of localized flux density of 3 rd harmonic at T-joint during 1.0T for grain oriented silicon iron steel M4, 0.23mm thickness.	96
6.26	The mesh graph of localized flux density of 3 rd harmonic at T-joint during 1.5T for grain oriented silicon iron steel M4, 0.23mm thickness.	97
6.27	The variations of localized flux density of 3 rd harmonic at T-joint during 1.5T for grain oriented silicon iron steel M4, 0.23mm thickness.	97
6.28	The mesh graph of localized flux density of 3 rd harmonic at T-joint during 1.8T for grain oriented silicon iron steel M4, 0.23mm thickness.	98

6.29	The variations of localized flux density of 3 rd harmonic at T-joint during 1.8T for grain oriented silicon iron steel M4, 0.23mm thickness.	98
6.30	The mesh graph of localized flux density of 3 rd harmonic at T-joint during 1.0T for grain oriented silicon iron steel M4, 0.27mm thickness.	99
6.31	The variations of localized flux density of 3 rd harmonic at T-joint during 1.0T for grain oriented silicon iron steel M4, 0.27mm thickness.	99
6.32	The mesh graph of localized flux density of 3 rd harmonic at T-joint during 1.5T for grain oriented silicon iron steel M4, 0.27mm thickness.	100
6.33	The variations of localized flux density of 3 rd harmonic at T-joint during 1.5T for grain oriented silicon iron steel M4, 0.27mm thickness.	100
6.34	The mesh graph of localized flux density of 3 rd harmonic at T-joint during 1.8T for grain oriented silicon iron steel M4, 0.27mm thickness.	101
6.35	The variations of localized flux density of 3 rd harmonic at T-joint during 1.8T for grain oriented silicon iron steel M4, 0.27mm thickness.	101
6.36	The mesh graph of localized flux density of 5 th harmonic at T-joint during 1.0T for grain oriented silicon iron steel M4, 0.23mm thickness.	104
6.37	The variations of localized flux density of 5 th harmonic at T-joint during 1.0T for grain oriented silicon iron steel M4, 0.23mm thickness.	104
6.38	The mesh graph of localized flux density of 5 th harmonic at T-joint during 1.5T for grain oriented silicon iron steel M4, 0.23mm thickness.	105
6.39	The variations of localized flux density of 5 th harmonic at T-joint during 1.5T for grain oriented silicon iron steel M4, 0.23mm thickness.	105
6.40	The mesh graph of localized flux density of 5 th harmonic at T-joint during 1.8T for grain oriented silicon iron steel M4, 0.23mm thickness.	106
6.41	The variations of localized flux density of 5 th harmonic at T-joint during 1.8T for grain oriented silicon iron steel M4, 0.23mm thickness.	106
6.42	The mesh graph of localized flux density of 5 th harmonic at T-joint during 1.0T for grain oriented silicon iron steel M4, 0.27mm thickness.	107
6.43	The variations of localized flux density of 5 th harmonic at T-joint during 1.0T for grain oriented silicon iron steel M4, 0.27mm thickness.	107
6.44	The mesh graph of localized flux density of 5 th harmonic at T-joint during 1.5T for grain oriented silicon iron steel M4, 0.27mm thickness.	108
6.45	The variations of localized flux density of 5 th harmonic at T-joint during 1.5T for grain oriented silicon iron steel M4, 0.27mm thickness.	108

6.46	The mesh graph of localized flux density of 5 th harmonic at T-joint during 1.8T for grain oriented silicon iron steel M4, 0.27mm thickness.	109
6.47	The variations of localized flux density of 5 th harmonic at T-joint during 1.8T for grain oriented silicon iron steel M4, 0.27mm thickness.	109
6.48	The mesh graph of localized flux density at T-joint during 1.0T for grain oriented silicon iron steel M4, 0.23mm thickness.	112
6.49	The variations of localized flux density at T-joint during 1.0T for grain oriented silicon iron steel M4, 0.23mm thickness.	112
6.50	The mesh graph of localized flux density at T-joint during 1.5T for grain oriented silicon iron steel M4, 0.23mm thickness.	113
6.51	The variations of localized flux density at T-joint during 1.5T for grain oriented silicon iron steel M4, 0.23mm thickness.	113
6.52	The mesh graph of localized flux density at T-joint during 1.8T for grain oriented silicon iron steel M4, 0.23mm thickness.	114
6.53	The variations of localized flux density at T-joint during 1.8T for grain oriented silicon iron steel M4, 0.23mm thickness.	114
6.54	The mesh graph of localized flux density at T-joint during 1.0T for grain oriented silicon iron steel M4, 0.27mm thickness.	115
6.55	The variations of localized flux density at T-joint during 1.0T for grain oriented silicon iron steel M4, 0.27mm thickness.	115
6.56	The mesh graph of localized flux density at T-joint during 1.5T for grain oriented silicon iron steel M4, 0.27mm thickness.	116
6.57	The variations of localized flux density at T-joint during 1.5T for grain oriented silicon iron steel M4, 0.27mm thickness.	116
6.58	The mesh graph of localized flux density at T-joint during 1.8T for grain oriented silicon iron steel M4, 0.27mm thickness.	117
6.59	The variations of localized flux density at T-joint during 1.8T for grain oriented silicon iron steel M4, 0.27mm thickness.	117
6.60	The mesh graph of localized flux density of 3 rd harmonic at T-joint during 1.0T for grain oriented silicon iron steel M4, 0.23mm thickness.	120
6.61	The variations of localized flux density of 3 rd harmonic at T-joint during 1.0T for grain oriented silicon iron steel M4, 0.23mm thickness.	120
6.62	The mesh graph of localized flux density of 3 rd harmonic at T-joint during 1.5T for grain oriented silicon iron steel M4, 0.23mm thickness.	121

6.63	The variations of localized flux density of 3 rd harmonic at T-joint during 1.5T for grain oriented silicon iron steel M4, 0.23mm thickness.	121
6.64	The mesh graph of localized flux density of 3 rd harmonic at T-joint during 1.8T for grain oriented silicon iron steel M4, 0.23mm thickness.	122
6.65	The variations of localized flux density of 3 rd harmonic at T-joint during 1.8T for grain oriented silicon iron steel M4, 0.23mm thickness.	122
6.66	The mesh graph of localized flux density of 3 rd harmonic at T-joint during 1.0T for grain oriented silicon iron steel M4, 0.27mm thickness.	123
6.67	The variations of localized flux density of 3 rd harmonic at T-joint during 1.0T for grain oriented silicon iron steel M4, 0.27mm thickness.	123
6.68	The mesh graph of localized flux density of 3 rd harmonic at T-joint during 1.5T for grain oriented silicon iron steel M4, 0.27mm thickness.	124
6.69	The variations of localized flux density of 3 rd harmonic at T-joint during 1.5T for grain oriented silicon iron steel M4, 0.27mm thickness.	124
6.70	The mesh graph of localized flux density of 3 rd harmonic at T-joint during 1.8T for grain oriented silicon iron steel M4, 0.27mm thickness.	125
6.71	The variations of localized flux density of 3 rd harmonic at T-joint during 1.8T for grain oriented silicon iron steel M4, 0.27mm thickness.	125
6.72	The mesh graph of localized flux density of 5 th harmonic at T-joint during 1.0T for grain oriented silicon iron steel M4, 0.23mm thickness.	128
6.73	The variations of localized flux density of 5 th harmonic at T-joint during 1.0T for grain oriented silicon iron steel M4, 0.23mm thickness.	128
6.74	The mesh graph of localized flux density of 5 th harmonic at T-joint during 1.5T for grain oriented silicon iron steel M4, 0.23mm thickness.	129
6.75	The variations of localized flux density of 5 th harmonic at T-joint during 1.5T for grain oriented silicon iron steel M4, 0.23mm thickness.	129
6.76	The mesh graph of localized flux density of 5 th harmonic at T-joint during 1.8T for grain oriented silicon iron steel M4, 0.23mm thickness.	130
6.77	The variations of localized flux density of 5 th harmonic at T-joint during 1.8T for grain oriented silicon iron steel M4, 0.23mm thickness.	130
6.78	The mesh graph of localized flux density of 5 th harmonic at T-joint during 1.0T for grain oriented silicon iron steel M4, 0.27mm thickness.	131
6.79	The variations of localized flux density of 5 th harmonic at T-joint during 1.0T for grain oriented silicon iron steel M4, 0.27mm thickness.	131

6.80	The mesh graph of localized flux density of 5 th harmonic at T-joint during 1.5T for grain oriented silicon iron steel M4, 0.27mm thickness.	132
6.81	The variations of localized flux density of 5 th harmonic at T-joint during 1.5T for grain oriented silicon iron steel M4, 0.27mm thickness.	132
6.82	The mesh graph of localized flux density of 5 th harmonic at T-joint during 1.8T for grain oriented silicon iron steel M4, 0.27mm thickness.	133
6.83	The variations of localized flux density of 5 th harmonic at T-joint during 1.8T for grain oriented silicon iron steel M4, 0.27mm thickness.	132
6.84	The mesh graph of localized flux density at corner joint during 1.0T for grain oriented silicon iron steel M4, 0.23mm thickness.	136
6.85	The variations of localized flux density at corner joint during 1.0T for grain oriented silicon iron steel M4, 0.23mm thickness.	136
6.86	The mesh graph of localized flux density at corner joint during 1.5T for grain oriented silicon iron steel M4, 0.23mm thickness.	137
6.87	The variations of localized flux density at corner joint during 1.5T for grain oriented silicon iron steel M4, 0.23mm thickness.	137
6.88	The mesh graph of localized flux density at corner joint during 1.8T for grain oriented silicon iron steel M4, 0.23mm thickness.	138
6.89	The variations of localized flux density at corner joint during 1.8T for grain oriented silicon iron steel M4, 0.23mm thickness.	138
6.90	The mesh graph of localized flux density at corner joint during 1.0T for grain oriented silicon iron steel M4, 0.27mm thickness.	139
6.91	The variations of localized flux density at corner joint during 1.0T for grain oriented silicon iron steel M4, 0.27mm thickness.	139
6.92	The mesh graph of localized flux density at corner joint during 1.5T for grain oriented silicon iron steel M4, 0.27mm thickness.	140
6.93	The variations of localized flux density at corner joint during 1.5T for grain oriented silicon iron steel M4, 0.27mm thickness.	140
6.94	The mesh graph of localized flux density at corner joint during 1.8T for grain oriented silicon iron steel M4, 0.27mm thickness.	141
6.95	The variations of localized flux density at corner joint during 1.8T for grain oriented silicon iron steel M4, 0.27mm thickness.	141
6.96	The mesh graph of localized flux density of 3 rd harmonic at corner joint during 1.0T for grain oriented silicon iron steel M4, 0.23mm thickness.	144

6.97	The variations of localized flux density of 3 rd harmonic corner joint during 1.0T for grain oriented silicon iron steel M4, 0.23mm thickness.	144
6.98	The mesh graph of localized flux density of 3 rd harmonic at corner joint during 1.5T for grain oriented silicon iron steel M4, 0.23mm thickness.	145
6.99	The variations of localized flux density of 3 rd harmonic at corner joint during 1.5T for grain oriented silicon iron steel M4, 0.23mm thickness.	145
6.100	The mesh graph of localized flux density of 3 rd harmonic at corner joint during 1.8T for grain oriented silicon iron steel M4, 0.23mm thickness.	146
6.101	The variations of localized flux density of 3 rd harmonic at corner joint during 1.8T for grain oriented silicon iron steel M4, 0.23mm thickness.	146
6.102	The mesh graph of localized flux density of 3 rd harmonic at corner joint during 1.0T for grain oriented silicon iron steel M4, 0.27mm thickness.	147
6.103	The variations of localized flux density of 3 rd harmonic at corner joint during 1.0T for grain oriented silicon iron steel M4, 0.27mm thickness.	147
6.104	The mesh graph of localized flux density of 3 rd harmonic at corner joint during 1.5T for grain oriented silicon iron steel M4, 0.27mm thickness.	148
6.105	The variations of localized flux density of 3 rd harmonic at corner joint during 1.5T for grain oriented silicon iron steel M4, 0.27mm thickness.	148
6.106	The mesh graph of localized flux density of 3 rd harmonic at corner joint during 1.8T for grain oriented silicon iron steel M4, 0.27mm thickness.	149
6.107	The variations of localized flux density of 3 rd harmonic at corner joint during 1.8T for grain oriented silicon iron steel M4, 0.27mm thickness.	149
6.108	The mesh graph of localized flux density of 5 th harmonic at corner joint during 1.0T for grain oriented silicon iron steel M4, 0.23mm thickness.	152
6.109	The variations of localized flux density of 5 th harmonic at corner joint during 1.0T for grain oriented silicon iron steel M4, 0.23mm thickness.	152
6.110	The mesh graph of localized flux density of 5 th harmonic at corner joint during 1.5T for grain oriented silicon iron steel M4, 0.23mm thickness.	153
6.111	The variations of localized flux density of 5 th harmonic at corner joint during 1.5T for grain oriented silicon iron steel M4, 0.23mm thickness.	153
6.112	The mesh graph of localized flux density of 5 th harmonic at corner joint during 1.8T for grain oriented silicon iron steel M4, 0.23mm thickness.	154
6.113	The variations of localized flux density of 5 th harmonic at corner joint during 1.8T for grain oriented silicon iron steel M4, 0.23mm thickness.	154

6.114	The mesh graph of localized flux density of 5 th harmonic at corner joint during 1.0T for grain oriented silicon iron steel M4, 0.27mm thickness.	155
6.115	The variations of localized flux density of 5 th harmonic at corner joint during 1.0T for grain oriented silicon iron steel M4, 0.27mm thickness.	155
6.116	The mesh graph of localized flux density of 5 th harmonic at corner joint during 1.5T for grain oriented silicon iron steel M4, 0.27mm thickness.	156
6.117	The variations of localized flux density of 5 th harmonic at corner joint during 1.5T for grain oriented silicon iron steel M4, 0.27mm thickness.	156
6.118	The mesh graph of localized flux density of 5 th harmonic at corner joint during 1.8T for grain oriented silicon iron steel M4, 0.27mm thickness.	157
6.119	The variations of localized flux density of 5 th harmonic at corner joint during 1.8T for grain oriented silicon iron steel M4, 0.27mm thickness.	157
6.120	The mesh graph of localized flux density at corner joint during 1.0T for grain oriented silicon iron steel M4, 0.23mm thickness.	160
6.121	The variations of localized flux density at corner joint during 1.0T for grain oriented silicon iron steel M4, 0.23mm thickness.	160
6.122	The mesh graph of localized flux density at corner joint during 1.5T for grain oriented silicon iron steel M4, 0.23mm thickness.	161
6.123	The variations of localized flux density at corner joint during 1.5T for grain oriented silicon iron steel M4, 0.23mm thickness.	161
6.124	The mesh graph of localized flux density at corner joint during 1.8T for grain oriented silicon iron steel M4, 0.23mm thickness.	162
6.125	The variations of localized flux density at corner joint during 1.8T for grain oriented silicon iron steel M4, 0.23mm thickness.	162
6.126	The mesh graph of localized flux density at corner joint during 1.0T for grain oriented silicon iron steel M4, 0.27mm thickness.	163
6.127	The variations of localized flux density at corner joint during 1.0T for grain oriented silicon iron steel M4, 0.27mm thickness.	162
6.128	The mesh graph of localized flux density at corner joint during 1.5T for grain oriented silicon iron steel M4, 0.27mm thickness.	164
6.129	The variations of localized flux density at corner joint during 1.5T for grain oriented silicon iron steel M4, 0.27mm thickness.	164
6.130	The mesh graph of localized flux density at corner joint during 1.8T for grain oriented silicon iron steel M4, 0.27mm thickness.	165

6.131	The variations of localized flux density at corner joint during 1.8T for grain oriented silicon iron steel M4, 0.27mm thickness.	165
6.132	The mesh graph of localized flux density of 3 rd harmonic at corner joint during 1.0T for grain oriented silicon iron steel M4, 0.23mm thickness.	168
6.133	The variations of localized flux density of 3 rd harmonic at corner joint during 1.0T for grain oriented silicon iron steel M4, 0.23mm thickness.	168
6.134	The mesh graph of localized flux density of 3 rd harmonic at corner joint during 1.5T for grain oriented silicon iron steel M4, 0.23mm thickness.	169
6.135	The variations of localized flux density of 3 rd harmonic at corner joint during 1.5T for grain oriented silicon iron steel M4, 0.23mm thickness.	169
6.136	The mesh graph of localized flux density of 3 rd harmonic at corner joint during 1.8T for grain oriented silicon iron steel M4, 0.23mm thickness.	170
6.137	The variations of localized flux density of 3 rd harmonic at corner joint during 1.8T for grain oriented silicon iron steel M4, 0.23mm thickness.	170
6.138	The mesh graph of localized flux density of 3 rd harmonic at corner joint during 1.0T for grain oriented silicon iron steel M4, 0.27mm thickness.	171
6.139	The variations of localized flux density of 3 rd harmonic at corner joint during 1.0T for grain oriented silicon iron steel M4, 0.27mm thickness.	171
6.140	The mesh graph of localized flux density of 3 rd harmonic at corner joint during 1.5T for grain oriented silicon iron steel M4, 0.27mm thickness.	172
6.141	The variations of localized flux density of 3 rd harmonic at corner joint during 1.5T for grain oriented silicon iron steel M4, 0.27mm thickness.	172
6.142	The mesh graph of localized flux density of 3 rd harmonic at corner joint during 1.8T for grain oriented silicon iron steel M4, 0.27mm thickness.	173
6.143	The variations of localized flux density of 3 rd harmonic at corner joint during 1.8T for grain oriented silicon iron steel M4, 0.27mm thickness.	173
6.144	The mesh graph of localized flux density of 5 th harmonic at corner joint during 1.0T for grain oriented silicon iron steel M4, 0.23mm thickness.	176
6.145	The variations of localized flux density of 5 th harmonic at corner joint during 1.0T for grain oriented silicon iron steel M4, 0.23mm thickness.	176
6.146	The mesh graph of localized flux density of 5 th harmonic at corner joint during 1.5T for grain oriented silicon iron steel M4, 0.23mm thickness.	177
6.147	The variations of localized flux density of 5 th harmonic at corner joint during 1.5T for grain oriented silicon iron steel M4, 0.23mm thickness.	177

6.148	The mesh graph of localized flux density of 5 th harmonic at corner joint during 1.8T for grain oriented silicon iron steel M4, 0.23mm thickness.	178
6.149	The variations of localized flux density of 5 th harmonic at corner joint during 1.8T for grain oriented silicon iron steel M4, 0.23mm thickness.	178
6.150	The mesh graph of localized flux density of 5 th harmonic at corner joint during 1.0T for grain oriented silicon iron steel M4, 0.27mm thickness.	179
6.151	The variations of localized flux density of 5 th harmonic at corner joint during 1.0T for grain oriented silicon iron steel M4, 0.27mm thickness.	179
6.152	The mesh graph of localized flux density of 5 th harmonic at corner joint during 1.5T for grain oriented silicon iron steel M4, 0.27mm thickness.	180
6.153	The variations of localized flux density of 5 th harmonic at corner joint during 1.5T for grain oriented silicon iron steel M4, 0.27mm thickness.	180
6.154	The mesh graph of localized flux density of 5 th harmonic at corner joint during 1.8T for grain oriented silicon iron steel M4, 0.27mm thickness.	181
6.155	The variations of localized flux density of 5 th harmonic at corner joint during 1.8T for grain oriented silicon iron steel M4, 0.27mm thickness.	181
6.156	The mesh graph of localized power loss at T-joint during 1.0T for grain oriented silicon iron steel M4, 0.23mm thickness.	183
6.157	The variations of localized power loss at T-joint during 1.0T for grain oriented silicon iron steel M4, 0.23mm thickness.	183
6.158	The mesh graph of localized power loss at T-joint during 1.5T for grain oriented silicon iron steel M4, 0.23mm thickness.	184
6.159	The variations of localized power loss at T-joint during 1.5T for grain oriented silicon iron steel M4, 0.23mm thickness.	184
6.160	The mesh graph of localized power loss at T-joint during 1.8T for grain oriented silicon iron steel M4, 0.23mm thickness.	185
6.161	The variations of localized power loss at T-joint during 1.8T for grain oriented silicon iron steel M4, 0.23mm thickness.	185
6.162	The mesh graph of localized power loss at corner joint during 1.0T for grain oriented silicon iron steel M4, 0.23mm thickness.	186
6.163	The variations of localized power loss at corner joint during 1.0T for grain oriented silicon iron steel M4, 0.23mm thickness.	186
6.164	The mesh graph of localized power loss at corner joint during 1.5T for grain oriented silicon iron steel M4, 0.23mm thickness.	187

6.165	The variations of localized power loss at corner joint during 1.5T for grain oriented silicon iron steel M4, 0.23mm thickness.	187
6.166	The mesh graph of localized power loss at corner joint during 1.8T for grain oriented silicon iron steel M4, 0.23mm thickness.	188
6.167	The variations of localized power loss at corner joint during 1.8T for grain oriented silicon iron steel M4, 0.23mm thickness.	188
6.168	The mesh graph of localized power loss at T-joint during 1.0T for grain oriented silicon iron steel M4, 0.23mm thickness.	190
6.169	The variations of localized power loss at T-joint during 1.0T for grain oriented silicon iron steel M4, 0.23mm thickness.	190
6.170	The mesh graph of localized power loss at T-joint during 1.5T for grain oriented silicon iron steel M4, 0.23mm thickness.	191
6.171	The variations of localized power loss at T-joint during 1.5T for grain oriented silicon iron steel M4, 0.23mm thickness.	191
6.172	The mesh graph of localized power loss at T-joint during 1.8T for grain oriented silicon iron steel M4, 0.23mm thickness.	192
6.173	The variations of localized power loss at T-joint during 1.8T for grain oriented silicon iron steel M4, 0.23mm thickness.	192
6.174	The mesh graph of localized power loss at corner joint during 1.0T for grain oriented silicon iron steel M4, 0.23mm thickness.	193
6.175	The variations of localized power loss at corner joint during 1.0T for grain oriented silicon iron steel M4, 0.23mm thickness.	193
6.176 ©	The mesh graph of localized power loss at corner joint during 1.5T for grain oriented silicon iron steel M4, 0.23mm thickness.	194
6.177	The variations of localized power loss at corner joint during 1.5T for grain oriented silicon iron steel M4, 0.23mm thickness.	194
6.178	The mesh graph of localized power loss at corner joint during 1.8T for grain oriented silicon iron steel M4, 0.23mm thickness.	195
6.179	The variations of localized power loss at corner joint during 1.8T for grain oriented silicon iron steel M4, 0.23mm thickness.	195
6.180	The transfer mechanism of flux between laminations at T-joint for grain oriented silicon iron steel, M4.	199
6.181	The transfer mechanism of flux between laminations at corner joint for grain oriented silicon iron steel, M4.	200

LIST OF TABLES

NO.		PAGE
2.1	Power loss at operation mode flux density for both butt and lap joint and mitred overlap joint.	36
6.1	The percentage reduced of nominal and power loss when using thinner steel plate, grain oriented silicon iron steel M4, 0.23mm thickness during 1.5T.	81
6.2	The percentage reduced of building factor when using thinner steel plate, grain oriented silicon iron steel M4, 0.23mm thickness during 1.5T.	83
6.3	The losses (RM) of several types of distribution transformer assembled with grain oriented silicon iron steel M4, 0.23mm thickness.	202
6.4	The losses (RM) of several types of distribution transformer assembled with grain oriented silicon iron steel M4, 0.27mm thickness.	202
6.5	Total saved (RM) when using thinner steel plate, grain oriented silicon iron steel M4, 0.23mm thickness.	202
(o this item is pl	